Handling Flaky Regression Tests in CPACHECKER

Philipp Wendler Joint work with Stefan Winter

LMU Munich, Germany

2023-09-11 @ CPA'23

Background

- CPACHECKER relies heavily on integration tests to find regressions
- Large number of tests:
 - Dozens of test suites
 - With 100 55 000 tests each
- ► Regression: change in test result if new result ≠ "correct" (also includes changes between different bad results)
- Mail sent to developers for each test-suite execution with > 1 regression

Flaky Tests

Test result also changes due to reasons not caused by changes in CPACHECKER (*flakiness*):

- Non-deterministic behavior
- Hardware timing
- Random crashes

Often unavoidable in practice:

- Caused by external libraries or environment
- Conceptually inherent nondeterminism

Real problem:

Some test suites always produce regression reports, but real regressions rare

Current Handling of Flaky Tests

Main strategy:

- Exclude flaky tests
- Manually identified

Plus a simplistic heuristic for flaky timeouts.

Current Handling of Flaky Tests

Main strategy:

- Exclude flaky tests
- Manually identified

Plus a simplistic heuristic for flaky timeouts.

Insufficient:

- Still many regression reports
- No defined rule what counts as "flaky"
- Manual effort (~100 commits dealing with this)
- Excluded tests could still be useful
- Exclusion list outdated

Re-Runs

State of the art: re-run tests n times

- Expensive
- Hides newly introduced flakiness
- May not catch rare flakiness
- Increases time until developers get results

Inuitive Insight for Solution

Given a change of a test result, is it flaky?

- Assumption: Flakiness is probabilistic,
 i.e., flaky results independent and with certain probability (like a series of coin throws, dice rolls, etc.)
- Probability for long sequences of same flaky result low
- Real regressions with different behavior

Inuitive Insight for Solution

Given a change of a test result, is it flaky?

- Assumption: Flakiness is probabilistic,
 i.e., flaky results independent and with certain probability (like a series of coin throws, dice rolls, etc.)
- Probability for long sequences of same flaky result low
- Real regressions with different behavior
- \Rightarrow Check if result occurs more often in short sequences

RLE-based Identification of Flaky Test Results

1. Compute Run-Length Encoding (RLE) of test-result history

Lossless data compression format

- Also used in time series analysis
- ▶ aaaabb ightarrow 4a2b
- 2. Count (result, length) occurrences
- 3. Check for inverse correlation between length and count

Likely flaky if statistically significant inverse correlation is found.

Run-Length Encoding:

seq. length	result	seq. length	result
94	false	1	TIMEOUT
1	EXCEPTION	3	false
40	false	1	TIMEOUT
1	TIMEOUT	19	false
4	false	3	TIMEOUT
2	TIMEOUT	3	false
4	false	1	TIMEOUT
1	TIMEOUT	1	false
1	false	1	TIMEOUT
2	TIMEOUT	7	false
4	false	2	TIMEOUT
2	TIMEOUT	2	false
2	false	1	TIMEOUT
1	TIMEOUT	1	false
4	false	3	TIMEOUT

Summary of sequences, sorted by (result, length):

result	length	count	result	length	count
false	1	22	EXCEPTION	1	1
false	2	4	TIMEOUT	1	30
false	3	5	TIMEOUT	2	10
false	4	6	TIMEOUT	3	3
false	5	2	TIMEOUT	4	2
false	6	2	TIMEOUT	5	1
false	7	2			
false	9	1			
false	19	1			
false	40	1			

94

1

false

Summary of sequences, sorted by (*result*, *length*):

result	length	count	result	length	count
false	1	22	EXCEPTION	1	1
false	2	4	TIMEOUT	1	30
false	3	5	TIMEOUT	2	10
false	4	6	TIMEOUT	3	3
false	5	2	TIMEOUT	4	2
false	6	2	TIMEOUT	5	1
false	7	2			
false	9	1	30		
false	19	1	-		
false	40	1	ب 20 		
false	94	1	uno -		

Summary of sequences, sorted by (*result*, *length*):

result	length	count	result	length	count	
false	1	22	EXCEPTION	1	1	
false	2	4	TIMEOUT	1	30	
false	3	5	TIMEOUT	2	10	
false	4	6	TIMEOUT	3	3	
false	5	2	TIMEOUT	4	2	
false	6	2	TIMEOUT	5	1	
false	7	2				
false	9	1	20	∎ f	alse(unre	ach-call)
false	19	1	20		(,
false	40	1	- 4			
false	94	1				
			3 10			

0

20

40

Length

60

80

100

0

LMU Munich, Germany

Plan for CPACHECKER

- 1. Implementation on top of $\operatorname{BenchExec}$
- 2. Add column with likelihood of regression/flakiness to test-result tables
- 3. Use as heuristic for deciding whether to send regression mail
- 4. Remove existing naive heuristic

Feedback welcome!

 ${\rm CPACHECKER}$ is a not-so-small and active software project, with >15 years of history.

Potential as case study in SE research!

Example: years of test data available

Contact us!

Conclusion

- Better heuristic for flakiness in regression tests hopefully coming soon!
- Promising preliminary results
- Large data set for (flaky) tests