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  int a, b, c;
  a := 0;
  b := a;
  c := a;
  if(a == 0) {

a := 1;
  }
  if(a == -1) {

assert(0);
  }

Software Verification

Does the specification hold?

The goal is to find an 
answer to the question:



  int a, b, c;
  a := 0;
  b := a;
  c := a;
  if(a == 0) {

a := 1;
  }
  if(a == -1) {

assert(0);
  }

Software Model Checking

Does the specification hold?

TRUE ?

FALSE ?



State of the Art in 2013
- Explicit-state model checking (SPIN, ...)
- Symbolic-state model checking (SLAM, 

BLAST, SATABS, …)
- Data-flow analysis (Astree, ...) 

- Space between these extremes were
  largely unexplored

- Contribution: Explore this!
– Explicit-value domain with abstraction
– CEGAR for both combined explicit+predicate



  int a, b, c;
  a := 0;
  b := a;
  c := a;
  if(a == 0) {

a := 1;
  }
  if(a == -1) {

assert(0);
  }

{a → T, b → T, c → T}
{a → 0, b → T, c → T}
{a → 0, b → 0, c → T}
{a → 0, b → 0, c → 0}

{a → 1, b → 0, c → 0}

{a → 1, b → 0, c → 0}

Explicit-State Software Model Checking

SAFE !
Does the specification hold?



- Very efficient successor computation
- Independent of expensive solver techniques

- Imprecise when joining

- State-space explosion
  especially when not joining

Status Before



Existing approach: simple value assignments

? Abstraction
? Counterexample-Guided Abstraction Refinement
? Interpolation

All known in the predicate domain for years

Explicit-State Software Model Checking



New approach: integrate CEGAR and Interpolation

! Abstraction
! Counterexample-Guided Abstraction Refinement
! Interpolation

✔  Explicit-State Software Model Checking
based on CEGAR 

          and Interpolation

Explicit-State Software Model Checking



CEGAR Loop

Model Check

Refine
Precision

Check
Feasibility

UNSAFE

SAFE

error path found

error path is not feasible

Program
Source
Code



  int a, b, c;
  a := 0;
  b := a;
  c := a;
  if(a == 0) {

a := 1;
  }
  if(a == -1) {

assert(0);
  }

  {                            }
  {                            }
  {                            }
  {                            }

  {                            }

if the abstraction is too coarse,
spurious counterexamples will be reported

  {                            }

Abstraction



We extract variable identifiers from 

spurious counterexamples

in order to avoid repeated

explorations of the same

spurious counterexamples

counterexample as

constraint sequence

  int a, b, c;
  a := 0;
  b := a;
  c := a;
  [a == 0]
  a := 1;
  [a == -1]
  assert(0);

Therefore, we introduce the notion of a precision

Counterexamples



  int a, b, c;
  a := 0;
  b := a;
  c := a;
  [a == 0]
  a := 1;
  [a == -1]
  assert(0);

a set of variable identifiers to

track at a program location
● be precise enough to avoid 

spurious counterexamples
● be abstract enough to allow an 

efficient analysis

{a}

How to obtain such a parsimonious precisions?

Æ

Æ

Æ

Æ

Æ

precision π

Precision



For a pair of formulas φ− and φ+,
such that φ− ∧ φ+ is unsatisfiable,
a Craig interpolant ψ is a formula
that fulfills the following requirements:

1) φ− implies ψ
2) ψ  φ∧ + is unsatisfiable
3) ψ only contains symbols that

are common to both φ− and φ+

[Abstractions from Proofs, 2004, Henzinger, Jhala, Majumdar, McMillan]

φ−

φ+

Craig Interpolation

N0

N1

N2

N3

N4

N7

assert
[a == -1]

int a,b,c;

a := 0;

b := a;

c := a;

[a != 0]



For a pair of formulas φ− and φ+,
such that φ− ∧ φ+ is unsatisfiable,
a Craig interpolant ψ is a formula
that fulfills the following requirements:

1) φ− implies ψ
2) ψ  φ∧ + is unsatisfiable
3) ψ only contains symbols that

are common to both φ− and φ+

Craig Interpolation

→ apply this to the Explicit-Value Domain



For a pair of constraint sequences γ− and γ+,
such that γ− ∧ γ+ is contradicting,
an interpolant ψ is a constraint sequence
that fulfills the following requirements:

1) γ− implies ψ
2) ψ  ∧ γ+ is contradicting
3) ψ only contains symbols that

are common to both γ− and γ+

Our Main Contribution
→ apply interpolation to constraint sequences

→ Explicit-Value Interpolation



Explicit-Value Interpolation

ψ : {a := 0;} 

✔ path is infeasible, i.e., γ−  ∧ γ+ is
   contradicting

➢ Add “a” to the precision of location N2

✔ γ− implies ψ
✔ ψ  ∧ γ+ is contradicting
✔ common symbols

N0

N1

N2

N3

N4

N7

assert
[a == -1]

int a,b,c;

a := 0;

b := a;

c := a;

[a != 0]

γ− : a := 0;

γ+ : b := a;
c := a;
[a != 0]
[a == -1]



Interpolation-Based Refinement
Control-Flow Automaton

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]



Interpolation-Based Refinement
Control-Flow Automaton

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]



Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

Control-Flow Automaton abstract states

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]



Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = {a := 1}

Control-Flow Automaton abstract states interpolants

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]



Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = {a := 1}













{a}

Control-Flow Automaton abstract states interpolants precision

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]



Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = {a := 1}













{a}

abstract states interpolants precision error path refuted

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]



Benchmark from
1st International
Competition on
Software Verification
(SV-Comp'12)

Experimental Evaluation



Experimental Evaluation



Abstraction

CEGAR

Interpolation

Experimental Evaluation



Abstraction

CEGAR

Interpolation

✔ Abstraction ✔ CEGAR ✔ Interpolation

✔ Faster
✔ Better

Performance Improvement



Out-performs
well-established
predicate-based tools like BLAST or SATABS

Comparison with Well-Established Tools



Can we further improve on this?

Comparison with Well-Established Tools



Add auxiliary predicate analysis:
● Refinement of both domains based on their expressiveness
● Explicit analysis tracks most information efficiently
● Predicate analysis tracks only what is beyond that

Have best of both worlds



Out-performs SV-COMP '12 Winner CPA-Memo

Combined with Predicate Analysis



Our tool implementation
CPAchecker-Explicit 1.1.10

participated in SV-COMP '13, and won ...

Silver Medal in category ControlFlowInteger
Silver Medal in category DeviceDrivers64

Silver Medal in category SystemC

Silver Medal in category Overall

Results of SV-COMP '13



Usage in CPAchecker 2023

0 500 1000 1500 2000 2500
Number of tasks

Data Flow

Recursion

BMC

Concurrency

Value Analysis

Predicate Abstraction

Symbolic Execution

k-Induction

IMC

Value Analysis (CEGAR)

Solving analyses of CPAchecker
3632 correct proofs
1947 correct alarms
3893 unknown results
3 wrong alarms
0 wrong proofs



● Defined and implemented
● Abstraction
● CEGAR
● Interpolation

for the explicit-value domain
● Combination with predicate abstraction
● Compelling results

● Effective method to reduce reached set
● Avoid state-space explosion

CPAchecker
http://cpachecker.sosy-lab.org

Conclusion
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