## Explicit-State

## Software Model Checking <br> Based on CEGAR and Interpolation

## Dirk Beyer and Stefan Löwe



## Software Verification

$$
\begin{aligned}
& \text { int } a, b, c ; \\
& a:=0 ; \\
& b:=a ; \\
& c:=a ; \\
& \text { if(a == } 0)\{ \\
& \quad a:=1 ; \\
& \} \\
& \text { if(a }==-1)\{ \\
& \quad \text { assert(0); } \\
& \}
\end{aligned}
$$

## The goal is to find an answer to the question:

Does the specification hold?

## Software Model Checking

$$
\begin{aligned}
& \text { int } a, b, c ; \\
& a:=0 ; \\
& b:=a ; \\
& c:=a ; \\
& \text { if(a }==0)\{ \\
& \quad a:=1 ; \\
& \} \\
& \text { if(a }==-1)\{ \\
& \quad \text { assert(0); } \\
& \}
\end{aligned}
$$

## TRUE?

## FALSE?

Does the specification hold?

## State of the Art in 2013

- Explicit-state model checking (SPIN, ...)
- Symbolic-state model checking (SLAM, BLAST, SATABS, ...)
- Data-flow analysis (Astree, ...)
- Space between these extremes were largely unexplored
- Contribution: Explore this!
- Explicit-value domain with abstraction
- CEGAR for both combined explicit+predicate


## Explicit-State Software Model Checking



## Status Before

- Very efficient successor computation
- Independent of expensive solver techniques
- Imprecise when joining
- State-space explosion especially when not joining



## Explicit-State Software Model Checking

Existing approach: simple value assignments
? Abstraction
? Counterexample-Guided Abstraction Refinement
? Interpolation

All known in the predicate domain for years

## Explicit-State Software Model Checking

New approach: integrate CEGAR and Interpolation
! Abstraction
! Counterexample-Guided Abstraction Refinement ! Interpolation
$\checkmark$ Explicit-State Software Model Checking based on CEGAR
and Interpolation

## CEGAR Loop



## Abstraction


if the abstraction is too coarse, spurious counterexamples will be reported

## Counterexamples

counterexample as
constraint sequence

$$
\begin{aligned}
& \text { int } a, b, c ; \\
& \mathrm{a}:=0 ; \\
& \mathrm{b}:=\mathrm{a} ; \\
& \mathrm{c}:=\mathrm{a} ; \\
& {[\mathrm{a}==0]} \\
& \mathrm{a}:=1 ; \\
& {[\mathrm{a}==-1]} \\
& \text { assert(0); }
\end{aligned}
$$

We extract variable identifiers from spurious counterexamples in order to avoid repeated explorations of the same spurious counterexamples

Therefore, we introduce the notion of a precision

## Precision

| precision $\pi$ |  |
| :---: | :---: |
| int a, b, c; |  |
| $\mathrm{a}:=0$; |  |
| $\mathrm{b}:=\mathrm{a}$; |  |
| $\mathrm{c}:=\mathrm{a}$; | - |
| [ $\mathrm{a}=0$ 0] |  |
| $\mathrm{a}:=1$; |  |
| [ $\mathrm{a}=\mathrm{=}-1$ ] ${ }^{\text {d }}$ |  |
| -assert(0), |  |

a set of variable identifiers to track at a program location

- be precise enough to avoid spurious counterexamples
- be abstract enough to allow an efficient analysis

How to obtain such a parsimonious precisions?

## Craig Interpolation

For a pair of formulas $\varphi^{-}$and $\varphi^{+}$, such that $\varphi^{-} \wedge \varphi^{+}$is unsatisfiable, a Craig interpolant $\psi$ is a formula that fulfills the following requirements:

1) $\varphi^{-}$implies $\psi$
2) $\psi \wedge \varphi^{+}$is unsatisfiable
3) $\psi$ only contains symbols that are common to both $\varphi^{-}$and $\varphi^{+}$

[Abstractions from Proofs, 2004, Henzinger, Jhala, Majumdar, McMillan]

## Craig Interpolation

For a pair of formulas $\varphi^{-}$and $\varphi^{+}$, such that $\varphi^{-} \wedge \varphi^{+}$is unsatisfiable, a Craig interpolant $\psi$ is a formula that fulfills the following requirements:

1) $\varphi^{-}$implies $\psi$
2) $\psi \wedge \varphi^{+}$is unsatisfiable
3) $\psi$ only contains symbols that are common to both $\varphi^{-}$and $\varphi^{+}$
$\rightarrow$ apply this to the Explicit-Value Domain

## Our Main Contribution

## $\rightarrow$ apply interpolation to constraint sequences

For a pair of constraint sequences $\boldsymbol{y}^{-}$and $\mathbf{y}^{+}$, such that $\mathrm{y}^{-} \wedge \mathrm{y}^{+}$is contradicting, an interpolant $\psi$ is a constraint sequence that fulfills the following requirements:

1) $y^{-}$implies $\psi$
2) $\psi \wedge Y^{+}$is contradicting
3) $\psi$ only contains symbols that are common to both $\mathrm{y}^{-}$and $\mathrm{y}^{+}$

$$
\rightarrow \text { Explicit-Value Interpolation }
$$

## Explicit-Value Interpolation

$\checkmark$ path is infeasible, i.e., $\gamma^{-} \wedge \mathrm{y}^{+}$is

|  |  |
| :---: | :---: |
| int a,b,c; |  |
| $\underset{\mathrm{N} 2}{\mathrm{a} 2:=0 ;}\left\{\begin{array}{l} \mathrm{y} \cdot \mathrm{a} \cdot-\mathrm{u}, \end{array}\right.$ |  |
|  |  |
| b : $=\mathrm{a}$; |  |
| N3 | \} $\mathrm{y}^{+}: ~ b:=a ;$ |
| $\mathrm{c}:=\mathrm{a}$; | c : = a; |
| $\stackrel{\text { N4 }}{\text { 「a }!=01}$ | [a $!=0$ ] |
| N7 ${ }^{\text {N }}$ | [ $\mathrm{a}=-1$ ] |
| $[\mathrm{a}=-1$ - $]$ |  |


$\checkmark \mathrm{y}^{-}$implies $\psi$
$\checkmark \psi \wedge \mathrm{y}^{+}$is contradicting $\checkmark$ common symbols
$>$ Add "a" to the precision of location N2

## Interpolation-Based Refinement

Control-Flow Automaton

| NO int a,b,c; |
| :---: |
| N1 $a:=0$; |
| $\stackrel{\stackrel{\prime}{\mathrm{N}}{ }_{\mathrm{b}}:=\mathrm{a} ;}{ }$ |
| $\stackrel{\text { N3 }}{\mathrm{c}}:=\mathrm{a} ;$ |
| $[\mathrm{a}=0 \mathrm{o} \quad \stackrel{\mathrm{~N} 4}{[\mathrm{a}!=0]}$ |
| $\stackrel{\dot{N 5}}{\mathrm{~N}:=1 ; \dot{\mathrm{N}} \mathrm{G}}$ |
| $[a!=-1] \quad \text { Ň7 } \quad[a==-1]$ |
| N8 assert |

## Interpolation-Based Refinement

Control-Flow Automaton


## Interpolation-Based Refinement

| Control-Flow Automaton | abstract states |
| :---: | :---: |
| NO | $\bigcirc$ |
| int a,b,c; | int a,b,c; |
| N1 | $\stackrel{\dot{\circ}}{0}$ |
| a : $=0$; | a $:=0$; |
| N2 |  |
| b := a; | b := a; |
| N3 | $\stackrel{\square}{\varnothing}$ |
| C : $=\mathrm{a}$; | c : $=$ a; |
|  | ${ }_{0}$ |
| $\left[\mathrm{a}==0{ }^{\text {a }}\right.$, $\quad[\mathrm{a}!=0]$ | [ $\mathrm{a}=0$ 0] |
| N5 N6 | $\stackrel{+}{\circ}$ |
| $a:=1$,mmmanmen | $\mathrm{a}:=1$; |
| [a! -1] N7 | $\bigcirc$ |
| [a!= -1] | [ $\mathrm{a}==-1$ ] |
| N8 assert | assert |

## Interpolation-Based Refinement

| Control-Flow Automaton | abstract states | interpolants |
| :---: | :---: | :---: |
| NO | $\bigcirc$ | $\psi=0$ |
| int a,b,c; | int a,b,c; |  |
| N1 | $\stackrel{\circ}{\circ}$ | $\psi=\varnothing$ |
| a : $=0$; | a $:=0$ |  |
| N2 | © | $\psi=0$ |
| b := a; | b := a; |  |
| N3 | $\bigcirc$ | $\psi=\varnothing$ |
| C: $=$ a; | c : $=$ a; |  |
|  | $\stackrel{\ominus}{0}$ | $\psi=\varnothing$ |
| $[\mathrm{a}==01 \ldots \mathrm{Na}$, $[\mathrm{a}!=0]$ | $[\mathrm{a}=00$ |  |
| N5 N6 | $\stackrel{\rightharpoonup}{0}$ | $\psi=0$ |
| $\mathrm{a}:=1$ | $\mathrm{a}:=1 ;$ |  |
| $[a!=-1] \quad N 7 \quad[a==-1]$ | $\begin{aligned} & 0 \\ & {[a==-1]} \end{aligned}$ | $\psi=\{a:=1\}$ |
| N8 assert | assert |  |

## Interpolation-Based Refinement

| Control-Flow Automaton | abstract states | interpolants | precision |
| :---: | :---: | :---: | :---: |
| NO int $a, b, c$; | $\bigcirc$ int a,b,c; | $\psi=\varnothing$ | $\bigcirc$ |
| N1 |  | $\psi=\varnothing$ | $\varnothing$ |
| a := 0; | a $:=0$ |  |  |
| $\frac{\mathrm{N} 2}{\mathrm{~b}}:=\mathrm{a} ;$ | $\stackrel{\varnothing}{i b}:=\mathrm{a} ;$ | $\psi=\varnothing$ | $\odot$ |
| N3 $\mathrm{c}:=\mathrm{a} ;$ | $\stackrel{\stackrel{\rightharpoonup}{0}}{\mathrm{C}}:=\mathrm{a}$ | $\psi=\varnothing$ | $\odot$ |
| $[\mathrm{a}=0 \mathrm{~N} \quad \mathrm{~N} 4 \quad[\mathrm{a}!=0]$ | $\left[\begin{array}{r} \stackrel{5}{7} \\ \square=0] \end{array}\right.$ | $\psi=\varnothing$ | $\bigcirc$ |
| $\mathrm{a}:=\frac{15}{\mathrm{~N} 5}$ | $\mathrm{a}:=1$ | $\psi=0$ | $\bigcirc$ |
| $[a!=-1] \quad \text { N7 } \quad[a==-1]$ | $[\mathrm{a}=-1]$ | $\psi=\{a:=1\}$ | \{a\} |
| N8 <br> assert | assert |  |  |

## Interpolation-Based Refinement

| abstract states | interpolants | precision | error path refuted |
| :---: | :---: | :---: | :---: |
| $\stackrel{\ominus}{i n t} \mathrm{a}, \mathrm{~b}, \mathrm{c} ;$ | $\psi=\varnothing$ | $\bigcirc$ | NO |
| $\dot{\otimes}$ | $\Psi=\varnothing$ | $\odot$ | N1 |
| a $:=0$ |  |  | $\downarrow \mathrm{a}:=0$; |
| $e_{\mathrm{b}}^{\mathrm{b}}:=\mathrm{a} \text {; }$ | $\psi=\varnothing$ | $\bigcirc$ | $\stackrel{N 2}{\mid b:=a ; ~}$ |
| $\stackrel{\rightharpoonup}{0}$ | $\psi=\varnothing$ | $\varnothing$ | N3 |
| c $\mathrm{C}:=\mathrm{a}$; |  |  | \|c: $=\mathrm{a}$; |
| $[\mathrm{a}=\mathrm{O}]_{\mathrm{\ominus}}^{\stackrel{\rightharpoonup}{\circ}}$ | $\psi=\varnothing$ | $\bigcirc$ | $[a=0] \quad N 4 \quad[a!=0]$ |
| $\mathrm{a}:=1 \text {, }$ | $\psi=\varnothing$ | $\varnothing$ | $a:=1 ; \square$ |
| $[\mathrm{a}==-1]$ | $\psi=\{a:=1\}$ | \{a\} | $[a!=-1] \quad \mathrm{N} 7 \quad[\mathrm{a}==-1]$ |
| assert |  |  |  |

## Experimental Evaluation

Benchmark from 1st International Competition on Software Verification (SV-Comp'12)


## Experimental Evaluation



## Experimental Evaluation



## Performance Improvement


$\checkmark$ Abstraction
$\checkmark$ CEGAR
$\checkmark$ Interpolation

## Comparison with Well-Established Tools



## Comparison with Well-Established Tools



Can we further improve on this?

## Have best of both worlds

## Add auxiliary predicate analysis:

- Refinement of both domains based on their expressiveness
- Explicit analysis tracks most information efficiently
- Predicate analysis tracks only what is beyond that


## Combined with Predicate Analysis



Out-performs SV-COMP '12 Winner CPA-Memo

## Results of SV-COMP '13

Our tool implementation CPAchecker-Explicit 1.1.10 participated in SV-COMP '13, and won ...

Silver Medal in category ControlFlowInteger Silver Medal in category DeviceDrivers64 Silver Medal in category SystemC

Silver Medal in category Overall

## Usage in CPAchecker 2023

Solving analyses of CPAchecker


## Conclusion

- Defined and implemented
- Abstraction
- CEGAR
- Interpolation


# CPAchecker 

http://cpachecker.sosy-lab.org
for the explicit-value domain

- Combination with predicate abstraction
- Compelling results
- Effective method to reduce reached set
- Avoid state-space explosion


