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Auto-Active Reasoning about Noninterference
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int check_pin(int pin, int guess) 
  // security policy: is allowed to 
  // reveal (only) whether pin == guess 
  _(requires (pin == guess) :: low) 
  // attacker knows their own guess 
  _(requires guess :: low) 
{ 
    if (pin == guess) { 
        return 0; // match 
    } else if (guess > pin) { 
        return -1; // guess is too high 
    } else { 
        return -2; // guess is too low 
    } 
} 

σ
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Declassification via Assume
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int get_balance(int pin, int guess) 
  _(requires (pin == guess) :: low) 
  _(requires guess :: low) 
  _(ensures  result :: low) 
{ 
    if (pin == guess) { 
      // pin is correct, get balance 
      int b = balance(); 
      // declassify balance 
      _(assume b :: low) 
      return b;  
    } else { 
      return -1; // pin incorrect 
    } 
}
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int get_balance(int pin, int guess) 
  _(requires (pin == guess) :: low) 
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  _(ensures  result :: low) 
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      // pin is correct, get balance 
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Contribution 1:  

Semantic 
characterisation of 

soundness of this rule

This is magic
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int check_pin(int pin, int guess) 
  _(requires (pin == guess) :: low) 
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  _(requires guess :: low) 
{ 
    _(assume pin :: low)  
    if (pin == guess) { 
       int b = balance(); 
       _(assume b :: low) 
        return b;  
    } else if (guess > pin) { 
        return -1; // guess is too high 
    } else { 
        return -2; // guess is too low 
    } 
}

Insecure 
Declassification

Contribution 2:  

Justify 
declassifications 

against a 
declarative policy



Declarative Security Policies
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Specify when declassifications are allowed to occur and what 
information is allowed to be declassified when they do occur

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)
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Specify when declassifications are allowed to occur and what 
information is allowed to be declassified when they do occur

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)
Declassification 

policy

Trace of 
policy-relevant 

events

Policy condition 
(Specifies “when”)

Release formula 
(specifies “what”)
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What does Assume mean?

σ

σ′ ′ 

Policy-Agnostic Guarantee: Each step is allowed to leak some information, 
specifically whether an (earlier) assumption has been violated

⟨Out −1⟩

⟨Asm ρ⟩

⟨Asm ρ⟩

S

S’

⟨Out 1⟩

σ′ ⟨Out 1⟩

σ′ ′ ′ 
⟨Out −1⟩

secure output

failed assumption, 
allowed by policy?

insecure output 
is detected

Theorem: Soundness
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Sealed Bid Auction Server

Private Location Service

When: auction is finished


What:  winning bid

When: sufficient privacy budget remains


What: a noisy location point (to ensure 
differential privacy)

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)ϕ(tr) ρ(tr)

🅆🄾🅁🄳🄻🄴 
Server

Private Learning

https://verse.systems/blog/
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