
Benchmarking in Computer Science and
Competition on Software Verification

Dirk Beyer

2023-03-21, at Masaryk University, Brno

1 / 48

Part 1: Reliable Benchmarking

Dirk Beyer, Stefan Löwe, and Philipp Wendler.
Reliable Benchmarking:
Requirements and Solutions. [2]
STTT 2019

2 / 48

https://doi.org/10.1007/s10009-017-0469-y

Evaluation of Research Result

▶ Result “Theorem”
Evaluation “Proof”

▶ Result “Algorithm”
Evaluation “Algorithm Analysis, properties, Big-O”

▶ Result “Heuristics for Complex Problems”
Evaluation “Performance Experiments”

3 / 48

Comparative Evaluation

▶ Old: Done by competitors
▶ New: Done by independent competitions

4 / 48

Background: Requirements

Repeatability
▶ everything documented

(machine, version of tool and OS, parameters)
▶ deterministic tool
▶ reliable benchmarking

Reproducibility
▶ everything above
▶ availability of tool, benchmark set,

configuration, environment
(published and archived, appropriate license)

Replicability
(not discussed here)

5 / 48

Benchmarking is Important

▶ Evaluation of new approaches
▶ Evaluation of tools
▶ Competitions
▶ Tool development (testing, optimizations)

Reliable, reproducible, and accurate results needed!

6 / 48

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant for
most verification tools

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

7 / 48

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant for
most verification tools

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

7 / 48

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant for
most verification tools

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

7 / 48

Goals

▶ Reproducibility
▶ Avoid non-deterministic effects and interferences
▶ Provide defined set of resources

▶ Accurate results
▶ For verification tools (and similar)
▶ On Linux

8 / 48

Checklist

1. Measure and Limit Resources Accurately
▶ Time
▶ Memory

2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Non-Uniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

▶ Communication
▶ File system

9 / 48

Measure and Limit Resources Accurately

▶ Wall time and CPU time
▶ Define memory consumption

▶ Size of address space? Too large
▶ Size of heap? Too low
▶ Size of resident set (RSS)?

▶ Measure peak consumption
▶ Always define memory limit for reproducibility
▶ Include sub-processes

10 / 48

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Terminate Processes Reliably

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

11 / 48

Assign Cores Deliberately

▶ Hyper Threading:
Multiple threads sharing execution units

▶ Shared caches

12 / 48

Respect Non-Uniform Memory Access (NUMA)

▶ Memory regions have different performance depending on
current CPU core

▶ Hierarchical NUMA makes things worse

13 / 48

Type lstopo on your machine (Ubuntu: package hwloc)

CPU

memory region

core

14 / 48

Isolate Individual Runs

▶ Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

▶ Thanks for thinking of cleanup

▶ But what if there are parallel runs?

15 / 48

Isolate Individual Runs

▶ Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

▶ Thanks for thinking of cleanup
▶ But what if there are parallel runs?

15 / 48

Isolate Individual Runs

▶ Temp files with constant names like /tmp/mytool.tmp
collide

▶ State stored in places like ~/.mytool
hinders reproducibility
▶ Sometimes even auto-generated

▶ Restrict changes to file system
as far as possible

16 / 48

Cgroups

▶ Linux kernel “control groups”
▶ Reliable tracking of spawned processes
▶ Resource limits and measurements per cgroup

▶ CPU time
▶ Memory
▶ I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

17 / 48

Cgroups

▶ Hierarchical tree of sets of processes

/

. . .

/user1

/benchmarks

/benchmarks/run1

5542 (bash)
5544 (firefox)
. . .

. . .

1130 (verifier)
1131 (subprocess1)
. . .

18 / 48

Namespaces

▶ Light-weight virtualization
▶ Only one kernel running, no additional layers
▶ Change how processes see the system
▶ Identifiers like PIDs, paths, etc. can have different

meanings in each namespace
▶ PID 42 can be a different process in each namespace
▶ Directory / can be a different directory in each namespace
▶ . . .

▶ Can be used to build application containers
without possibility to escape

▶ Usable without root access

19 / 48

Benchmarking Containers

▶ Encapsulate groups of processes
▶ Limited resources (memory, cores)
▶ Total resource consumption measurable
▶ All other processes hidden

and no communication with them
▶ Disabled network access
▶ Adjusted file-system layout

▶ Private /tmp
▶ Writes redirected to

temporary RAM disk

20 / 48

BenchExec

▶ A Framework for Reliable Benchmarking
and Resource Measurement

▶ Provides benchmarking containers
based on cgroups and namespaces

▶ Allocates hardware resources appropriately
▶ Low system requirements

(modern Linux kernel and cgroups access)

21 / 48

BenchExec

▶ Open source: Apache 2.0 License
▶ Written in Python 3
▶ https://github.com/sosy-lab/benchexec
▶ Used in International Competition on Software Verification

(SV-COMP) and by StarExec
▶ Originally developed for software-

verification, but applicable to
arbitrary tools

22 / 48

https://github.com/sosy-lab/benchexec

BenchExec Architecture

runexec

· · ·
runexec

benchexec
Bench.
Def.

Input
Files

XML
Results

table-generator

HTML
Table

CSV
Data

BenchExec

runexec
Benchmarks a single run of a tool (in container)

benchexec
Benchmarks multiple runs

table-generator
Generates CSV and interactive HTML tables

23 / 48

BenchExec: runexec

▶ Benchmarks a single run of a tool
▶ Measures and limits resources using cgroups
▶ Runnable as stand-alone tool and as Python module
▶ Easy integration into other benchmarking frameworks

and infrastructure
▶ Example:

runexec ––timelimit 100 ––memlimit 16000000000
––cores 0-7,16-23 ––memoryNodes 0
––<TOOL_CMD>

24 / 48

BenchExec: runexec

Iso
la

tio
n

Resource Limitation /
Measurement

2 Process

Run
runexec

Iso
la

tio
n

Resource Limitation /
Measurement

2 Process

Run
runexec

CPU Cores 3 3 3 3 Memory

25 / 48

BenchExec: benchexec

▶ Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

▶ Allocates hardware resources

▶ Can check whether tool result is as expected
for given input file and property

26 / 48

BenchExec: table-generator

▶ Aggregates results
▶ Extracts statistic values from tool output
▶ Generates CSV and interactive HTML tables (with plots)
▶ Computes result differences and regression counts

27 / 48

BenchExec Configuration

▶ Tool command line
▶ Expected result
▶ Resource limits

▶ CPU time, wall time
▶ Memory

▶ Container setup
▶ Network access
▶ File-system layout

▶ Where to put result files

28 / 48

Please Read More

Dirk Beyer, Stefan Löwe, and Philipp Wendler.
Reliable Benchmarking:
Requirements and Solutions. [2]
STTT 2019
▶ More details
▶ Study of hardware influence on benchmarking results
▶ Suggestions how to present results

(result aggregation, rounding, plots, etc.)

29 / 48

https://doi.org/10.1007/s10009-017-0469-y

Conclusion — Part 1

Be careful when benchmarking!

Don’t use time, ulimit etc.
Always use cgroups and namespaces!

BenchExec
https://github.com/sosy-lab/benchexec

30 / 48

https://github.com/sosy-lab/benchexec

Part 2: SV-COMP

11th Competition on Software Verification
Proc. TACAS 2022,

https://doi.org/10.1007/978-3-030-99527-0_20

31 / 48

https://doi.org/10.1007/978-3-030-99527-0_20

Motivation - Goals

1. Community suffers from unreproducible results
→ Establish set of benchmarks

2. Publicity for tools that are available
→ Provide state-of-the-art overview

3. Support the development of verification tools
→ Give credits and visibility to developers

4. Establish standards
→ Specification language, Witnesses,
Benchmark definitions, Validators

5. Train PhD students on benchmarking and reproducibility
6. Provide computing resources to groups that do not have

large clusters

32 / 48

Schedule of Sessions

Session 1:
▶ Competition Report, by organizer
▶ System Presentations, 7 min by each team
▶ Short discussion

Session 2:
▶ Open Jury Meeting, Community Discussion,

moderated by organizer

33 / 48

Procedure – Time Line

Three Steps – Three Deadlines:
▶ Benchmark submission deadline
▶ System submission
▶ Notification of results (approved by teams)

34 / 48

Verification Problem

Input:
▶ C program → GNU/ANSI C standard
▶ Property

→ Reachability of error label, of overflows
→ Memory safety (inv-deref, inv-free, memleak)
→ Termination

Output:
▶ TRUE + Witness (property holds)
▶ FALSE + Witness (property does not hold)
▶ UNKNOWN (failed to compute result)

35 / 48

Environment

Machines (1000 $ consumer machines):
▶ CPU: 3.4 GHz 64-bit Quad-Core CPU
▶ RAM: 33 GB
▶ OS: GNU/Linux (Ubuntu 20.04)

Resource limits:
▶ 15 GB memory
▶ 15 min CPU time (consumed 470 days)

Volume: 309 081 verification runs, 1.43 million validation runs
Incl. preruns: 2.85 million verification runs using 19 years, and
16.3 million validation runs using 11 years

36 / 48

Scoring Schema

Common principles: Ranking measure should be
▶ easy to understand
▶ reproducible
▶ computable in isolation for one tool

SV-COMP:
▶ Ranking measure is the quality of verification work
▶ Expressed by a community-agreed score
▶ Tie-breaker is CPU time

37 / 48

Scoring Schema (2022, unchanged)

Reported result Points Description
UNKNOWN 0 Failure, out of ressources
FALSE correct +1 Error found and confirmed
FALSE incorrect −16 False alarm (imprecise analysis)
TRUE correct +2 Proof found and confirmed
TRUE incorrect −32 Missed bug (unsound analysis)

38 / 48

Fair and Transparent

Jury:
▶ Team: one member of each participating candidate
▶ Term: one year (until next participants are determined)

Systems:
▶ All systems are available in open GitLab repo
▶ Configurations and Setup in GitLab repository

→ Integrity and reproducibility guaranteed

39 / 48

47 Competition Candidates

Qualification:
▶ 33 qualified, additional 14 hors concours
▶ 10 result validators, 1 witness linter
▶ One person can participate with different tools
▶ One tool can participate with several configurations

(frameworks, no tool-name inflation)
Benchmark quality:
▶ Community effort, documented on GitLab

Role of organizer:
▶ Just service: Advice, Technical Help, Executing Runs

40 / 48

Benchmark Sets

▶ Everybody can submit benchmarks (conditions apply)
▶ Eight categories when closed (scores normalized):

▶ Reachability: 5400 tasks
▶ Memory Safety: 3321 tasks
▶ Concurrency: 763 tasks
▶ NoOverflows: 454 tasks
▶ Termination: 2293 tasks
▶ Software Systems: 3417 tasks
▶ Overall: 15648 tasks
▶ Java: 586 tasks

41 / 48

Replicability

▶ SV-Benchmarks:
https:
//gitlab.com/sosy-lab/benchmarking/sv-benchmarks

▶ SV-COMP Setup:
https://gitlab.com/sosy-lab/sv-comp/bench-defs

▶ Resource Measurement and Process Control:
https://github.com/sosy-lab/benchexec

▶ Archives:
https://gitlab.com/sosy-lab/sv-comp/archives-2022

▶ Witnesses:
https://doi.org/10.5281/zenodo.5838498

42 / 48

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/sv-comp/bench-defs
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/sv-comp/archives-2022
https://doi.org/10.5281/zenodo.5838498

Results – Example: Overall

 1

 10

 100

 1000

M
in

.
ti

m
e
 i
n
 s

2LS
CBMC

CVT-ParPort
CPAchecker-2-1

DIVINE
ESBMC-kind

Goblint
Graves-CPA

PeSCo
Symbiotic

UAutomizer
UKojak

UTaipan

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000

Cumulative score

43 / 48

Impact / Achievements

▶ Large benchmark set of verification tasks
→ established and used in many papers
for experimental evaluation

▶ Good overview over state-of-the art
→ covers model checking and program analysis

▶ Participants have an archived track record
of their achievements

▶ Infrastructure and technology for
controlling the benchmark runs (cf. StarExec)

[Competition Report and System Descriptions
are archived in Proceedings TACAS 2022]
https://doi.org/10.1007/978-3-030-99527-0_20

44 / 48

https://doi.org/10.1007/978-3-030-99527-0_20

Alternative Rankings — Definitions

▶ Correct Verifiers — Low Failure Rate:

number of incorrect results
total score

with unit E/sp.

▶ Green Verifiers — Low Energy Consumption:

total CPU energy
total score

with the unit J/sp.

45 / 48

Number of Participants

Number of evaluated verifiers for each year
(first-time participants on top)

201220132014201520162017201820192020202120220

20

40

60

10 6 5 13
17 11

4 10
6 4

14

5 10 9 18 21 17 11
22 26 33

Ev
al

ua
te

d
ve

rifi
er

s

46 / 48

Different Techniques

Co
m

pe
tit

io
n

Re
po

rt
[1

]
ht

tp
s:/

/d
oi

.o
rg

/1
0.

10
07

/9
78

-3
-0

30
-1

75
02

-3
_9

47 / 48

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9

References I

[1] Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:
Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

[2] Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

48 / 48

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/s10009-017-0469-y

