
Reliable Benchmarking:
Requirements and Solutions

Dirk Beyer, Stefan Löwe, and Philipp Wendler

2023-04-22 @ RRRR’23

Philipp Wendler 1 / 21

Benchmarking is Important

▶ Evaluation of new approaches
▶ Evaluation of tools
▶ Competitions
▶ Tool development (testing, optimizations)

Reliable, reproducible, and accurate results needed!

Philipp Wendler 2 / 21

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant
for many tools

(solver, verifiers, . . .)
Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

Philipp Wendler 3 / 21

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant
for many tools

(solver, verifiers, . . .)
Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

Philipp Wendler 3 / 21

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant
for many tools

(solver, verifiers, . . .)

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

Philipp Wendler 3 / 21

Goals

▶ Reproducibility
▶ Avoid non-deterministic effects and interferences
▶ Provide defined set of resources

▶ Accurate results
▶ For solvers, verification tools, etc.
▶ On Linux

Philipp Wendler 4 / 21

Checklist

1. Measure and Limit Resources Accurately
▶ Time
▶ Memory

2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Non-Uniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

▶ Communication
▶ File system

Philipp Wendler 5 / 21

Measure and Limit Resources Accurately

▶ Wall time and CPU time
▶ Define memory consumption

▶ Size of address space? Too large
▶ Size of heap? Too low
▶ Size of resident set (RSS)?

▶ Measure peak consumption (without sampling)
▶ Always define memory limit for reproducibility
▶ Include sub-processes

Philipp Wendler 6 / 21

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

Philipp Wendler 7 / 21

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

Philipp Wendler 7 / 21

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

Philipp Wendler 7 / 21

Terminate Processes Reliably

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

Philipp Wendler 7 / 21

Isolate Individual Runs

▶ Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

▶ Thanks for thinking of cleanup

▶ But what if there are parallel runs?

Philipp Wendler 8 / 21

Isolate Individual Runs

▶ Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

▶ Thanks for thinking of cleanup
▶ But what if there are parallel runs?

Philipp Wendler 8 / 21

Isolate Individual Runs

▶ Temp files with constant names like /tmp/mytool.tmp
collide

▶ State stored in places like ~/.mytool
hinders reproducibility
▶ Sometimes even auto-generated

▶ Restrict changes to file system
as far as possible

Philipp Wendler 9 / 21

Cgroups

▶ Linux kernel “control groups”
▶ Reliable tracking of spawned processes
▶ Resource limits and measurements per cgroup

▶ CPU time
▶ Memory
▶ I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

Philipp Wendler 10 / 21

Namespaces

▶ Light-weight virtualization
▶ Only one kernel running, no additional layers
▶ Change how processes see the system
▶ Identifiers like PIDs, paths, etc. can have different

meanings in each namespace
▶ PID 42 can be a different process in each namespace
▶ Directory / can be a different directory in each namespace
▶ . . .

▶ Can be used to build application containers
without possibility to escape

▶ Usable without root access

Philipp Wendler 11 / 21

Benchmarking Containers

▶ Encapsulate groups of processes
▶ Limited resources (memory, cores)
▶ Total resource consumption measurable
▶ All other processes hidden

and no communication with them
▶ Disabled network access
▶ Adjusted file-system layout

▶ Private /tmp
▶ Writes redirected to

temporary RAM disk

Philipp Wendler 12 / 21

BenchExec

▶ A Framework for Reliable Benchmarking
and Resource Measurement

▶ Provides benchmarking containers
based on cgroups and namespaces

▶ Allocates hardware resources appropriately
▶ Low system requirements

(modern Linux kernel and cgroups access)

Philipp Wendler 13 / 21

BenchExec

▶ Open source: Apache 2.0 License
▶ Written in Python 3
▶ https://github.com/sosy-lab/benchexec
▶ Used in International Competition on Software Verification

(SV-COMP) and by StarExec
▶ Originally developed

for software verification,
but applicable to arbitrary tools

Philipp Wendler 14 / 21

https://github.com/sosy-lab/benchexec

BenchExec Architecture

runexec

· · ·
runexec

benchexec
Bench.
Def.

Input
Files

XML
Results

table-generator

HTML
Table

TSV
Data

BenchExec

runexec
Benchmarks a single run of a tool (in container)

benchexec
Benchmarks multiple runs

table-generator
Generates TSV and interactive HTML tables

Philipp Wendler 15 / 21

BenchExec: runexec

▶ Benchmarks a single run of a tool
▶ Measures and limits resources using cgroups
▶ Runnable as stand-alone tool and as Python module
▶ Easy integration into other benchmarking frameworks

and infrastructure
▶ Example:

runexec ––timelimit 100s ––memlimit 16GB
––cores 0-7,16-23 ––memoryNodes 0
–– <TOOL_CMD>

Philipp Wendler 16 / 21

BenchExec: runexec

Iso
la

tio
n

Resource Limitation /
Measurement

2 Process

Run
runexec

Iso
la

tio
n

Resource Limitation /
Measurement

2 Process

Run
runexec

CPU Cores 3 3 3 3 Memory

Philipp Wendler 17 / 21

BenchExec: benchexec

▶ Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

▶ Allocates hardware resources

▶ Can check whether tool result is as expected
for given input file and property

Philipp Wendler 18 / 21

BenchExec: table-generator

▶ Aggregates results
▶ Extracts statistic values from tool output
▶ Generates TSV and interactive HTML tables (with plots)
▶ Computes result differences and regression counts

Philipp Wendler 19 / 21

Please Read More

Dirk Beyer, Stefan Löwe, and Philipp Wendler.
Reliable Benchmarking:
Requirements and Solutions. [1]
STTT 2019
▶ More details
▶ Study of hardware influence on benchmarking results
▶ Suggestions how to present results

(result aggregation, rounding, plots, etc.)

Philipp Wendler 20 / 21

https://doi.org/10.1007/s10009-017-0469-y

Conclusion

Be careful when benchmarking!

Don’t use time, ulimit etc.
Always use cgroups and namespaces!

BenchExec
https://github.com/sosy-lab/benchexec

Philipp Wendler 21 / 21

https://github.com/sosy-lab/benchexec

References I

[1] Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

Philipp Wendler 22 / 21

https://doi.org/10.1007/s10009-017-0469-y

Assign Cores Deliberately

▶ Hyper Threading:
Multiple threads sharing execution units

▶ Shared caches

Philipp Wendler 23 / 21

Respect Non-Uniform Memory Access (NUMA)

▶ Memory regions have different performance depending on
current CPU core

▶ Hierarchical NUMA makes things worse

Philipp Wendler 24 / 21

Type lstopo on your machine (Ubuntu: package hwloc)

CPU

memory region

core

Philipp Wendler 25 / 21

Cgroups

▶ Hierarchical tree of sets of processes

/

. . .

/user1

/benchmarks

/benchmarks/run1

5542 (bash)
5544 (firefox)
. . .

. . .

1130 (verifier)
1131 (subprocess1)
. . .

Philipp Wendler 26 / 21

BenchExec Configuration

▶ Tool command line
▶ Expected result
▶ Resource limits

▶ CPU time, wall time
▶ Memory

▶ Container setup
▶ Network access
▶ File-system layout

▶ Where to put result files

Philipp Wendler 27 / 21

Directory Access Modes

Read Write temp Write persistent
existing content content content

hidden ✗ ✓ ✗

read only ✓ ✗ ✗

overlay ✓ ✓ ✗

full access ✓ ✗ ✓

Philipp Wendler 28 / 21

	Appendix

