
 Final presentation of the master thesis
 Mentor: Dr. Philipp Wendler
 Supervised by: Prof. Dr. Dirk Beyer
 Date of presentation: 06.12.2023

Benedikt Damböck

Verification of Java
Programs with
Exceptions with
CPAchecker

2

• Exception control flow is not represented in CFA

• Adds code inside the try, catch, and finally blocks to CFA

• Analysis results are arbitrary

State of Java Exceptions in CPAchecker

3

public class Main {

 private static void foo(){
 throw new NullPointerException();
 }
 private static void bar(){}
 public static void main(String[] args){
 boolean entered = false;
 try {
 foo();
 bar();
 } catch(NullPointerException n){
 entered = true;
 } catch(RuntimeException r){
 entered = false;
 } finally {
 System.out.println("Hello World");
 }
 assert entered;
 }
}

State of Java Exceptions in CPAchecker

4

Motivation

• Many different approaches in related work

• 2 approaches compatible with CPAchecker:

- Implementation in CFA

- Implementation in analysis

• Implementation in CFA

- Advantage: Implementation in one point of the program

- Disadvantage: Path explosion problem

5

• Representing exception control flow in a CFA using
non-exception Java control flow.

• Track active exception with a global helper variable

• Conditional statements used to handle an exception

General Approach

6

• Add to program model :

public static Throwable helperVariable =
null;

Global Helper Variable

N12
28

N43
27

INIT GLOBAL VARS

N44
26

public static Throwable CPAchecker_Exception_helper = null;

7

• Throw statement: throw expression

• Throw goes to the next try-catch(-finally)

that can handle it

• Translation:

helperVariable = expression;

Throw

N1
5

N2
4

Function start dummy edge

N5
2

CPAchecker_Exception_helper = new NullPointerException();

N0
0

default return;

8

• Two-step process:

Step 1: Check if an exception is actively impacting the program

Step 2: Check if the exception can be handled

Handling an Exception

9

Step 1: Checking for Exception

N15
24

N1
5

N18
23

Main_foo();

N16
20

[CPAchecker_Exception_helper != null]

N19
22

[!(CPAchecker_Exception_helper != null)]

N20
21

[CPAchecker_Exception_helper != null]

Main_bar();

[!(CPAchecker_Exception_helper != null)]

10

Step 2: Catching Exception

● Normal catch syntax:
 catch (CatchFormalParameter)

 CatchFormalParameter =
 {VariableModifier} CatchType VariableDeclaratorId

● Example:

 } catch(NullPointerException n){
 \\catchBlock
 } catch(RuntimeException r){
 \\catchBlock
 }

11

Step 2: Catching Exception

N16
20

[CPAchecker_Exception_helper instanceof NullPointerException]

N17
14

[!(CPAchecker_Exception_helper instanceof NullPointerException)]

[!(CPAchecker_Exception_helper instanceof RuntimeException)]

[CPAchecker_Exception_helper instanceof RuntimeException]

12

Step 2: Adding Content

N22
19

N24
17

NullPointerException n = CPAchecker_Exception_helper;

N25
16

N26
15

CPAchecker_Exception_helper = null;

entered = true;

• Adding a variable for CatchFormalParameter

• Set helper variable to null

• Add content of catch block:

 entered = true;

13

• Finally clauses always executed

• Two different approaches discussed:

- Add finally block to all eligible paths

- Map control flow after finally with
 local boolean variable

• Finally Block:

 System.out.println("Hello World");

Finally

N21
6

N33
5

println(Hello World);

14

• Every abnormal execution condition is unique

• Separate implementation of parts in each scenario

• Handle exception control flow with the previously discussed approach

Abnormal Execution

15

● Composition of value analysis and runtime type analysis
● Correctly analyzed all but one program with developer thrown exceptions
● Programs with abnormal executions not analyzed correctly
● Programs with library method calls in exception constructs

not analyzed correctly
● Performance of implementation was not worse on this dataset

 More paths didn’t lead to performance loss

Evaluation - CPAchecker

16

● Performance: CPAchecker in the middle of the pack

● Low number of correct results

● Large number of wrong proofs, wrong alarms and errors

Evaluation – State-of-the-Art Tools

17

Evaluation – State-of-the-Art Tools

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

Coastal
CPAchecker-Branch

CPAchecker-Trunk
GDart

Java-Ranger
JayHorn

JBMC
JDart
MLB
SPF

18

Evaluation – State-of-the-Art Tools

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

Coastal
CPAchecker-Branch

CPAchecker-Trunk
GDart

Java-Ranger
JayHorn

JBMC
JDart
MLB
SPF

 10

 100

 1000

 0 100 200 300 400 500 600 700

M
e
m

o
ry

 (
M

B
)

n-th largest correct result

Coastal
CPAchecker-Branch

CPAchecker-Trunk
GDart

Java-Ranger
JayHorn

JBMC
JDart
MLB
SPF

19

● Anonymous classes

● Increment operator at array index position

● Bug in ErrorPathShrinker class

● No variable for main method parameter

● Small number of analyses for Java programs

Study: CPAchecker Problems with Java
Programs

20

● CPAchecker currently does not represent exception control flow in CFA
● Introduced approach to handle exceptional control flow

with standard Java control flow in CFAs
● Improved accuracy of CPAchecker
● Implementation possible in CFA construction of CPAchecker
● More paths didn’t lead to performance loss
● Unable to handle abnormal execution and library method calls
● Interesting topic: Performance comparison between

exception handling in CFA vs exception handling in analysis

Conclusion

21

• Handling on a case-by-case basis

• Example Division by zero

• Declare a temporary integer variable

• Conditional statement that checks if variable in divisor is zero

• If zero

- Assign new ArithmeticException object to helper variable

- Handle exceptional control flow, as discussed earlier

• Otherwise

- Assign operation to temporary variable

• Replace original statement with temporary variable

Abnormal Execution

22

• Example: Method used in the operation: bar() in foo(bar())

• Declare a temporary variable with the return type of the method used within
the operation

• Assign the method call to this variable.

• Use value of operation instead of method call

• Apply exception handling step after

Method call in operation

23

• Nesting in try: exception path leads to next exception handling if catch block
exist in outer try

• Nesting in catch: exception path leads to finally block, end of method if not
also nested

• Nesting in finally:

- Exception path leads to end of method if not also nested

- No execution of rest of finally block

Nesting

24

Finally with Variable

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

