

Thomas Lemberger

Towards Cooperative Software Verification with Test Generation and Formal Verification

February 28, 2024 · Ernst Denert SE-Preis · SE 2024, Linz

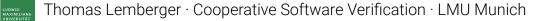
:(

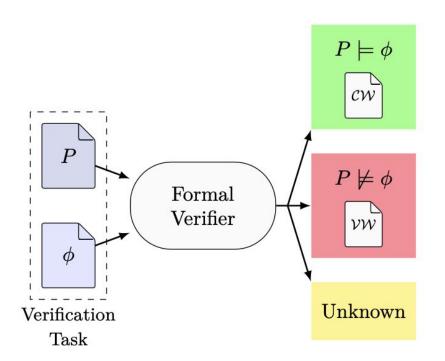
Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you.

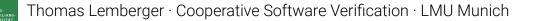
20% complete

or more information about this issue and possible fixes, visit https://www.windows.com/stopcode

you call a support person, give them this info: top code: CRITICAL PROCESS DIED


Let's get rid of software bugs!


Context


- Automated Software Verification
 - Automated Formal Verification
 - Automated Test Generation
- C code without concurrency
- No:
 - Manual Tests
 - Interactive Verification
 - Code Synthesis
 - Machine Learning


```
1 int main(void) {
2
     unsigned int x = 0;
     unsigned short n = nondet();
 3
     while (x < n) {
 4
5
       x += 2;
6
 7
     if (x % 2 == 0) {}
8
     else
 9
       reach_error();
10 }
```

No call to **reach_error()** is reachable


```
1 int main(void) {
2
     unsigned int x = 0;
     unsigned short n = nondet();
 3
     while (x < n) {
 4
5
       x += 2;
6
 7
     if (x % 2 == 0) {}
8
     else
 9
       reach_error();
10 }
```

Cover all program branches

P Test Generator φ Test-Generation

Cover function reach_error()

Task

VeriFuzz CBMC CBMC Locksmith Mopsa UGemCutter Infer UAutomizer Deagle Bubaak **ESBMC Goblint CPAchecker** Pinaka VeriAbs Frama-C Brick _{2ls}UTaipan UKojak LF-checker VeriOover Symbiotic CSeq Graves Crux EBF GDart-LLVM Dartagnan Predator Korn

VASP-C CoVeriTest Klee **CPATiger FShell** Cute **PRTest** TracerX Crest Legion/SymCC **FuSeBMC** Dart

Contributions

LMU

1. Tool comparisons

2. Concepts for combining verifiers and testers, off-the-shelf

Tool Comparisons: Requirements

Common input language Common output language

Reliable measurements

Benchmark Set

Result Format

Measurement Tools

12th Competition on Software Verification (SV-COMP 2023)

Beyer. Competition on Software Verification and Witness Validation: SV-COMP 2023. Proc. TACAS, 2023.

Comparison of Testers: 404

<pre>// CREST: CREST_int(x); // KLEE: klee_make_symbolic(&x, sizeof(x), "x"); // AFL: scanf("%d\n", &x);</pre>	<pre>// CREST: 0 // KLEE: Structured data // AFL: \x00</pre>	Input methods + result format
Benchmark Set	Result Format	Measurement Tools
Proprietary formats	Proprietary formats	Proprietary execution methods, no real branch coverage

Robust test-suite execution through Linux cgroups and overlay file systems³

//	<pre>tern intVERIFIER_nondet_int(); snip t x =VERIFIER_nondet_int();</pre>	<testcase> <input/>1023 <input/>254 </testcase>	Coverage measurement through code instrumentation Measurement Tools			
	Benchmark Set	Result Format	Measurement Tools			
	Subset of sv-benchmarks ¹	Test-Suite Format²	TestCov ² branch coverage, reach_error() coverage			

¹Beyer, Lemberger. Software Verification: Testing vs. Model Checking. HVC, 2017. ²Beyer, Lemberger. TestCov: Robust Test-Suite Execution and Coverage Measurement. Proc. ASE, 2019. ³Beyer, Löwe, Wendler. Reliable Benchmarking: Requirements and Solutions. STTT, 2019.

LMU ^{ludwig-} Maximiliansuniversität münchen

FASE 2024

6th Competition on Software Testing (Test-Comp 2024)

- ~11.000 test tasks
 - Cover-Error
 - Cover-Branches
- Offline competition
- 900s, 15GB memory per task
- Score: normalized accumulated coverage –

Participants	Plots	cetfuzz	<u>CoVeriTest</u>	ESBMC- kind	FDSE	Fizzer	FuSeBMC	FuSeBMC- <u>AI</u>	<u>HybridTiger</u>	KLEE	KLE
DeviceDriversLinux64- ReachSafety 2 tasks	the second secon	Q	Q	<u>0</u>	<u>0</u>	Q	<u>0</u>	<u>0</u>	Q	Q	Q
CPU time		0 s	0 s	0 s	0 s	0 s	0 s	0 s	0 s	0 s	0 s
Cover-Branches 9825 tasks	to the second se	<u>2197</u>	<u>4826</u>	-	<u>5132</u>	<u>5146</u>	<u>5478</u>	<u>5418</u>	<u>3987</u>	<u>3023</u>	<u>497</u>
CPU time		1700000 s	5700000 s		4500000 s	6200000 s	8800000 s	8500000 s	4900000 s	2700000 s	610000
<u>ReachSafety-Arrays</u> 468 tasks	status families de	<u>96</u>	<u>316</u>	-	<u>382</u>	375	<u>389</u>	<u>389</u>	<u>305</u>	<u>152</u>	351
CPU time	5.051	150000 s	340000 s		40000 s	290000 s	420000 s	420000 s	320000 s	64000 s	310000
ReachSafety_ BitVectors 62 tasks	the second secon	<u>36</u>	<u>49</u>	-	<u>49</u>	<u>48</u>	<u>49</u>	<u>49</u>	<u>16</u>	<u>32</u>	<u>48</u>
CPU time		35000 s	21000 s		34000 s	41000 s	56000 s	56000 s	7900 s	22000 s	32000
<u>ReachSafety-</u> <u>ControlFlow</u> 87 tasks	the state of the s	<u>47</u>	<u>50</u>	-	53	<u>54</u>	58	<u>58</u>	21	<u>36</u>	56
CPU time		61000 s	48000 s		24000 s	63000 s	77000 s	77000 s	48000 s	41000 s	39000
ReachSafety-ECA		0	e .			7	10	0	3	7	0

Test-Comp 2023: Beyer. Software Testing: 5th Comparative Evaluation: Test-Comp 2023. Proc. FASE, 2023.

FASE 2024

6th Competition on Software Testing (Test-Comp 2024)

- 2024 (to be published):
 - 20 participants
 from 7 countries
 - 8 first-time participants
- All participants produce test suites in our XML format
- TestCov performs all coverage measurement

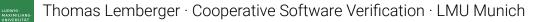
<u>Participants</u>	Plots	<u>cetfuzz</u>	CoVeriTest	ESBMC- kind	FDSE	Fizzer	FuSeBMC	FuSeBMC- <u>AI</u>	<u>HybridTiger</u>	KLEE	KLE
DeviceDriversLinux64- ReachSafety 2 tasks	a state and a state and a state a stat	Q	Q	Q	<u>0</u>	Q	<u>0</u>	<u>0</u>	Q	Q	Q
CPU time	Contraction of Contraction Contraction	0 s	0 s	0 s	0 s	0 s	0 s	0 s	0 s	0 s	0 s
Cover-Branches 9825 tasks	Sta Andrea	<u>2197</u>	<u>4826</u>	-	<u>5132</u>	<u>5146</u>	<u>5478</u>	<u>5418</u>	<u>3987</u>	<u>3023</u>	<u>497</u>
CPU time		1700000 s	5700000 s		4500000 s	6200000 s	8800000 s	8500000 s	4900000 s	2700000 s	610000
<u>ReachSafety-Arrays</u> 468 tasks	Star built an	<u>96</u>	316	-	<u>382</u>	375	<u>389</u>	<u>389</u>	<u>305</u>	<u>152</u>	351
CPU time	5000	150000 s	340000 s		40000 s	290000 s	420000 s	420000 s	320000 s	64000 s	310000
ReachSafety- BitVectors 62 tasks	Store in the second sec	<u>36</u>	<u>49</u>		<u>49</u>	<u>48</u>	<u>49</u>	<u>49</u>	<u>16</u>	32	<u>48</u>
CPU time		35000 s	21000 s		34000 s	41000 s	56000 s	56000 s	7900 s	22000 s	32000
ReachSafety- ControlFlow 87 tasks	Reference of the second s	<u>47</u>	<u>50</u>	-	53	<u>54</u>	<u>58</u>	<u>58</u>	21	<u>36</u>	<u>56</u>
CPU time	2000 1	61000 s	48000 s		24000 s	63000 s	77000 s	77000 s	48000 s	41000 s	39000
ReachSafety-ECA		•	-			7	10	0	3	7	0

Test-Comp 2023: Beyer. Software Testing: 5th Comparative Evaluation: Test-Comp 2023. Proc. FASE, 2023.

6th Competition on Software Testing (Test-Comp 2024)

- I participate with PRTest¹, a Plain Random Tester
- < 500 lines of code

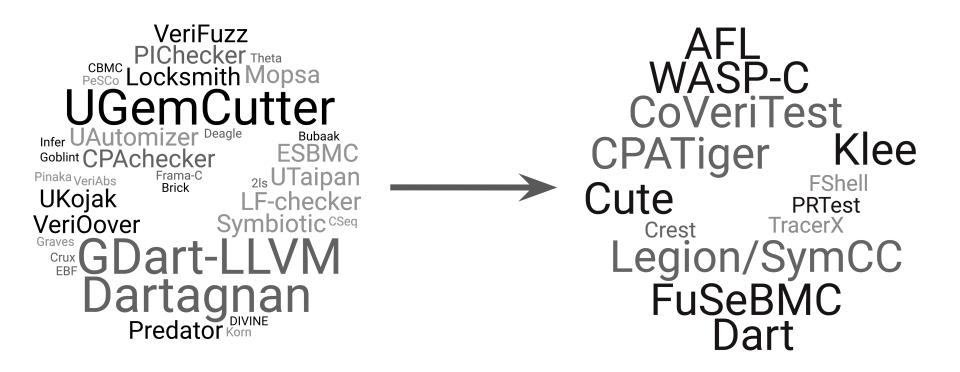
- Idea: simple baseline
- Fun fact: **best** for branch coverage in category 'Hardware'


<u>cetfuzz</u>	<u>CoVeriTest</u>	ESBMC- kind	FDSE	<u>Fizzer</u>	FuSeBMC	<u>FuSeBMC-</u> <u>AI</u>	<u>HybridTiger</u>	KLEE	<u>KLEEF</u>	<u>Legion</u>	<u>Legion/</u> <u>SymCC</u>	<u>Owi</u>	<u>PRTest</u>
<u>559</u>	<u>851</u>	-	<u>682</u>	<u>862</u>	751	760	<u>631</u>	<u>286</u>	<u>698</u>	<u>569</u>	<u>640</u>	1	<u>965</u>
10000 s	780000 s		530000 s	930000 s	960000 s	960000 s	860000 s	680000 s	920000 s	930000 s	920000 s	930000 s	960000 s

¹Lemberger. Plain random test generation with PRTest. STTT, 2020.

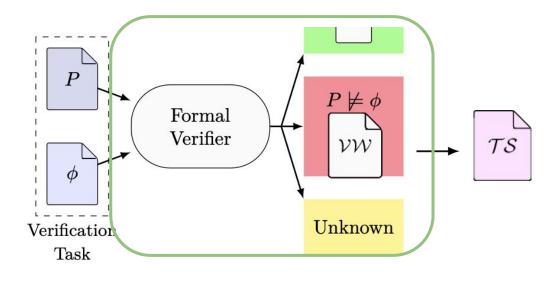
- Only branch coverage + bug finding (no MC/DC, mutation testing)
- One fixed resource limit
 900s CPU time, 15 GB memory

- Only a benchmark set
- ... but the largest available for the verification of C:
 - busybox, Linux, OpenBSD, sqlite, coreutils, ...
- TestCov does not support concurrency

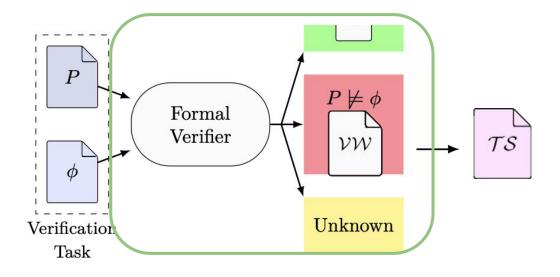

6th Competition on Software Testing (Test-Comp 2024) 12th Competition on Software Verification (SV-COMP 2023)


- Common input- and output-language simplify cooperation <u>off-the-shelf</u>
- Cooperation for formal verification:
 - Reducer-based construction of conditional verifiers (ICSE 2018)
 - Decomposing CEGAR with witness formats (ICSE 2022)
- Cooperation for testing:
 - Tests from witnesses
 - Conditional testing

 Weakness: Information loss in witness export



Bridging the Gap

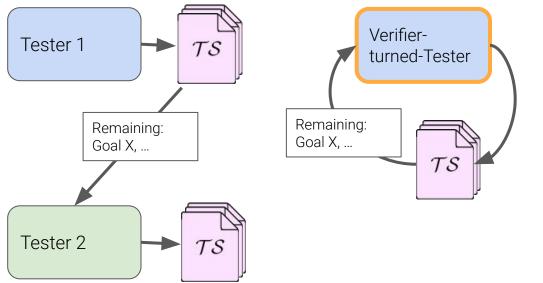

Tests from Witnesses

- Exists for proprietary formats¹
- But we turn any SV-COMP verifier into a test generator²
- Advantages:
 - Precise validation through execution
 - Well-known
 - user experience
- Tool: CPA-witness2test

¹Beyer, Chlipala, Henzinger, Jhala, Majumdar: Generating Tests from Counterexamples. Proc. ICSE, 2004. Visser, Pasareanu, Kurshid. Test Input Generation with Java PathFinder. Proc. ISSTA, 2004. ²Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP, 2018.

Tests from Witnesses

- Limitations:
 - Only works if witness precise enough
 - Only single test case

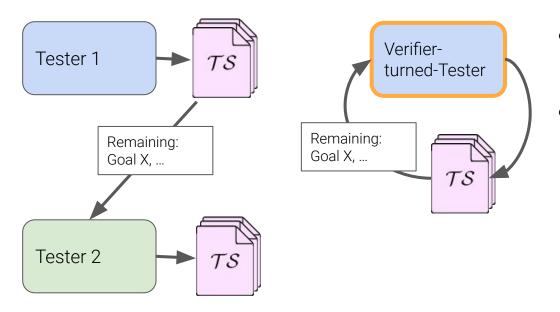

¹Beyer, Chlipala, Henzinger, Jhala, Majumdar: Generating Tests from Counterexamples. Proc. ICSE, 2004. Visser, Pasareanu, Kurshid. Test Input Generation with Java PathFinder. Proc. ISSTA, 2004. ²Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP, 2018.

Combinations

LUDWIG-MAXIMILIANS UNIVERSITÄT

LMU

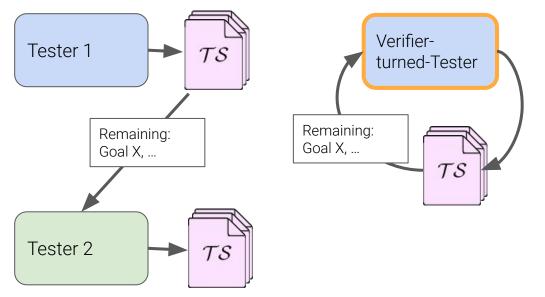
- Communicate information about remaining coverage goals through coverage measurement and code transformation
- Tool: CondTest


¹Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

²Majumdar, Sen. Hybrid Concolic Testing. Proc. ICSE 2007.

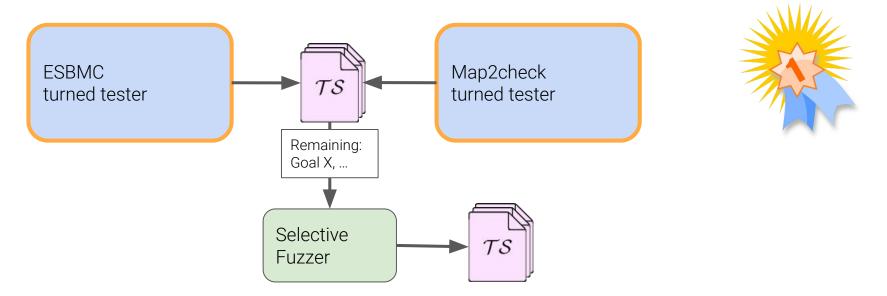
Daca, Gupta, Henzinger. Abstraction-driven Concolic Testing. Proc. VMCAI 2015.

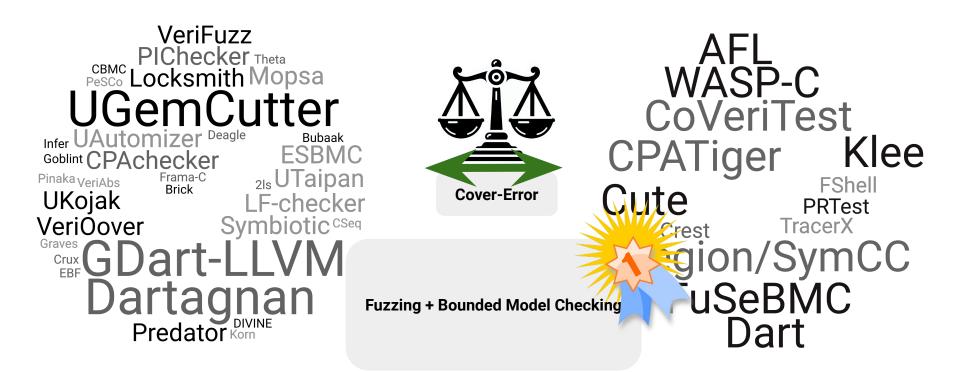
³Beyer, Henzinger, Keremoglu, Wendler. Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012 ⁴Beyer, Jakobs, Lemberger, Wehrheim. Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.


Conditional Testing¹

- In-tool cooperations existed before²
- We developed a similar approach for formal verifiers³

¹Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019. ²Majumdar, Sen. Hybrid Concolic Testing. Proc. ICSE 2007. Daca, Gupta, Henzinger. Abstraction-driven Concolic Testing. Proc. VMCAI 2015. ³Beyer, Jakobs, Lemberger, Wehrheim. Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.


Conditional Testing¹


- Advantages:
 - Avoid redundant work
 - Flexible combinations
 - Turn verifiers through cyclic combination into full-fledged test generators
- Limitations: Code transformations are imprecise (syntax-based) or expensive (semantics-based)

¹Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

- FuSeBMC¹ uses this technique to combine ESBMC and Map2check
- Overall winner of Test-Comp 2022, 2023, and 2024

¹Alshmrany, Menezes, Gadelha, Cordeiro. FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs (Competition Contribution). Proc. FASE, 2021.

Beyer, Lemberger. Six Years Later: Testing vs. Model Checking. Under submission, STTT, 2024.

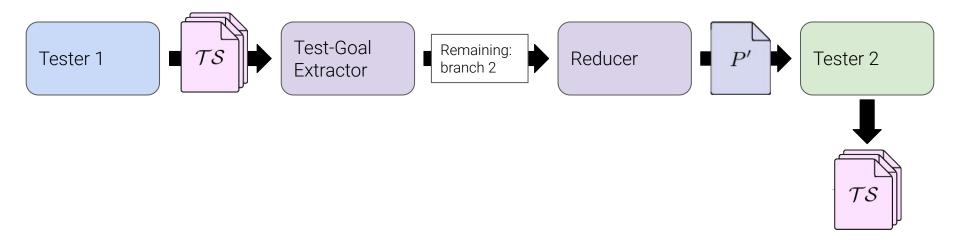
Conclusion

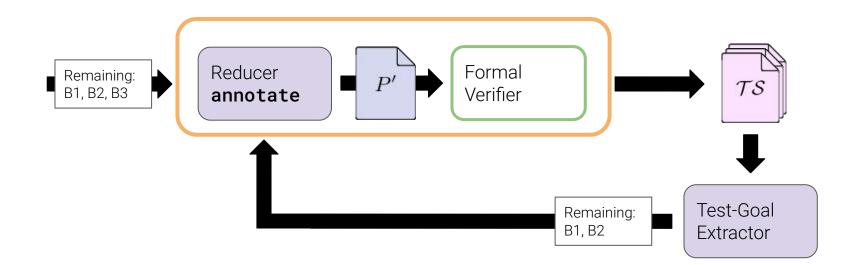
- Made Test-Comp possible: Fair comparison, common language for > 20 testers
- Accidentally showed that plain random testing can be very effective
- Turned all SV-COMP verifiers into test generators
- Concepts and tooling for off-the-shelf cooperations
- Conditional testing used by Test-Comp winner FuSeBMC
- All tools are open source and evaluation results publicly available

SV-Benchmarks Rules

P

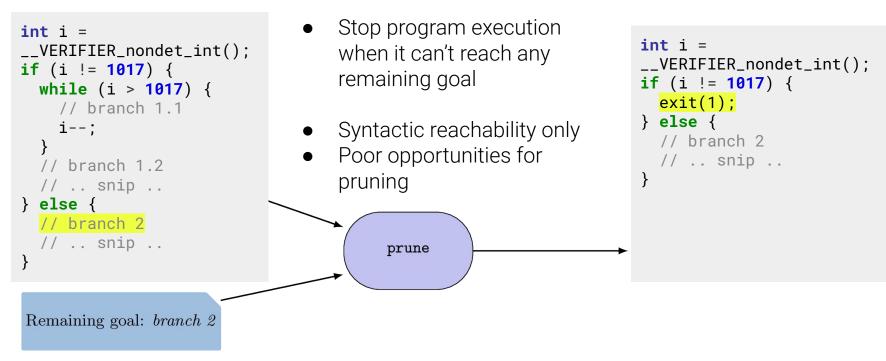
```
extern unsigned int __VERIFIER_nondet_uint();
int main() {
    int i, n=__VERIFIER_nondet_uint(), sn=0;
    for(i=1; i<=n; i++) {
        if (i<10)
            sn = sn + a;
    }
    __VERIFIER_assert(sn==n*a || sn == 0);
}
```



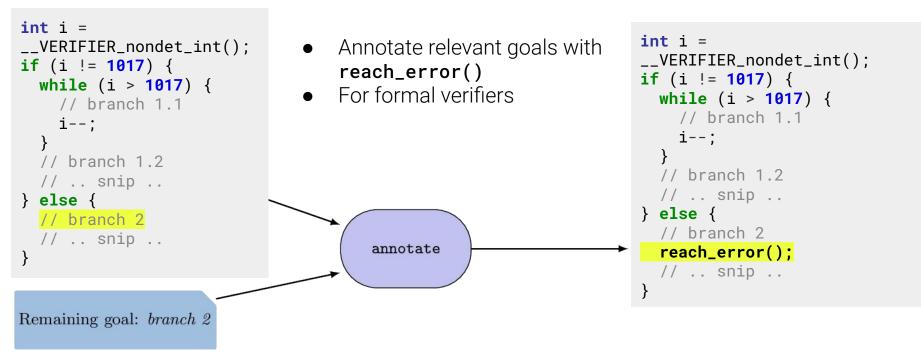

Conditional Testing

Conditional Testing: Sequential Combination

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN



Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.



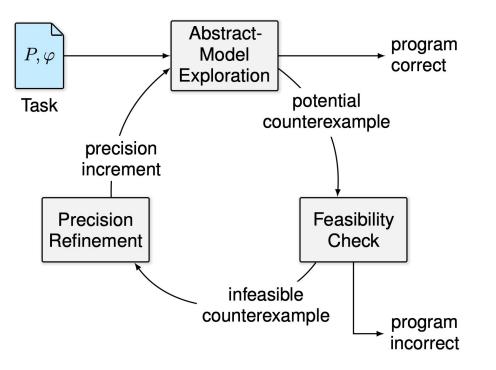
• Turn any verifier into a full-blown test generator

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

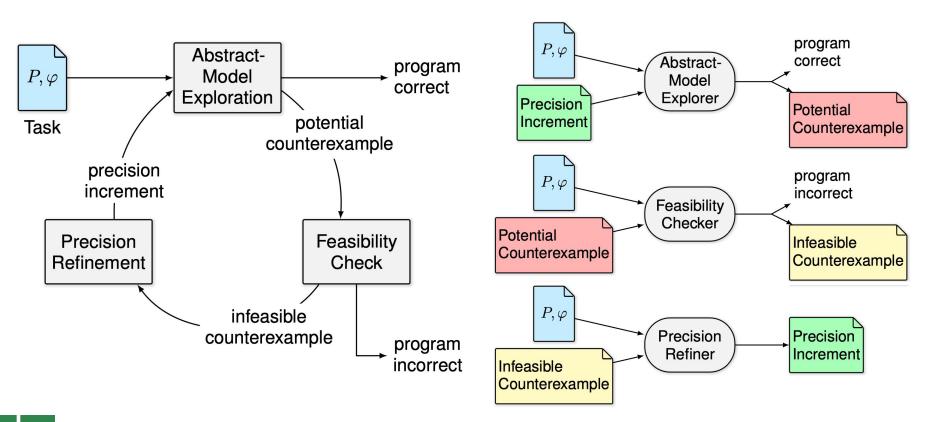
Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

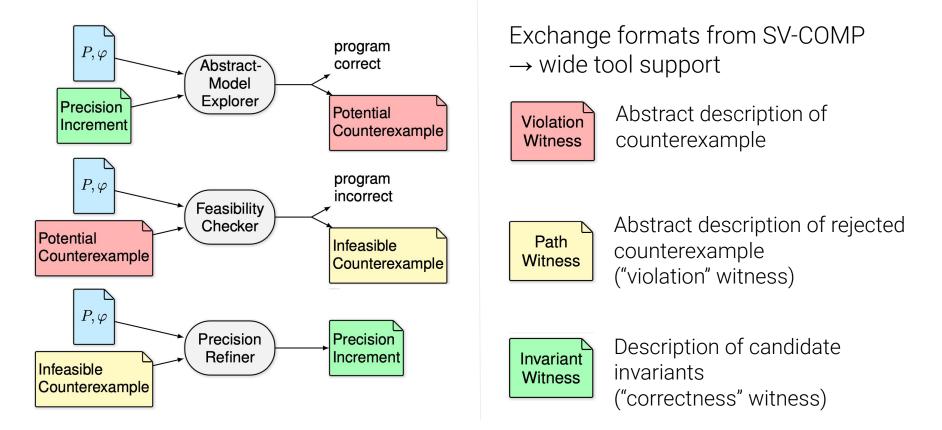
Decomposing Software Verification

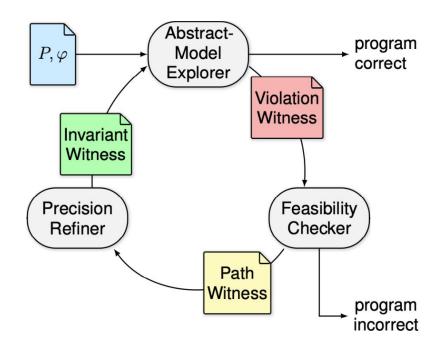

```
CW
        [...]
        content:
         - invariant:
            type: loop_invariant
            location:
              file_name: "./program.c"
              line: 4
              column: 9
              function: main
            value: "x % 2 == 0"
            format: c_expression
```

Beyer, Dangl, Dietsch, Heizmann, Lemberger, Tautschnig. Verification Witnesses. ACM Trans. Softw. Eng. Methodol., 2022.

Violation Witness

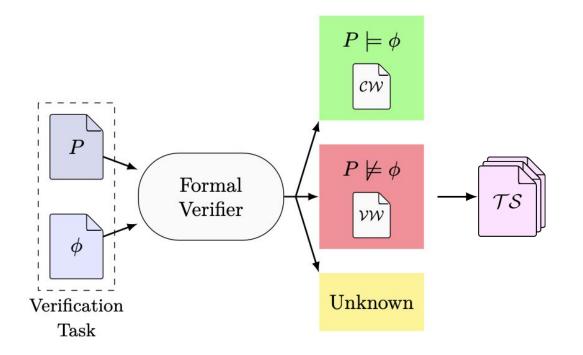



Beyer, Dangl, Dietsch, Heizmann, Lemberger, Tautschnig. Verification Witnesses. ACM TOSEM, 2022.

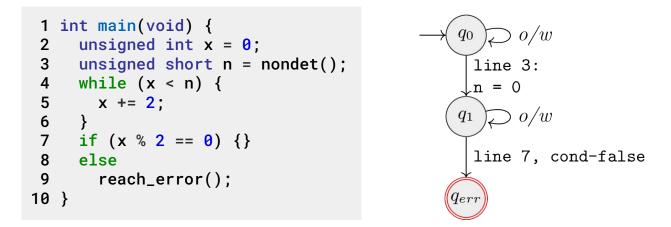

- Common underlying schema
- Many tools implement CEGAR
- New idea \rightarrow new implementation

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

- Implementation in CoVeriTeam
- 1. Constant overhead.
- 2. Lost predicates through invariant witnesses.
- 3. Benefits from different components:
 - Abstract-Different Feasibility Checker Ο program P, φ Model correct Explorer +93 found alarms Violation **Different Precision Refiner** Witness Ο Invariant Witness + 29 found proofs CPACHECKER (VioWitVal), **CPA**CHECKER Precision Feasibility (predicateAnalysis+ Interpol), UAUTOMIZER (WitVal), Checker Refiner UAUTOMIZER **FSHELL-WITNESS2TEST** Path Witness program incorrect

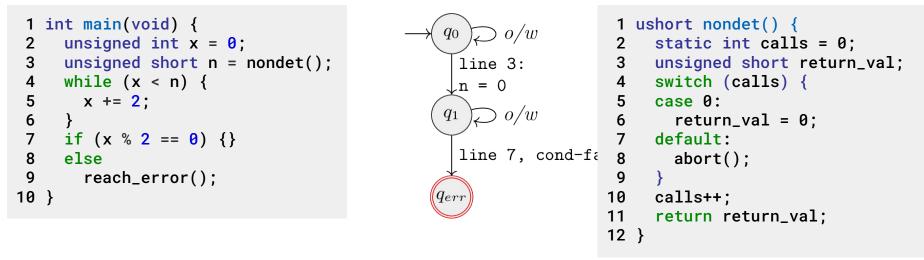

CPACHECKER (predicateAnalysis w/o Interpol)

- Reliable and Reproducible Coverage Measurement
- Native test execution of alien programs is risky
- gcov and llvm-cov do not report actual *branch* coverage


<pre>#include <stdio.h> Input: x = -1, y = 0 if (x > 0 && y > x) {</stdio.h></pre>	
<pre>int main() {</pre>	
<pre>int x; scanf("%d", &x); branch 1 taken 100%</pre>	();
hranch 2 never executed	(); ();
if $(x > 0 \& y > x)$ { branch 3 never executed	/,
return 0; #####: 7: return 0; {	-
} else { -: 8: } else {	
return 1; 1: 9: return 1;	
} -: 10: }	
} -: 11:}	

- Reliable and Reproducible Coverage Measurement
- Native test execution of alien programs is risky
- gcov and llvm-cov do not report actual branch coverage
- TestCov provides:
 - Coverage instrumentation on the C-code level with clang libtooling
 - Lightweight containerization with BenchExec, per test execution
 - Support for sv-benchmarks properties and TestComp test-suite formats
- Used in Test-Comp for 6 years

Bridging the Gap


- Make any verifier a test-case generator
- Foundation: established standard of violation witnesses¹

¹ Beyer, Dangl, Dietsch, Heizmann, Lemberger, Tautschnig. Verification Witnesses. ACM Trans. Softw. Eng. Methodol., 2022.

Tests from Witnesses

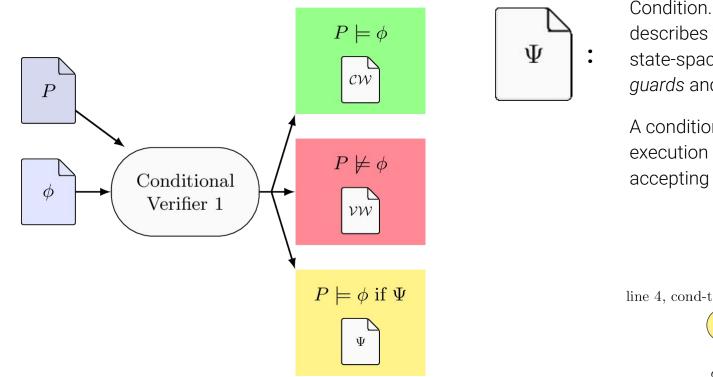
- Make any verifier a test-case generator
- 1. Map concrete state-space guards in violation witness to input methods
- 2. Create harness

¹ Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP 2018.

- Two implementations: CPA-witness2test and FShell-witness2test
- Limitation: Witness must contain concrete input vector (strengthening witness is possible)
- Success rate: 35 %

Verifier		Produced witnesses			Produced tests			
		Unref.	Ref.	Total	Count	k LOC	kB	# Inputs (Avg.)
2LS	[45]	992	384	1376	1 208	89.9	3 9 9 9	7.57
BLAST	[47]	778	202	980	327	29.0	938	0.271
Свмс	34	831	467	1298	1249	67.7	2991	6.33
CEAGLE		619	426	1045	540	92.2	262	5.39
CPA-BAM-BN	в [2]	851	175	1026	158	42.9	1114	0
CPA-KIND	[10]	263	193	456	656	56.2	2967	14.9
CPA-Seq	[23]	883	767	1650	838	95.5	3895	1.79
DepthK	[43]	1 1 5 9	305	1464	1302	65.4	3170	2.96
Esbmc	[37]	653	148	801	478	21.0	1983	2.53
ESBMC-FALSI	37	981	395	1376	1133	53.7	1906	1.81
ESBMC-INCR	[37]	970	392	1362	1126	53.5	1896	1.82
Esbmc-kInd	24	847	352	1199	1028	48.9	1774	1.69
Forester	[30]	51	0	51	0	0	0	-
PredatorHP	33	86	61	147	80	17.2	434	0
Skink	17	30	25	55	44	0.290	8	0
Smack	41	871	632	1503	1576	128	5654	6.09
Symbiotic	19	927	411	1338	589	38.1	1375	0
SymDIVINE	38	247	224	471	405	13.4	580	0
UAUTOMIZER	[29]	514	70	584	121	2.24	59	0
UKojak	40	309	67	376	116	2.15	55	0
UTAIPAN	[26]	338	70	408	121	2.23	59	0
Total	8	13200	5766	18966	13095	920	35119	5.60

- Make any verifier a test-case generator
- Advantages:
 - Compared to previous work, over XX verifiers can be turned into testers
 - Formal techniques are very good at finding bugs [HVC paper]
 - Bugs found by formal verifiers can be examined through execution
- Limitations:
 - Witness must contain concrete input vector
 - \circ At this state, verifier only produces a single witness \rightarrow only a single test

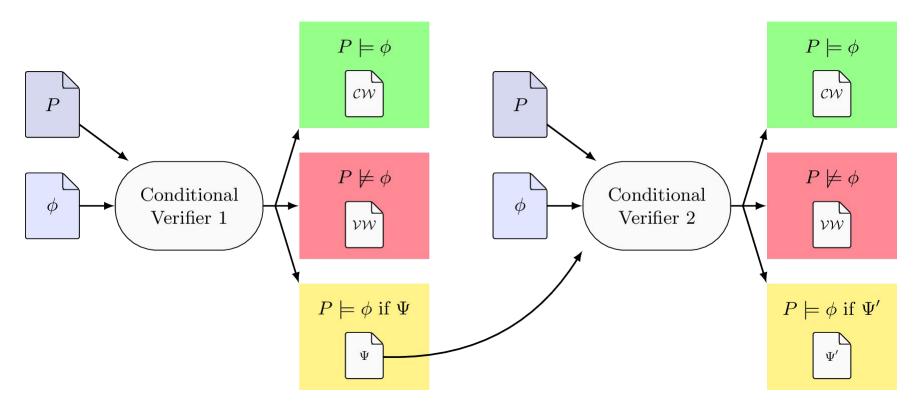

- Transfers conditional model checking to difference verification
- Turn any verifier into incremental verifier

- Transfers conditional model checking to difference verification
- Turn any verifier into incremental verifier

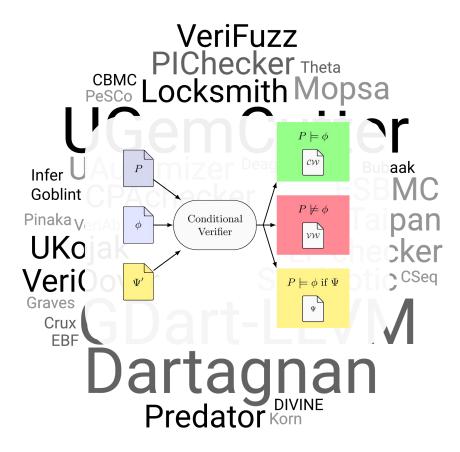
Foundation: Conditional Model Checking

Condition. Automaton that describes the already-explored state-space with source-code guards and state-space guards.

A condition *covers* a program execution if its run leads to an accepting state.



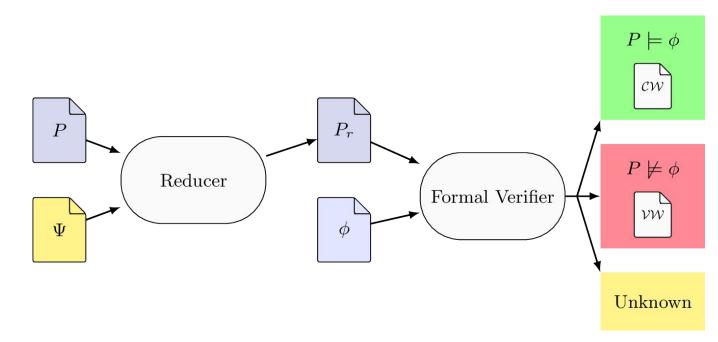
Beyer, Henzinger, Keremoglu, Wendler: Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.


Foundation: Conditional Model Checking

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

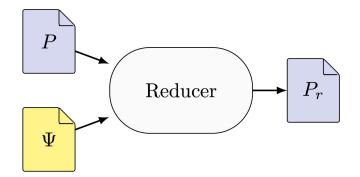
LMU

Beyer, Henzinger, Keremoglu, Wendler: Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.



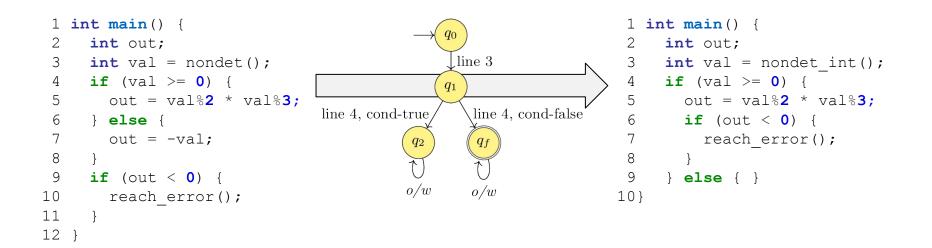
- Conditional Verification is a great idea!
- But there is only one conditional verifier: CPAchecker.
- Create providers of conditions?
- Create consumers of conditions?

Reducer-Based Construction of Conditional Verifiers


LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

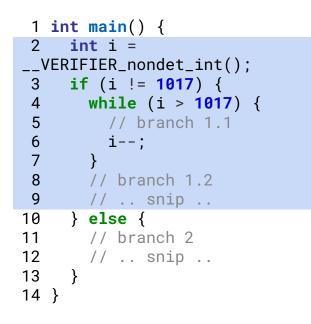
Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

A mapping from program P and condition \psi to residual program P_r is a reducer, iff:

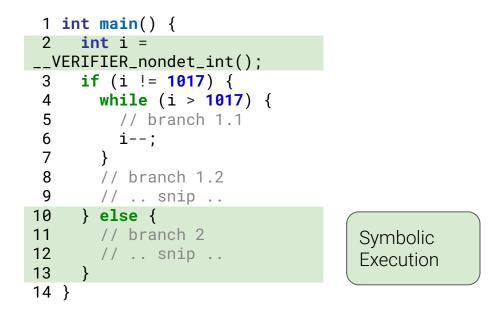

The state space of P_r is a superset of the state space of P that is not covered by \psi.

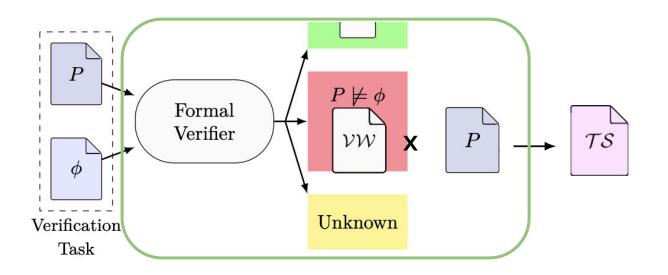
Example Reducers:

- Identity
- Parallel Composition


Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.


- Two ideas:
 - 1. Encode proprietary exchange format in source code
 - \rightarrow Idea transferred to verification witnesses by MetaVal
 - 2. Make Conditional Model Checking broader applicable
 - \rightarrow Used for Difference Verification


Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Tests from Witnesses

- Exists for proprietary formats¹
- But we turn any verifier into a test generator²

¹Beyer, Chlipala, Henzinger, Jhala, Majumdar: Generating Tests from Counterexamples. Proc. ICSE, 2004. Visser, Pasareanu, Kurshid. Test Input Generation with Java PathFinder. Proc. ISSTA, 2004. ²Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP, 2018.

D. Beyer and T. Lemberger: Software Verification: Testing vs. Model Checking. Proc. HVC, 2017.

D. Beyer, M. Dangl, T. Lemberger, and M. Tautschnig: **Tests from Witnesses: Execution-Based Validation of Verification Results**. *Proc. TAP*, 2018.

D. Beyer and T. Lemberger: TestCov: Robust Test-Suite Execution and Coverage Measurement. Proc. ASE, 2019.

T. Lemberger: Plain random test generation with PRTest. STTT, 2020.

D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

D. Beyer and T. Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

D. Beyer, M.-C. Jakobs, and T. Lemberger: Difference Verification with Conditions. Proc. SEFM, 2020.

D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim: **Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR**. Proc. ICSE, 2022.

