
ACM CCS 2023, November 28, 2023

Assume but Verify:
Deductive Verification
of Leaked Information
in Concurrent Applications
Toby Murray, Mukesh Tiwari, Gidon Ernst and David A. Naumann

1

tl;dr

2

stated

s max
bidhandle

bid
thread

log_bid()

close
auction
thread

log_closed()

print_result()

lock …s

p loccur

lock-1

release
location
thread

budget b

replenish
thread

get_real_loc()

add_noise()

log_replenish()

report
thread

print_loc()

Sealed Bid Auction Server

Private Location Service

🅆🄾🅁🄳🄻🄴
Server Private Learning

Auto-Active Verification for
Concurrent C Programs against
Declarative Dynamic
Declassification Security Policies
via Security Concurrent
Separation Logic reasoning against
a Constant Time threat model

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ
≈ℓ

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

≈ℓ ≈ℓ⟹

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

⟨𝚙 = 𝟸𝟹𝟺, 𝚐 = 100⟩

≈ℓ ≈ℓ⟹

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

⟨𝚙 = 𝟸𝟹𝟺, 𝚐 = 100⟩ return -2;

≈ℓ ≈ℓ⟹

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

⟨𝚙 = 𝟸𝟹𝟺, 𝚐 = 100⟩

⟨𝚙 = 𝟸𝟹, 𝚐 = 100⟩

return -2;

≈ℓ ≈ℓ⟹

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

⟨𝚙 = 𝟸𝟹𝟺, 𝚐 = 100⟩

⟨𝚙 = 𝟸𝟹, 𝚐 = 100⟩

≈ℓ

return -2;

≈ℓ ≈ℓ⟹

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

⟨𝚙 = 𝟸𝟹𝟺, 𝚐 = 100⟩

⟨𝚙 = 𝟸𝟹, 𝚐 = 100⟩

≈ℓ

return -1;

return -2;

≈ℓ ≈ℓ⟹

Auto-Active Reasoning about Noninterference

3

int check_pin(int pin, int guess)
 // security policy: is allowed to
 // reveal (only) whether pin == guess
 _(requires (pin == guess) :: low)
 // attacker knows their own guess
 _(requires guess :: low)
{
 if (pin == guess) {
 return 0; // match
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

σ

σ′

⟨𝚙 = 𝟸𝟹𝟺, 𝚐 = 100⟩

⟨𝚙 = 𝟸𝟹, 𝚐 = 100⟩

≈ℓ

return -1;

return -2;

σ /≈ℓ σ′

≈ℓ ≈ℓ⟹

Declassification via Assume

4

int get_balance(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
 _(ensures result :: low)
{
 if (pin == guess) {
 // pin is correct, get balance
 int b = balance();
 // declassify balance
 _(assume b :: low)
 return b;
 } else {
 return -1; // pin incorrect
 }
}

Declassification via Assume

4

int get_balance(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
 _(ensures result :: low)
{
 if (pin == guess) {
 // pin is correct, get balance
 int b = balance();
 // declassify balance
 _(assume b :: low)
 return b;
 } else {
 return -1; // pin incorrect
 }
}

This is magic

Declassification via Assume

4

int get_balance(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
 _(ensures result :: low)
{
 if (pin == guess) {
 // pin is correct, get balance
 int b = balance();
 // declassify balance
 _(assume b :: low)
 return b;
 } else {
 return -1; // pin incorrect
 }
}

Contribution 1:

Semantic
characterisation of

soundness of this rule

This is magic

Assume considered dangerous

5

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

Assume considered dangerous

5

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

Insecure
Declassification

Assume considered dangerous

5

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // guess is too high
 } else {
 return -2; // guess is too low
 }
}

Insecure
Declassification

Contribution 2:

Justify
declassifications

against a
declarative policy

Declarative Security Policies

6

Specify when declassifications are allowed to occur and what
information is allowed to be declassified when they do occur

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)

Declarative Security Policies

6

Specify when declassifications are allowed to occur and what
information is allowed to be declassified when they do occur

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)
Declassification

policy

Trace of
policy-relevant

events

Policy condition
(Specifies “when”)

Release formula
(specifies “what”)

Example Policy

7

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // too high
 } else {
 return -2; // too low
 }
}

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)

ϕ(tr) =̂ 𝚙𝚒𝚗 = 𝚐𝚞𝚎𝚜𝚜 ∧ 𝗅𝖺𝗌𝗍(tr) = Bal(𝖻)

ρ(tr) =̂ b :: 𝗅𝗈𝗐

Example Policy

7

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // too high
 } else {
 return -2; // too low
 }
}

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)

ϕ(tr) =̂ 𝚙𝚒𝚗 = 𝚐𝚞𝚎𝚜𝚜 ∧ 𝗅𝖺𝗌𝗍(tr) = Bal(𝖻)

ρ(tr) =̂ b :: 𝗅𝗈𝗐

Example Policy

7

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // too high
 } else {
 return -2; // too low
 }
}

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)

ϕ(tr) =̂ 𝚙𝚒𝚗 = 𝚐𝚞𝚎𝚜𝚜 ∧ 𝗅𝖺𝗌𝗍(tr) = Bal(𝖻)

ρ(tr) =̂ b :: 𝗅𝗈𝗐

Example Policy

7

int check_pin(int pin, int guess)
 _(requires (pin == guess) :: low)
 _(requires guess :: low)
{
 _(assume pin :: low)
 if (pin == guess) {
 int b = balance();
 _(assume b :: low)
 return b;
 } else if (guess > pin) {
 return -1; // too high
 } else {
 return -2; // too low
 }
}

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)

ϕ(tr) =̂ 𝚙𝚒𝚗 = 𝚐𝚞𝚎𝚜𝚜 ∧ 𝗅𝖺𝗌𝗍(tr) = Bal(𝖻)

ρ(tr) =̂ b :: 𝗅𝗈𝗐

What does Assume mean?

σ

σ′ ′

Policy-Agnostic Guarantee: Each step is allowed to leak some information,
specifically whether an (earlier) assumption has been violated

⟨Out −1⟩

⟨Asm ρ⟩

⟨Asm ρ⟩

S

S’

⟨Out 1⟩

σ′ ⟨Out 1⟩

σ′ ′ ′
⟨Out −1⟩

secure output

failed assumption,
allowed by policy?

insecure output
is detected

Theorem: Soundness

Case Studies

9

stated

s max
bidhandle

bid
thread

log_bid()

close
auction
thread

log_closed()

print_result()

lock …s

p loccur

lock-1

release
location
thread

budget b

replenish
thread

get_real_loc()

add_noise()

log_replenish()

report
thread

print_loc()

Sealed Bid Auction Server

Private Location Service

When: auction is finished

What: winning bid

When: sufficient privacy budget remains

What: a noisy location point (to ensure
differential privacy)

𝒟(tr) =̂ ϕ(tr) ⇝ ρ(tr)ϕ(tr) ρ(tr)

🅆🄾🅁🄳🄻🄴
Server

Private Learning

https://verse.systems/blog/

Thank You

10

stated

s max
bidhandle

bid
thread

log_bid()

close
auction
thread

log_closed()

print_result()

lock …s

p loccur

lock-1

release
location
thread

budget b

replenish
thread

get_real_loc()

add_noise()

log_replenish()

report
thread

print_loc()

Sealed Bid Auction Server

Private Location Service

🅆🄾🅁🄳🄻🄴
Server Private Learning

https://covern.org/

