
LIV: Loop-Invariant Validation
Using Straight-Line Programs

Dirk Beyer and Martin Spiessl

2023-09-14



Automatic Software Verification

Program P

Specification S
Verifier

TRUE

FALSE

▶ Verification Task: answer whether P ⊨ S

▶ In general undecidable!
▶ Many tools participating at the Competition

on Software Verification (SV-COMP) [1]
▶ Problem: how can we trust their results?
⇒ Validate the results C Verifiers in SV-COMP 2023

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 2 / 15



Validation of Verification Results

Program

Specification
Verifier

TRUE

FALSE

Witness

Violation Witness

Correctness Witness

Validator
TRUE

FALSE

▶ Output a witness along with the verdict, i.e., information about the
proof/counterexample

▶ Use a validator to check the proof/counterexamples [3, 2]
▶ In this talk: focus on correctness-witness validation

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 3 / 15



Correctness Witnesses Contain Loop Invariant Candidates

▶ not an Invariant:
sum==55

▶ Invariant, safe but not inductive:
sum<=55

▶ Invariant, inductive but not safe:
x<=10

▶ Invariant, safe and inductive:
x>=0 && x<=10 && sum = x*(x+1)/2

1 int x = 0;
2 int sum = 0 ;
3 //@ loop invariant I;
4 while (x<10) {
5 x++;
6 sum+=x;
7 }
8 assert(sum<=55);

Problem: current validators may validate witnesses successfully in all 4 cases!

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 4 / 15



Existing Correctness-Witness Validators

▶ Not enough validators for correctness
witnesses (only 3, shown on the right)

▶ Witnesses may contain partial proofs
▶ Validators may ignore wrong or insufficient

invariants
▶ Validators may default to solving the

verification task
⇒ may run for a long time or timeout

▶ Our solution: Design a new validator (LIV)
that turns "may" above into "must not" C Validators for Correctness

Witnesses in SV-COMP 2023
Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 5 / 15



Establish Full Proofs

1 int x = 0;
2 int sum = 0 ;
3 //@ loop invariant I;
4 while (x<10) {
5 x++;
6 sum+=x;
7 }
8 assert(sum<=55);

{P}s0{R}
R ⇒ I {I ∧ C}B{I} I ∧ ¬C ⇒ Q

while{R} while C do B {Q} comp
{P}s0 while C do B{Q}

Proof Obligations:
▶ {P}s0{I} ▶ {I ∧ C}B{I} ▶ I ∧ ¬C ⇒ Q

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 6 / 15



From Proof Obligations to Straight-Line Programs

Proof Obligations:
▶ {P}s0{I}

(Base Case)
▶ {I ∧ C}B{I}

(Inductiveness)
▶ I ∧ ¬C ⇒ Q

(Safety)

Straight-Line Programs:

1 int x = 0;
2 int sum = 0;
3 assert(I);

1 int x = nondet();
2 int sum = nondet();
3 assume(I && C);
4 x++;
5 sum += x;
6 assert(I);

1 int x = nondet();
2 int sum = nondet();
3 assume(I && !C);
4 assert(Q);

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 7 / 15



Workflow of LIV

Program

Specification

Witness

split

SL Pro-
gram 1

SL Pro-
gram N

...

Verifier 1

Verifier N
...

Specification

Specification

∗

TRUE

UNKNOWN

FALSE

▶ can use any off-the-shelf verifier from SV-COMP as backend
▶ small frontend using pycparser for AST-based splitting

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 8 / 15



Evaluation

Experiment 1: we run LIV on a set of 22 benchmarks with known, supposedly
inductive and safe invariants
▶ RQ 2: Can LIV give additional feedback to the user?

Experiment 2: We run LIV on correctness witnesses of SV-COMP 2023 for the
small subset of 22 C programs from experiment 1
▶ RQ 1: Is LIV an efficient validator?
▶ RQ 3: Are invariants from SV-COMP verifiers already inductive and safe?

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 9 / 15



RQ 2: Can LIV give additional feedback to the user?

▶ Experiment 1: we run LIV on a set of 22
benchmarks with known, supposedly
inductive and safe invariants

▶ Result: we discovered three bugs in the
benchmark set, where feedback from the
tool helped to localize the cause;
one is shown on the right ⇒

1 int k = nondet ();
2 int j = nondet ();
3 int n = nondet ();
4 if (!(n >=1&&k>=n&&j==0))
5 return 0;
6 //@ loop invariant j <= n

&& n <= k + j;
7 while (j<=n -1) {
8 j++;k--;
9 }

10 assert (k >=0);
11 return 0;

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 10 / 15



RQ 1: Is LIV an efficient validator?

Experiment 2:
▶ We run LIV on correctness witnesses of SV-COMP 2023 for a small subset of

(22) C programs
▶ do the same with CPAchecker and compare both validators

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 11 / 15



Comparison with CPAchecker’s k-Induction-based Validation
LIV gives quick answers and does not run into timeouts

10 100 1 000

10

100

CPU time for CPA-kind (s)

CP
U

tim
e

fo
rL

IV
(s

)

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 12 / 15



RQ 3: Are invariants from SV-COMP verifiers already inductive and safe?

Experiment 2:
▶ We run LIV on correctness witnesses of SV-COMP 2023 for a small subset of

(22) C programs
▶ We will have a look at how many of those are contain already sufficient

invariants for a proof

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 13 / 15



Witnesses Validated by LIV
some of the invariants are already sufficient

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 14 / 15



Summary

▶ LIV: a correctness-witness validator
▶ more rigorous, confirms less

witnesses, but terminates quickly
▶ splits validation into multiple

straight-line programs
▶ delegates validation to verifiers
▶ allows insights into why a proof fails
▶ complements existing validators
▶ more information on our

supplementary website ⇒

Supplementary Webpage:

sosy-lab.org/research/liv
Paper Preprint
Source Code Repo
Demonstration Video

Reproduction Artifact
Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 15 / 15

http://www.sosy-lab.org/research/liv/
https://www.sosy-lab.org/research/pub/2023-ASE.LIV_Loop-Invariant_Validation_using_Straight-Line_Programs.pdf
https://www.gitlab.com/sosy-lab/software/liv
https://youtu.be/mZhoGAa08Rk
https://doi.org/10.5281/zenodo.8289101


References I

Beyer, D.: Competition on software verification and witness validation: SV-COMP 2023. In: Proc.
TACAS (2). pp. 495–522. LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_29

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging verification results
between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016). https://doi.org/10.1145/2950290.2950351

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation and stepwise
testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM (2015).
https://doi.org/10.1145/2786805.2786867

Dirk Beyer, Martin Spiessl LIV: Loop-Invariant Validation Using Straight-Line Programs 16 / 15


	Appendix

