
Explicit-State
Software Model Checking

Based on CEGAR
and Interpolation

Dirk Beyer and Stefan Löwe

ETAPS Test-of-Time Award 2023
Proc. FASE 2013, doi:10.1007/978-3-642-37057-1_11

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11

 int a, b, c;
 a := 0;
 b := a;
 c := a;
 if(a == 0) {

a := 1;
 }
 if(a == -1) {

assert(0);
 }

Software Verification

Does the specification hold?

The goal is to find an
answer to the question:

 int a, b, c;
 a := 0;
 b := a;
 c := a;
 if(a == 0) {

a := 1;
 }
 if(a == -1) {

assert(0);
 }

Software Model Checking

Does the specification hold?

TRUE ?

FALSE ?

State of the Art in 2013
- Explicit-state model checking (SPIN, ...)
- Symbolic-state model checking (SLAM,

BLAST, SATABS, …)
- Data-flow analysis (Astree, ...)

- Space between these extremes were
 largely unexplored

- Contribution: Explore this!
– Explicit-value domain with abstraction
– CEGAR for both combined explicit+predicate

 int a, b, c;
 a := 0;
 b := a;
 c := a;
 if(a == 0) {

a := 1;
 }
 if(a == -1) {

assert(0);
 }

{a → T, b → T, c → T}
{a → 0, b → T, c → T}
{a → 0, b → 0, c → T}
{a → 0, b → 0, c → 0}

{a → 1, b → 0, c → 0}

{a → 1, b → 0, c → 0}

Explicit-State Software Model Checking

SAFE !
Does the specification hold?

- Very efficient successor computation
- Independent of expensive solver techniques

- Imprecise when joining

- State-space explosion
 especially when not joining

Status Before

Existing approach: simple value assignments

? Abstraction
? Counterexample-Guided Abstraction Refinement
? Interpolation

All known in the predicate domain for years

Explicit-State Software Model Checking

New approach: integrate CEGAR and Interpolation

! Abstraction
! Counterexample-Guided Abstraction Refinement
! Interpolation

✔ Explicit-State Software Model Checking
based on CEGAR

 and Interpolation

Explicit-State Software Model Checking

CEGAR Loop

Model Check

Refine
Precision

Check
Feasibility

UNSAFE

SAFE

error path found

error path is not feasible

Program
Source
Code

 int a, b, c;
 a := 0;
 b := a;
 c := a;
 if(a == 0) {

a := 1;
 }
 if(a == -1) {

assert(0);
 }

 { }
 { }
 { }
 { }

 { }

if the abstraction is too coarse,
spurious counterexamples will be reported

 { }

Abstraction

We extract variable identifiers from

spurious counterexamples

in order to avoid repeated

explorations of the same

spurious counterexamples

counterexample as

constraint sequence

 int a, b, c;
 a := 0;
 b := a;
 c := a;
 [a == 0]
 a := 1;
 [a == -1]
 assert(0);

Therefore, we introduce the notion of a precision

Counterexamples

 int a, b, c;
 a := 0;
 b := a;
 c := a;
 [a == 0]
 a := 1;
 [a == -1]
 assert(0);

a set of variable identifiers to

track at a program location
● be precise enough to avoid

spurious counterexamples
● be abstract enough to allow an

efficient analysis

{a}

How to obtain such a parsimonious precisions?

Æ

Æ

Æ

Æ

Æ

precision π

Precision

For a pair of formulas φ− and φ+,
such that φ− ∧ φ+ is unsatisfiable,
a Craig interpolant ψ is a formula
that fulfills the following requirements:

1) φ− implies ψ
2) ψ φ∧ + is unsatisfiable
3) ψ only contains symbols that

are common to both φ− and φ+

[Abstractions from Proofs, 2004, Henzinger, Jhala, Majumdar, McMillan]

φ−

φ+

Craig Interpolation

N0

N1

N2

N3

N4

N7

assert
[a == -1]

int a,b,c;

a := 0;

b := a;

c := a;

[a != 0]

For a pair of formulas φ− and φ+,
such that φ− ∧ φ+ is unsatisfiable,
a Craig interpolant ψ is a formula
that fulfills the following requirements:

1) φ− implies ψ
2) ψ φ∧ + is unsatisfiable
3) ψ only contains symbols that

are common to both φ− and φ+

Craig Interpolation

→ apply this to the Explicit-Value Domain

For a pair of constraint sequences γ− and γ+,
such that γ− ∧ γ+ is contradicting,
an interpolant ψ is a constraint sequence
that fulfills the following requirements:

1) γ− implies ψ
2) ψ ∧ γ+ is contradicting
3) ψ only contains symbols that

are common to both γ− and γ+

Our Main Contribution
→ apply interpolation to constraint sequences

→ Explicit-Value Interpolation

Explicit-Value Interpolation

ψ : {a := 0;}

✔ path is infeasible, i.e., γ− ∧ γ+ is
 contradicting

➢ Add “a” to the precision of location N2

✔ γ− implies ψ
✔ ψ ∧ γ+ is contradicting
✔ common symbols

N0

N1

N2

N3

N4

N7

assert
[a == -1]

int a,b,c;

a := 0;

b := a;

c := a;

[a != 0]

γ− : a := 0;

γ+ : b := a;
c := a;
[a != 0]
[a == -1]

Interpolation-Based Refinement
Control-Flow Automaton

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]

Interpolation-Based Refinement
Control-Flow Automaton

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]

Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

Control-Flow Automaton abstract states

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]

Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = {a := 1}

Control-Flow Automaton abstract states interpolants

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]

Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = {a := 1}













{a}

Control-Flow Automaton abstract states interpolants precision

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]

Interpolation-Based Refinement

[a == -1]

a := 1;

[a == 0]















assert

int a,b,c;

a := 0;

b := a;

c := a;

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = 

ψ = {a := 1}













{a}

abstract states interpolants precision error path refuted

N0

N1

N2

N3

N4

N5 N6

N7

assertN8

[a != -1] [a ==-1]

a := 1;

int a,b,c;

a := 0;

b := a;

c := a;

[a == 0] [a != 0]

Benchmark from
1st International
Competition on
Software Verification
(SV-Comp'12)

Experimental Evaluation

Experimental Evaluation

Abstraction

CEGAR

Interpolation

Experimental Evaluation

Abstraction

CEGAR

Interpolation

✔ Abstraction ✔ CEGAR ✔ Interpolation

✔ Faster
✔ Better

Performance Improvement

Out-performs
well-established
predicate-based tools like BLAST or SATABS

Comparison with Well-Established Tools

Can we further improve on this?

Comparison with Well-Established Tools

Add auxiliary predicate analysis:
● Refinement of both domains based on their expressiveness
● Explicit analysis tracks most information efficiently
● Predicate analysis tracks only what is beyond that

Have best of both worlds

Out-performs SV-COMP '12 Winner CPA-Memo

Combined with Predicate Analysis

Our tool implementation
CPAchecker-Explicit 1.1.10

participated in SV-COMP '13, and won ...

Silver Medal in category ControlFlowInteger
Silver Medal in category DeviceDrivers64

Silver Medal in category SystemC

Silver Medal in category Overall

Results of SV-COMP '13

Usage in CPAchecker 2023

0 500 1000 1500 2000 2500
Number of tasks

Data Flow

Recursion

BMC

Concurrency

Value Analysis

Predicate Abstraction

Symbolic Execution

k-Induction

IMC

Value Analysis (CEGAR)

Solving analyses of CPAchecker
3632 correct proofs
1947 correct alarms
3893 unknown results
3 wrong alarms
0 wrong proofs

● Defined and implemented
● Abstraction
● CEGAR
● Interpolation

for the explicit-value domain
● Combination with predicate abstraction
● Compelling results

● Effective method to reduce reached set
● Avoid state-space explosion

CPAchecker
http://cpachecker.sosy-lab.org

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

