
Towards Cooperative Software Verification
with Test Generation and Formal Verification

Thomas Lemberger

February 28, 2024 · Ernst Denert SE-Preis · SE 2024, Linz

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Let’s get rid of software bugs!

4

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● Automated Software Verification
○ Automated Formal Verification
○ Automated Test Generation

● C code without concurrency
● No:

○ Manual Tests
○ Interactive Verification
○ Code Synthesis
○ Machine Learning

Context

5

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Automated Formal Verification

 1 int main(void) {
 2 unsigned int x = 0;
 3 unsigned short n = nondet();
 4 while (x < n) {
 5 x += 2;
 6 }
 7 if (x % 2 == 0) {}
 8 else
 9 reach_error();
10 }

No call to reach_error() is reachable

6

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Automated Test Generation

Cover function reach_error()

7

 1 int main(void) {
 2 unsigned int x = 0;
 3 unsigned short n = nondet();
 4 while (x < n) {
 5 x += 2;
 6 }
 7 if (x % 2 == 0) {}
 8 else
 9 reach_error();
10 }

Cover all program branches

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Existing Tools

8

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Contributions

1. Tool comparisons

2. Concepts for combining verifiers and testers, off-the-shelf

9

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Common input
language

Common output
language Reliable measurements

Tool Comparisons: Requirements

Benchmark Set Result Format Measurement Tools

11

Thomas Lemberger · Cooperative Software Verification · LMU Munich

sv-benchmarks Witnesses Witness Validators

12

Benchmark Set Result Format Measurement Tools

Beyer. Competition on Software Verification and Witness Validation: SV-COMP 2023. Proc. TACAS, 2023.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Benchmark Set Result Format Measurement Tools

Proprietary execution
methods, no real
branch coverage

Proprietary formats

Comparison of Testers: 404

13

// CREST:
CREST_int(x);
// KLEE:
klee_make_symbolic(&x,
 sizeof(x), “x”);
// AFL:
scanf(“%d\n”, &x);

// CREST:
0
// KLEE:
Structured data
// AFL:
\x00

Proprietary formats

Input methods
+ result format

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Benchmark Set

Subset of
sv-benchmarks¹

Test-Suite
Format²

TestCov²

Measurement ToolsResult Format

<testcase>
 <input>1023</input>
 <input>254</input>
</testcase>

14

Comparison of Testers

¹Beyer, Lemberger. Software Verification: Testing vs. Model Checking. HVC, 2017.
²Beyer, Lemberger. TestCov: Robust Test-Suite Execution and Coverage Measurement. Proc. ASE, 2019.
³Beyer, Löwe, Wendler. Reliable Benchmarking: Requirements and Solutions. STTT, 2019.

extern int __VERIFIER_nondet_int();
// .. snip ..
int x = __VERIFIER_nondet_int();

branch coverage,
reach_error() coverage

Robust test-suite execution
through Linux cgroups and
overlay file systems³

Coverage measurement
through code instrumentation

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● ~11.000 test tasks
○ Cover-Error
○ Cover-Branches

● Offline competition
● 900s, 15GB memory per task
● Score: normalized accumulated

coverage

15

Test-Comp 2023: Beyer. Software Testing: 5th Comparative Evaluation: Test-Comp 2023. Proc. FASE, 2023.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● 2024 (to be published):
○ 20 participants

from 7 countries
○ 8 first-time participants

● All participants produce
test suites in our XML format

● TestCov performs all
coverage measurement

16

Test-Comp 2023: Beyer. Software Testing: 5th Comparative Evaluation: Test-Comp 2023. Proc. FASE, 2023.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● I participate with PRTest¹,
a Plain Random Tester

● < 500 lines of code

17

¹Lemberger. Plain random test generation with PRTest. STTT, 2020.

● Idea: simple baseline

● Fun fact: best for branch
coverage in category
‘Hardware’

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Limitations of Test-Comp

● Only a benchmark set
● … but the largest available for

the verification of C:
○ busybox, Linux, OpenBSD, sqlite,

coreutils, …
● TestCov does not support concurrency

18

● Only branch coverage + bug finding
(no MC/DC, mutation testing)

● One fixed resource limit
○ 900s CPU time, 15 GB memory

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● Common input- and output-language
simplify cooperation off-the-shelf

● Cooperation for formal verification:
○ Reducer-based construction of conditional verifiers (ICSE 2018)
○ Decomposing CEGAR with witness formats (ICSE 2022)

● Cooperation for testing:
○ Tests from witnesses
○ Conditional testing

The great thing about SV-COMP and Test-Comp

20

● Weakness:
Information loss in
witness export

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Bridging the Gap

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

¹Beyer, Chlipala, Henzinger, Jhala, Majumdar: Generating Tests from Counterexamples. Proc. ICSE, 2004.
 Visser, Pasareanu, Kurshid. Test Input Generation with Java PathFinder. Proc. ISSTA, 2004.
²Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP, 2018.

22

● Exists for proprietary formats¹
● But we turn any SV-COMP

verifier into a test generator²
● Advantages:

○ Precise validation
through execution

○ Well-known
user experience

● Tool: CPA-witness2test

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

¹Beyer, Chlipala, Henzinger, Jhala, Majumdar: Generating Tests from Counterexamples. Proc. ICSE, 2004.
 Visser, Pasareanu, Kurshid. Test Input Generation with Java PathFinder. Proc. ISSTA, 2004.
²Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP, 2018.

23

● Limitations:
○ Only works if witness

precise enough
○ Only single test case

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Combinations

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing¹

¹Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.
²Majumdar, Sen. Hybrid Concolic Testing. Proc. ICSE 2007.
 Daca, Gupta, Henzinger. Abstraction-driven Concolic Testing. Proc. VMCAI 2015.
³Beyer, Henzinger, Keremoglu, Wendler. Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.
⁴Beyer, Jakobs, Lemberger, Wehrheim. Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

25

● Communicate information about
remaining coverage goals through
coverage measurement and code
transformation

● Tool: CondTest

Tester 2

Tester 1 Verifier-
turned-Tester

Remaining:
Goal X, …

Remaining:
Goal X, …

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing¹

¹Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.
²Majumdar, Sen. Hybrid Concolic Testing. Proc. ICSE 2007.
 Daca, Gupta, Henzinger. Abstraction-driven Concolic Testing. Proc. VMCAI 2015.
³Beyer, Jakobs, Lemberger, Wehrheim. Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

26

● In-tool cooperations
existed before²

● We developed a similar approach for
formal verifiers³

Tester 2

Tester 1 Verifier-
turned-Tester

Remaining:
Goal X, …

Remaining:
Goal X, …

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing¹

¹Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Tester 2

Tester 1

27

● Advantages:
○ Avoid redundant work
○ Flexible combinations
○ Turn verifiers through cyclic

combination into full-fledged
test generators

● Limitations: Code transformations
are imprecise (syntax-based) or
expensive (semantics-based)

Verifier-
turned-Tester

Remaining:
Goal X, …

Remaining:
Goal X, …

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing: Application

28

¹Alshmrany, Menezes, Gadelha, Cordeiro. FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs
(Competition Contribution). Proc. FASE, 2021.

● FuSeBMC¹ uses this technique to combine ESBMC and Map2check
● Overall winner of Test-Comp 2022, 2023, and 2024

ESBMC
turned tester

Map2check
turned tester

Selective
Fuzzer

Remaining:
Goal X, …

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Comparison between SV-COMP and Test-Comp

Cover-Error

29

Beyer, Lemberger. Six Years Later: Testing vs. Model Checking. Under submission, STTT, 2024.

Fuzzing + Bounded Model Checking

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conclusion

Tester

Remaining:
Goal X, …

● Made Test-Comp possible: Fair comparison, common language for > 20 testers
● Accidentally showed that plain random testing can be very effective
● Turned all SV-COMP verifiers into test generators
● Concepts and tooling for off-the-shelf cooperations
● Conditional testing used by Test-Comp winner FuSeBMC
● All tools are open source and evaluation results publicly available

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Thomas Lemberger · Cooperative Software Verification · LMU Munich

SV-Benchmarks Rules

CHECK(init(main()), LTL(G !
call(reach_error())))

extern unsigned int __VERIFIER_nondet_uint();
int main() {
 int i, n=__VERIFIER_nondet_uint(), sn=0;
 for(i=1; i<=n; i++) {
 if (i<10)
 sn = sn + a;
 }
 __VERIFIER_assert(sn==n*a || sn == 0);
}

32

Conditional Testing

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing: Sequential Combination

34

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Tester 2Tester 1 Test-Goal
Extractor ReducerRemaining:

branch 2

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing: Cyclic Combination

35

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Test-Goal
Extractor

Remaining:
B1, B2, B3

Remaining:
B1, B2

Reducer
annotate

Formal
Verifier

● Turn any verifier into a full-blown test generator

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing: Pruning Reducer

36

● Stop program execution
when it can’t reach any
remaining goal

● Syntactic reachability only
● Poor opportunities for

pruning

int i =
__VERIFIER_nondet_int();
if (i != 1017) {
 while (i > 1017) {
 // branch 1.1
 i--;
 }
 // branch 1.2
 // .. snip ..
} else {
 // branch 2
 // .. snip ..
}

int i =
__VERIFIER_nondet_int();
if (i != 1017) {
 exit(1);
} else {
 // branch 2
 // .. snip ..
}

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Conditional Testing: Annotating Reducer

37

● Annotate relevant goals with
reach_error()

● For formal verifiers

int i =
__VERIFIER_nondet_int();
if (i != 1017) {
 while (i > 1017) {
 // branch 1.1
 i--;
 }
 // branch 1.2
 // .. snip ..
} else {
 // branch 2
 // .. snip ..
}

int i =
__VERIFIER_nondet_int();
if (i != 1017) {
 while (i > 1017) {
 // branch 1.1
 i--;
 }
 // branch 1.2
 // .. snip ..
} else {
 // branch 2
 reach_error();
 // .. snip ..
}

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Decomposing Software Verification

Thomas Lemberger · Cooperative Software Verification · LMU Munich

 [...]
 content:
 - invariant:
 type: loop_invariant
 location:
 file_name: "./program.c"
 line: 4
 column: 9
 function: main
 value: "x % 2 == 0"
 format: c_expression

Correctness Witness

39

Beyer, Dangl, Dietsch, Heizmann, Lemberger, Tautschnig. Verification Witnesses. ACM Trans. Softw. Eng. Methodol., 2022.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

 [...]
 content:
 - segment:
 - waypoint:
 type: "branching"
 action: "follow"
 constraint:
 value: "false"
 location:
 file_name: "program.c"
 line: 7
 column: 4

 - segment:
 - waypoint:
 type: "target"
 action: "follow"
 location:
 file_name: "program.c"
 line: 9
 column: 3

Violation Witness

40

Beyer, Dangl, Dietsch, Heizmann, Lemberger, Tautschnig. Verification Witnesses. ACM TOSEM, 2022.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Counterexample Guided Abstraction Refinement (CEGAR)

● Common underlying schema
● Many tools implement CEGAR
● New idea → new implementation

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Decomposing CEGAR

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Decomposing CEGAR with Verification Witnesses

Exchange formats from SV-COMP
→ wide tool support

Abstract description of
counterexample

Abstract description of rejected
counterexample
(“violation” witness)

Description of candidate
invariants
(“correctness” witness)

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Component-based CEGAR

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Component-based CEGAR: Evaluation

45

● Implementation in CoVeriTeam

1. Constant overhead.
2. Lost predicates through invariant witnesses.

3. Benefits from different components:
○ Different Feasibility Checker

+93 found alarms
○ Different Precision Refiner

+ 29 found proofs

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● Reliable and Reproducible Coverage Measurement
● Native test execution of alien programs is risky
● gcov and llvm-cov do not report actual branch coverage

TestCov

Input: x = -1, y = 0

Thomas Lemberger · Cooperative Software Verification · LMU Munich

● Reliable and Reproducible Coverage Measurement
● Native test execution of alien programs is risky
● gcov and llvm-cov do not report actual branch coverage

● TestCov provides:
○ Coverage instrumentation on the C-code level with clang libtooling
○ Lightweight containerization with BenchExec, per test execution
○ Support for sv-benchmarks properties and TestComp test-suite formats

● Used in Test-Comp for 6 years

TestCov

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Bridging the Gap

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

● Make any verifier a test-case generator
● Foundation: established standard of violation witnesses¹

Mention related work: Tests from counterexamples, seahorn

¹ Beyer, Dangl, Dietsch, Heizmann, Lemberger, Tautschnig. Verification Witnesses. ACM Trans. Softw. Eng. Methodol., 2022.

 1 int main(void) {
 2 unsigned int x = 0;
 3 unsigned short n = nondet();
 4 while (x < n) {
 5 x += 2;
 6 }
 7 if (x % 2 == 0) {}
 8 else
 9 reach_error();
10 }

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

● Make any verifier a test-case generator
1. Map concrete state-space guards in violation witness to input methods
2. Create harness

¹ Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP 2018.

 1 int main(void) {
 2 unsigned int x = 0;
 3 unsigned short n = nondet();
 4 while (x < n) {
 5 x += 2;
 6 }
 7 if (x % 2 == 0) {}
 8 else
 9 reach_error();
10 }

 1 ushort nondet() {
 2 static int calls = 0;
 3 unsigned short return_val;
 4 switch (calls) {
 5 case 0:
 6 return_val = 0;
 7 default:
 8 abort();
 9 }
10 calls++;
11 return return_val;
12 }

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

● Two implementations:
CPA-witness2test and
FShell-witness2test

● Limitation: Witness must
contain concrete input vector
(strengthening witness is
possible)

● Success rate: 35 %

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

● Make any verifier a test-case generator

● Advantages:
○ Compared to previous work, over XX verifiers can be turned into testers
○ Formal techniques are very good at finding bugs [HVC paper]
○ Bugs found by formal verifiers can be examined through execution

● Limitations:
○ Witness must contain concrete input vector
○ At this state, verifier only produces a single witness → only a single test

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Difference Verification with Conditions

● Transfers conditional model checking to difference verification
● Turn any verifier into incremental verifier

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Difference Verification with Conditions

● Transfers conditional model checking to difference verification
● Turn any verifier into incremental verifier

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Foundation: Conditional Model Checking

:

Condition. Automaton that
describes the already-explored
state-space with source-code
guards and state-space guards.

A condition covers a program
execution if its run leads to an
accepting state.

Beyer, Henzinger, Keremoglu, Wendler: Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Beyer, Henzinger, Keremoglu, Wendler: Conditional Model Checking: A Technique to Pass Information between Verifiers. Proc. FSE, 2012.

Foundation: Conditional Model Checking

Thomas Lemberger · Cooperative Software Verification · LMU Munich

The Problem with Conditional Model Checking

● Conditional Verification is a great idea!
● But there is only one conditional verifier:

CPAchecker.

● Create providers of conditions?

● Create consumers of conditions?

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Reducer-Based Construction of Conditional Verifiers

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Reducer-Based Construction of Conditional Verifiers

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

A mapping from program P and condition \psi to residual program
P_r is a reducer, iff:

Example Reducers:

● Identity
● Parallel Composition

The state space of P_r is a superset of the state space of P
that is not covered by \psi.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Reducer: Parallel Composition

 1 int main() {
 2 int out;
 3 int val = nondet();
 4 if (val >= 0) {
 5 out = val%2 * val%3;
 6 } else {
 7 out = -val;
 8 }
 9 if (out < 0) {
10 reach_error();
11 }
12 }

 1 int main() {
 2 int out;
 3 int val = nondet_int();
 4 if (val >= 0) {
 5 out = val%2 * val%3;
 6 if (out < 0) {
 7 reach_error();
 8 }
 9 } else { }
10}

Beyer, Jakobs, Lemberger, Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Reducer-Based Construction of Conditional Verifiers

● Two ideas:
1. Encode proprietary exchange format in source code

→ Idea transferred to verification witnesses by MetaVal
2. Make Conditional Model Checking broader applicable

→ Used for Difference Verification

Thomas Lemberger · Cooperative Software Verification · LMU Munich

 1 int main() {
 2 int i =
__VERIFIER_nondet_int();
 3 if (i != 1017) {
 4 while (i > 1017) {
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

Conditional Testing

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Random
Tester

62

Thomas Lemberger · Cooperative Software Verification · LMU Munich

 1 int main() {
 2 int i =
__VERIFIER_nondet_int();
 3 if (i != 1017) {
 4 while (i > 1017) {
 5 // branch 1.1
 6 i--;
 7 }
 8 // branch 1.2
 9 // .. snip ..
10 } else {
11 // branch 2
12 // .. snip ..
13 }
14 }

Conditional Testing

Beyer, Lemberger. Conditional Testing - Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

Symbolic
Execution

63

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Tests from Witnesses

● Exists for proprietary formats¹
● But we turn any verifier into a test generator²

¹Beyer, Chlipala, Henzinger, Jhala, Majumdar: Generating Tests from Counterexamples. Proc. ICSE, 2004.
 Visser, Pasareanu, Kurshid. Test Input Generation with Java PathFinder. Proc. ISSTA, 2004.
²Beyer, Dangl, Lemberger, Tautschnig. Tests from Witnesses: Execution-Based Validation of Verification Results. Proc. TAP, 2018.

64

x

Thomas Lemberger · Cooperative Software Verification · LMU Munich

Selected Publications

65

D. Beyer and T. Lemberger: Software Verification: Testing vs. Model Checking. Proc. HVC, 2017.

D. Beyer, M. Dangl, T. Lemberger, and M. Tautschnig: Tests from Witnesses: Execution-Based Validation of Verification Results.
Proc. TAP, 2018.

D. Beyer and T. Lemberger: TestCov: Robust Test-Suite Execution and Coverage Measurement. Proc. ASE, 2019.

T. Lemberger: Plain random test generation with PRTest. STTT, 2020.

D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim: Reducer-Based Construction of Conditional Verifiers. Proc. ICSE, 2018.

D. Beyer and T. Lemberger: Conditional Testing: Off-the-Shelf Combination of Test-Case Generators. Proc. ATVA, 2019.

D. Beyer, M.-C. Jakobs, and T. Lemberger: Difference Verification with Conditions. Proc. SEFM, 2020.

D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim: Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR. Proc. ICSE, 2022.

