
Towards Cooperative Software Verification
with Test Generation and Formal Verification

Thomas Lemberger

December 12, 2022 · PhD Defense · Software and Computational Systems Lab, Fakultät für
Mathematik, Informatik und Statistik, LMU Munich

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Publications included in the PhD Thesis

2

D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim: Reducer-Based Construction of Conditional Verifiers.
Proc. ICSE, 2018.

D. Beyer and T. Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

D. Beyer, M.-C. Jakobs, and T. Lemberger: Difference Verification with Conditions. Proc. SEFM, 2020.

D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim: Decomposing Software Verification into Off-the-Shelf
Components: An Application to CEGAR. Proc. ICSE, 2022.

D. Beyer and T. Lemberger: Software Verification: Testing vs. Model Checking. Proc. HVC, 2017.

D. Beyer, M. Dangl, T. Lemberger, and M. Tautschnig: Tests from Witnesses: Execution-Based Validation of Verification
Results. Proc. TAP, 2018.

D. Beyer and T. Lemberger: TestCov: Robust Test-Suite Execution and Coverage Measurement. Proc. ASE, 2019.

T. Lemberger: Plain random test generation with PRTest. STTT, 2020.

D. Beyer and T. Lemberger: Five Years Later: Testing vs. Model Checking. STTT, under review.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Publications presented here

3

D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim: Reducer-Based Construction of Conditional Verifiers.
Proc. ICSE, 2018.

D. Beyer and T. Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

D. Beyer, M.-C. Jakobs, and T. Lemberger: Difference Verification with Conditions. Proc. SEFM, 2020.

D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim: Decomposing Software Verification into Off-the-Shelf
Components: An Application to CEGAR. Proc. ICSE, 2022.

D. Beyer and T. Lemberger: Software Verification: Testing vs. Model Checking. Proc. HVC, 2017.

D. Beyer, M. Dangl, T. Lemberger, and M. Tautschnig: Tests from Witnesses: Execution-Based Validation of Verification
Results. Proc. TAP, 2018.

D. Beyer and T. Lemberger: TestCov: Robust Test-Suite Execution and Coverage Measurement. Proc. ASE, 2019.

T. Lemberger: Plain random test generation with PRTest. STTT, 2020.

D. Beyer and T. Lemberger: Five Years Later: Testing vs. Model Checking. STTT, under review.

Context

4

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Automated Software Verification

5

Is present
safe?

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Automated Software Verification

6

true
false
unknownNo present is

reachable Verifier

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification” 7

● Verifiers have different strengths and weaknesses

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification” 8

● Verifiers have different strengths and weaknesses

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification” 9

● Verifiers have different strengths and weaknesses
● Cooperative Verification tries to combine the strengths and mitigate the weaknesses

true

false

unknown

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short n = nondet();
4 while (x < n) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 reach_error();
10 }

Automated Software Verification

10

true (proof)
false (alarm)
unknownNo call to

reach_error()
is reachable

Verifier

11

Background

12

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Control-Flow Automaton (CFA)

13

Background

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short n = nondet();
4 while (x < n) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 reach_error();
10 }

● CFA represents control flow of program

● We consider intraprocedural, sequential programs

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Automated Software Verification

14

Background

● Two approaches:

○ Automated Test Generation

○ Automated Formal Verification

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Test Generation

15

Background

Here, Test = Test Input.

A test t = ⟨v₀, . . . v n⟩ is a sequence of n input values for a single program execution.

Input
program

coverage
criterion

test suite

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Formal Verification

16

Background

Input
program

program
property

Common technique:
● Compute reachable

(abstract) program state space.

● Any reachable state at call to
reach_error()?
→ property violation.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Predicate Abstraction

17

Formal Verification

● Program state space
potentially infinite

● Abstract the state space
with given predicates

● Here: x % 2 = 0

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Counterexample-Guided Abstraction Refinement (CEGAR)

18

Formal Verification

● Derive program abstraction as abstract as
possible and as precise as necessary

● Start with coarse precision
● Refine precision of abstract-model exploration

with found infeasible counterexamples

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Verification-Result Witnesses

19

Background

D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig: Verification Witnesses. TOSEM, 2022.

● Increase trust in formal verification result

● Correctness witness: Description of candidate invariants
● Violation witness: Description of abstract error path

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Correctness Witness (Invariant Witness)

20

Verification-Result Witnesses

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short n = nondet();
4 while (x < n) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 reach_error();
10 }

o/w: otherwise

● Nodes: States with candidate invariants
● Edges: source-code guards

● Candidate invariant: Potential invariant at
that state

● Source-code guard: Condition on transition

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification” 21

Verification-Result Witnesses

Violation Witness (Path Witness)
● Nodes: States
● Edges: source-code guards and

state-space guards

● Accepting state: Violation reached

o/w: otherwise

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short n = nondet();
4 while (x < n) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 reach_error();
10 }

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Witness Validation

22

Verification-Result Witnesses

Witness validators use information in witness to recompute the verification result.

Success → Verification result confirmed

D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and M. Tautschnig: Verification Witnesses. TOSEM, 2022.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

A condition automaton describes the
already-explored state-space with
source-code guards (and state-space
guards)

A condition covers a program execution if its
run leads to an accepting state

Condition Automaton

23

Background

 1 int main() {
 2 int out;
 3 int val = nondet();
 4 if (val >= 0) {
 5 out = val%2 * val%3;
 6 } else {
 7 out = -val;
 8 }
 9 if (out < 0) {
10 reach_error();
11 }
12 }

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler:
Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Conditional Verification

24

Background

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler:
Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Conditional Verification

25

Background

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler:
Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Cooperative Software Verification with Condition Automata

D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim:
Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

26

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer-Based Construction of Conditional Verifiers

27

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

● Conditional Verification is great!
● But only one conditional verifier:

CPAchecker.

● Create providers of conditions?

● Create consumers of conditions?

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer-Based Construction of Conditional Verifiers

28

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer-Based Construction of Conditional Verifiers

29

A mapping from program and condition to residual program is a
reducer, iff:

Reducers:

● Identity
● Parallel Composition

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

The state space of the residual program is a superset of the
original program’s state space that is not covered by the
condition.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer: Parallel Composition

30

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

 1 int main() {
 2 int out;
 3 int val = nondet();
 4 if (val >= 0) {
 5 out = val%2 * val%3;
 6 } else {
 7 out = -val;
 8 }
 9 if (out < 0) {
10 reach_error();
11 }
12 }

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer: Parallel Composition

31

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer: Parallel Composition

32

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

 1 int main() {
 2 int out;
 3 int val = nondet();
 4 if (val >= 0) {
 5 out = val%2 * val%3;
 6 } else {
 7 out = -val;
 8 }
 9 if (out < 0) {
10 reach_error();
11 }
12 }

 1 int main() {
 2 int out;
 3 int val = nondet_int();
 4 if (val >= 0) {
 5 out = val%2 * val%3;
 6 if (out < 0) {
 7 reach_error();
 8 }
 9 } else { }
10}

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

33

● Reducers Identity and Parallel Composition, implemented in CPAchecker
https://gitlab.com/sosy-lab/software/cpachecker/

● Combinations: CPAchecker predicate abstraction + Parallel Composition + SV-COMP
2017 Overall medalists:

○ CPA-seq
○ Smack
○ Ultimate Automizer

● Tasks: 5 687 ReachSafety tasks @ SV-COMP 2017
● Limits:

○ 15 GB memory
○ 100 s predicate analysis + 900 s CPA-seq/Smack/Ultimate Automizer

● Reproduction package: https://doi.org/10.5281/zenodo.1172228

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

https://gitlab.com/sosy-lab/software/cpachecker/
https://doi.org/10.5281/zenodo.1172228

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

34

● 820 additional tasks
solved

● Each combination
contributes!

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Insights

● Effectiveness increases through combinations
● We need many combinations. Integrating condition format into a single verifier

is not flexible enough
● Encoding in program allows to apply tools without explicit condition support

35

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Cooperative Software Verification with Condition Automata

D. Beyer and T. Lemberger:
Conditional Testing: Off-the-Shelf Combination of Test-Case Generators.
Proc. ATVA, 2019.

36

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Cooperation between Test Generators

37

● Goal: Create test suite that reaches all branches
● Random tester: unlikely to enter else-branch
● Symbolic execution: may hang in while-loop

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

 1 int main() {
 2 int i = nondet();
 3 if (i != 1017) {
 4 while (i > 1017)
{
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

 1 int main() {
 2 int i = nondet();
 3 if (i != 1017) {
 4 while (i > 1017)
{
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

Cooperation between Test Generators

38

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Random
Tester

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

 1 int main() {
 2 int i = nondet();
 3 if (i != 1017) {
 4 while (i > 1017)
{
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

Cooperation between Test Generators

39

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Symbolic
Execution

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

 1 int main() {
 2 int i = nondet();
 3 if (i != 1017) {
 4 while (i > 1017)
{
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

Cooperation between Test Generators

40

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Symbolic
Execution

Random
Tester

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

 1 int main() {
 2 int i = nondet();
 3 if (i != 1017) {
 4 while (i > 1017)
{
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

41

branch 1.1,
branch 1.2

branch 1.1,
branch 1.2,
branch 2

Conditional Testing

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Symbolic
Execution

Random
Tester

Condition = Covered Test Goals

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification” 42

Conditional Testing

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Condition = Covered Test Goals
Problem: We just came up with this!

→ Turn existing testers into conditional testers.

● Condition Consumer: Reducer
● Condition Provider: Test-Goal Extractor

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Reducer for Conditional Testing

43

Requirement: Reachability Equivalence

Reducers:
● Identity
● Pruning

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Each program input that reaches a test goal in
the residual program reaches the same test
goal in the original program.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Pruning Reducer

44

● Stop program execution if it
can’t reach any remaining goal

● Here: syntactic reachability

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

int i = nondet();
if (i != 1017) {
 while (i > 1017) {
 // branch 1.1
 i--;
 }
 // branch 1.2
 // .. snip ..
} else {
 // branch 2
 // .. snip ..
}

int i = nondet();
if (i != 1017) {
 exit(1);
} else {
 // branch 2
 // .. snip ..
}

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Test-Goal Extractor

45

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

gcov-based Test-Goal Extractor

46

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

● Test execution + coverage
measurement

● Read covered test goals from
measurement

int i = nondet();
if (i != 1017) {
 while (i > 1017) {
 // branch 1.1
 i--;
 }
 // branch 1.2
 // .. snip ..
} else {
 // branch 2
 // .. snip ..
}

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Off-the-shelf Tester to Conditional Tester

47

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

● Components implemented as CondTest
https://gitlab.com/sosy-lab/software/conditional-testing

● Tools from Test-COMP 2019: CoVeriTest, CPA-Tiger, Klee
● Tasks: 1 720 Cover-Branches tasks @ Test-Comp 2019
● Limits: 900 s CPU time, 15 GB memory

● Reproduction package: https://doi.org/10.5281/zenodo.3352401

48

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

https://gitlab.com/sosy-lab/software/conditional-testing
https://doi.org/10.5281/zenodo.3352401

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

49

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

● Branch coverage of created test suites (%), per task
● Tool standalone, 900 s (x-axis)
● testerseq: CPA-Tiger + CoVeriTest + Klee, 300 s each (y-axis)

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

50

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

CPA-Tiger + CoVeriTest + Klee , 300 s each

id: no info. exchange prune: info. exchange

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Insights

● Effectiveness increases through combinations
● Encoding in program allows to apply testers without explicit condition support

51

Beyer, Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. ATVA 2019.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Decomposing Verification Techniques

D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim:
Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR.
Proc. ICSE, 2022.

52

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Motivation: CEGAR

53

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

● Common underlying schema
● Many tools implement CEGAR
● New idea → new implementation

(lock-in effect)

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Decomposing CEGAR

54

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Decomposing CEGAR

55

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Exchange formats from SV-COMP
→ wide tool support

Abstract description of
counterexample

Abstract description of rejected
counterexample (“violation” witness)

Description of candidate invariants
(“correctness” witness)

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Component-based CEGAR (C-CEGAR)

56

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

57

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

● Implementation in CoVeriTeam
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/main/examples/Component-based_CEGAR

● Tools:
○ CPAchecker with improvements
○ Ultimate Automizer SV-COMP 2021
○ FShell-witness2test SV-COMP 2021

● Tasks: 8 347 ReachSafety tasks @ SV-COMP 2021
● Limits: 900 s CPU time, 15 GB memory

● Reproduction package: https://doi.org/10.5281/zenodo.6062602

https://gitlab.com/sosy-lab/software/coveriteam/-/tree/main/examples/Component-based_CEGAR
https://doi.org/10.5281/zenodo.6062602

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

58

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

1. Constant overhead.
2. Lost predicates through invariant witnesses.

1. Benefit of different components?

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

59

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Benefit of different components

Conclusion

60

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification” 61

Conclusion

● Improved effectiveness of verification
● Improved opportunities for cooperation

● Backed by rigorous
experimental evaluation and reproduction packages

Backup Slides

62

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Algorithm

63

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Evaluation

64

● Combinations: CPAchecker predicate analysis + SV-COMP 2017 overall
medalists:

○ CPA-seq
○ Smack
○ Ultimate Automizer

● Tasks: 5687 ReachSafety tasks @ SV-COMP 2017
○ 1501 unsafe tasks
○ 4186 safe tasks

● Limits: 900s CPU time, 15 GB memory
○ 100s predicate analysis + 900s CPA-seq/Smack/Ultimate Automizer

Intel Xeon E3-1230 v5 CPU with 8 processing units each, a frequency of 3.4 GHz, 33 GB of memory, and
an Ubuntu 16.04 operating system with Linux kernel 4.4.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Evaluation

65

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Evaluation

66

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Evaluation

Challenge: Blow-up of program size

Relation program size before reduction
/ program size after reduction:

● Min: 0.0006
● Mean: 0.14
● Max: 11.5

67

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Evaluation

68

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Challenge: Blow-up of program size

Relation program size before reduction
/ program size after reduction:

● Min: 0.0006
● Mean: 0.14
● Max: 11.5

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup Reducers: Evaluation

69

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers, ICSE 2018.

Challenge: Blow-up of program size

Relation program size before reduction
/ program size after reduction:

● Min: 0.0006
● Mean: 0.14
● Max: 11.5

cf. D. Beyer and M.-C. Jakobs: FRed: Conditional Model
Checking via Reducers and Folders. SEFM 2020.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup CondTest: Goal Annotation

70

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup CondTest: Verification Witnesses to Tests

71

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup CondTest: Evaluation CondTest Overhead

72

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Motivation: CEGAR (the good)

73

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Newton
Refinement

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short n = nondet();
4 while (x < n) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 reach_error();
10 }

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Motivation: CEGAR (the bad)

74

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Craig
Interpolation

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short n = nondet();
4 while (x < n) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 reach_error();
10 }

……

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup CondTest: Evaluation with Verifier

75

vb: CPA-Tiger + CoVeriTest + Klee , 200 s
each + ESBMC, 300 s

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: CoVeriTeam Configuration

76

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: Issues with Witness Usage

77

y = 0

after one unrolling: x = 0

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Evaluation

78

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

1. Overhead of a stateless, component-based approach (C-Pred)?

● 6.5 % decrease
● Modulo runtime limit: 1.7 % decrease

○ Reason: different counterexample check

Efficiency: Effectiveness:

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: Evaluation

79

● C-* Impact on
effectiveness:
6.5% decrease.

● Accounting for
the speed
difference:
1.7% decrease

● Witness Impact on effectiveness: 20% decrease.

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: Evaluation

80

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

80

predmap

● Decompose internal CEGAR with
Craig interpolation

● Use proprietary predicate map
(predmap) to communicate
precision increment

Stateless, component-based approach (C-Pred) vs. internal CEGAR (Pred)

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: Evaluation

81

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

Stateless, component-based approach (C-Pred) vs. internal CEGAR (Pred)

● 6.5 % decrease
● With increased runtime limit: down to

1.7 % decrease
○ Reason: different counterexample check

Efficiency: Effectiveness:

● Constant-size
overhead of 13

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: Evaluation

82

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Backup C-CEGAR: Evaluation

83

Beyer, Haltermann, Lemberger, Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR, ICSE 2022.

● Efficiency: No impact
● Impact on effectiveness: 20% decrease

○ Computed predicates are not consistently added
to invariant witness

Exchange formats: Predmap (C-Pred) vs. Invariant Witnesses (C-PredWit)

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

84

Formal Verification

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

12

Formal Verification

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

13

Formal Verification

choose one
possible value

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

14

Formal Verification

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

15

Formal Verification

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

17

Formal Verification

Thomas Lemberger · December 12, 2022 · PhD Defense “Towards Cooperative Software Verification”

Example: Enumerative Algorithm

18

Formal Verification

…

