Deductive Verification:
Reasoning Across
Abstraction Boundaries

May 8, 2024

LUDWIG-

IMU vt ConVeY Seminar

MUNCHEN

Gidon Ernst, LMU Munich
SoSy-Lab sosy-lab.org/people/ernst

Software Systems

Abstraction is Essential for Trust in Technical Systems

technical system specification
laws of d hour 1
physics d minute 60
, 27T
d minute =——
0s

© "\

abstract yet precise!

Software Verification

software system

= p-»pSrc;
t = &pSrc->al[0];
1t = Gpleft[1];
i=0; i<pSrc->nSrc-1; i++, pRight++, plLeft++){
ale *pRightTab = pRight->pTab;
t isOuter;

(NEVER(pLeft->pTab==0 || pRightTab==0)) con
Juter = (pRight->fg.jointype & JT_OUTER)!=0;

laws of
rogrammin

¢

)

specification

read(write(x)) = x

P o

Software Verification

software system specification

= p->pSrc; o

¢ = epsre->al0]; read(write(x)) = x
1t = Gpleft[1]; 1 f

i=0; i<pSrc->nSrc-1; i++, pRight++, plLeft++){ aws O

ale *pRightTab = pRight->pTab;

 isouter; programming

(NEVER(pLeft->pTab==0 || pRightTab==0)) con O(n)
Juter = (pRight->fg.jointype & JT_OUTER)!=0;

deductive verification:
establish correspondence by
automated mathematical proof

Flashix: a fully verified Flash file system

Related: Argosys, FSCQ, Yggdrasil, BilbyFS, ...

(PhD project)

Y johndoe - File Manager
File Edit View Go Help

“- > 4 Q}&. Momefjohndoe/

DEVICES

_ File System E B = J-’

] = ¥

PLACES = - -
& johndoe Desktop Documents Downloads Music
I8 Desktop — T
T Wastebas ket "0 " %

u‘;‘l"woux { l L'_ﬁ"l ‘ A) =

PPPPPPP Public Templates il
h Browse Network

8 itams, Free space: 78.7 GiB

5

Flashix: a fully verified Flash file system

[SSV 12, VSTTE 13]

gap

RAM
index
abstraction

=== abstractloné

[VSTTE 15]

(PhD project)

EEEEEE

ES
Desktop nts D
!Deskt e _— ST _"_
S Wasteba "0 = ﬁ
@) et Wil W2y
eI O Pictures Public (3 ideos
o Browse Netwo,

| Bitems, Free 78.7 GiB

[ABZ 14, iFM SCP 16]

gap

A~
,
=]

—— :
partial/corrupt node (no trailer) :

[HVC 13]

Flashix: a fully verified Flash file system (PhD project)

NETWORK

Challenge = bridging different abstraction levels:
modeling, data structures, algorithms, refinement proofs

Technical Difliculties from unbounded state space
and recursion, quantifiers, second-order

My Research Goal: Automation & Expressiveness

software system

= p-»pSrc;
t = &pSrc->al[0];
1t = Gpleft[1];
i=0; i<pSrc->nSrc-1; i++, pRight++, plLeft++){
ale *pRightTab = pRight->pTab;
t isOuter;

(NEVER(pLeft->pTab==0 || pRightTab==0)) con
Juter = (pRight->fg.jointype & JT_OUTER)!=0;

specification

< laws of > read(write(x)) = X
programming %} O(n)

1a)

fully automatic

simpler properties

(SV-COMP)

1a) 1T

open human-guided

challenge! expressive specs
(VerifyThis)

Example: Behavioral Component Models

Model (functional lists)

class ListSet:

def init():
Xs = nil

def insert(x):
xs = cons(x, Xs)

def erase(x):
Xxs = remove(xs, X)

def hasElement(x):
return contains(xs, x)

Example: Behavioral Component Models (think: B and Event-B)

Model (functional lists)

class ListSet:

def 1nit () < initialisation
XS = nil

def insert(x):
xs = cons(x, Xs)

def erase(x): operations
xs = remove(xs, X) * input & precondition
* state transition
def hasElement(x): « output

return contains(xs, x)

Teaser: Model = Implementation

Model (functional lists)

class ListSet:

def init():
Xs = nil

def insert(x):
xs = cons(x, Xs)

def erase(x):
Xxs = remove(xs, X)

def hasElement(x):
return contains(xs, x)

Separation
Logic

—

Source Code (pointers)

struct list {
int head;
struct list xnext;

}

automatic connection via shape analysis
e.g. [Calcagno et al 09]

11

Example: Intuitive specification (= trust)

Model (functional lists)

Specification (sets)

class ListSet:

def init():
Xs = nil

def insert(x):
xs = cons(x, Xs)

def erase(x):
Xxs = remove(xs, X)

def hasElement(x):
return contains(xs, x)

class SpecSet:

def init():
S = ¢

def insert(x):
s = s u {x}

def erase(x):

s = s \ {x}

def hasElement(x):

return (x € s)

12

Goal: Design = Specification

Model (functional lists)

Specification (sets)

class ListSet: ﬂ
2?22

def init():
Xs = nil

def insert(x):
xs = cons(x, Xs)

def erase(x):
Xxs = remove(xs, X)

def hasElement(x):
return contains(xs, x)

class SpecSet:

def init():
S = ¢

def insert(x):
s = s u {x}

def erase(x):

s = s \ {x}

def hasElement(x):

return (x € s)

13

Proof: Design = Specification

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

class Set

T

class ListSet

desired guarantee:

Op,,..(in, ?out)

1 |

O

O

Op,i(in; 2out)

O O

same input/output of operations

14

Proof: Design = Specification via Simulation Proofs

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

Op,,..(in, ?out)

class Set G ’O

f 1 I”Ij simulation

Op. (in, ?out) relation
class ListSet O — >O

desired guarantee: = same input/output of operations

inductive proof: correspondence of states

15

Proof: Design = Specification via Simulation Proofs

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

class Set

T

class ListSet

desired guarantee:

inductive proof:

O

Op,,..(in, ?out)

I

Op,i(in; 2out)

O

I

O

same input/output of operations

correspondence of states

O

16

Goal: Design = Specification (Example again)

Model (functional lists) Specification (sets) @_

class ListSet: ﬂ class SpecSet:
?22?

Interactive Demo
Deductive Verification in Dafny

Comparing one-step of input/output behavior

class ListSet:

def hasElement(x):
return contains(xs, x)

Solution

class SpecSet:

def hasElement(x):

return (x € s)

R(xs, s) :=

V x. (contains(xs, x) & x € s)

18

Construction: collecting observerations

class ListSet:

def hasElement:

return contains(xs, x)

Construction: quantify over possible observations via operations

class SpecSet:

def hasElement

(x]):

return (x € s

R(xs, s)

1= [V X.

19

Construction: collecting observerations

class ListSet: class SpecSet:
def hasElement: def hasElement|x]}:
return contains(xs, x) return (x € s

Construction: require equivalence of outputs

R(xs, s) := [V x.](contains(xs, X) & X €5S) \/

Remark: corresponds to first frame in Property-Directed Reachability (PDR)

Challenges: Quantifier, Sets (i.e. SMT Arrays), Lists (ADT)

20

Discussion: Observer Equivalence as Starting Point

R(xs, s) := V x. (contains(xs, x) <& x € s)

v no creativity needed + automation via SMT

usually require additional system invariants (abduction, Al)

usually require standard & application-specific lemmas, e.g.
contains(remove(xs, x), x) & false

refinement to source code: loops, pointers, etc, ...

(?) where does the reference/specification come from in the first place?

21

LemmacCalc: Quick Theory Exploration for
Algebraic Data Types via Program
Transformations [ongoing|

Gidon Ernst, Robin S6gtrop, LMU Munich
Grigory Fedyukovich, FSU

! Goal: find lemmas automatically that support automatic proofs

contains(remove(xs, x), x) < false

length(elems(tree)) = size(tree)

spec abstraction impl

22

Related Work

Lemmas from Stuck Proofs

Rippling [Bundy], Term Induction
ACL2, AdtInd, ...

v effective
v like humans conduct proofs
carries current proof context

requires inductive generalizations

Theory Exploration

HipSpec [Buchberger, Johansson]|
TheSy [Singher & Itzhaky], ...

syntax-guided enumeration
+ inductive proof to check

V' effective & “complete” wrt. oracle
vast unstructured search space

reports “free-form” tautologies

23

LemmaCalc

Key Idea: Combine structural function transformations

fusion: f(x, gly)) = fg(x, y)

accumulator removal: h(x,y) = h’'(x) ® e(y)

(conditional) equivalence: pre(x, y) = f(x) = g(y)
input

theory: extracted
data types, :> :> lemmas

function defs

24

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs + ys) = Tlength(xs) + length(ys)

25

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs + ys) = Tlength(xs) + length(ys)

fixpoint fusion
Wadler, SPJ, Turchin

N
length+(xs, ys)

N

synthetic function

as compiler optimization:
* eliminates intermediate list
* only one recursive traversal

26

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs + ys) = length(xs) + length(ys)

fixpoint fusion

Wadler, SPJ, Turchin

NS key ingredient
assoc. operators with
length+(xs, neutral elements,
here + with 0

“accumulators”

Giesl

remove % P

length+’'(xs) + length(ys)

yet another
synthetic function

27

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs + ys) = length(xs) + length(ys)

fixpoint fusion
Wadler, SP], Turchin

NS recognize & match
e critical to discover lemmas
* (not needed in compilers)

: * clever approaches worthwhile

length+(xs, ys)

remove
(44 »
accumulators

Giesl
length+’'(xs) + length(ys)

28

Example: Fusing length++

length(xs + vys) fuse > length+(xs, ys)

TN

,///A\\\

0
1 + length(xs)

Llength([])
length(x:xs)

[] + ys
(X:xs) + Vys

VS
X:(xs + ys)

length+([], ys)
= length(ys)

length+(x:xs, ys)
= 1 + length+(xs, ys)

skeleton of the recurrence
is maintained

typically differences manifest

in the base cases

29

Recognizing functions

- contains(x, xs)

—

remove(x, Xs) =

XS

30

Recognizing functions

- contains(x, xs) =

remove(x, []) = []

remove(x, y:ys)

= 1f x F# vy
then x : remove(x,ys)
else remove(x,ys)

remove(x, Xs) = XS
id([]) = []
r-w id(y:ys)
= x : 1id(ys)

31

Recognizing functions

- contains(x, xs) = remove(x, Xs) = XS
remove(x, []) = [] 1id([1) = []
remove(x, y:ys) [‘1

= if x = vy id(y:ys)

then x : remove(x,ys) = x : id(ys)
else remove(x,ys)

__ pre(x, [1) = 222

= pre(x, y:ys) = 227

32

Recognizing functions

- contains(x, xs) = remove(x, Xs) = XS
remove(x, []) = [] id([]) = []
remove(x, y:ys)

= if x = vy [-1 id(y:ys)

then x : remove(x,ys) = x : 1d(ys)
-G =Y -V VA VARV §
_ pre(x, [1) =[] =[]
= |pre(x, y:ys) = x =y A pre(x, ys)

33

Recognizing functions

- contains(x, xs) == remove(x, xs) =

fuse ﬂ

not_contains(x, xs)
2\

recognize

[] = [] = true
x #+ y N pre(x, ys)

pre(x, [])
pre(x, y:ys)

Evaluation

Research Questions: compare LemmaCalc against enumerate & check
1. what is the scalability to large(r) theories?

2. what proportion of lemmas can be found?

Experimental Setup

* 8 specific benchmarks: combinations of functions with “interesting” lemmas
e three full theries: nat, list, tree with

 LemmaCalc (with/without conditional lemmas)

 own baseline enumerator (just lemmas f(x, g(y)) = ?2?)

* TheSy [Singher & Itzhaky, CAV 2021]

35

Scalability on large(r) theories?

cost of exploring an
exponential search space

benchmark |F'| candidates

8

append
filter
Length
map
remove
reverse
rotate
runlength

Sy O~ O OOy

baseline enumerator statistics THESY
false true lemma unknown & time last killed
1131799 1129504 309 1597 1827 09:53 26:38:14
320978 203993 384 31 116569 6:21:16 10:55:14
123488 107569 118 267 15776 6:31:37 16:47
15295 12584 128 18 2564 10:13 04:32
398 75 2 5 319 00:39 00:02
7066 6495 556 14 1 00:22 00:00
17721 14494 31 177 3179 10:08 37:33 >11h
32916 24059 121 14 8722 54:16 13:01 >11h
127926 127476 425 24 1 07:45 00:02
12784 12597 123 21 43 00:34 6:54:22 >11h
68311 67499 221 271 564 06:39 00:40 >11h

36

LemmaCalc

Contribution: lemma synthesis by
combining structural function transformations

fusion: f(x, gly)) = fg(x, y)
accumulator removal: h(x,y) = h'(x) & e(y)
(conditional) equivalence: pre(x, y) = f(x) = g(y)

input N
theory: / extracted
data types, :> » lemmas

function defs /

37

Scalability on large(r) theories? cost of exploring an
exponential search space

baseline enumerator statistics THESY

benchmark |F| candidates false true lemma unknown time last killed

8 1131799 1129504 1597 1827 26:38:14

320978 203993 31 116569 10:55:14

123488 107569 267 15776 16:47

append 5 15295 12584 128 18 2564 10:13 04:32

filter 6 398 75 2 5 319 00:39 00:02

length 5 7066 6495 556 14 1 00:22 00:00
map 6 17721 14494 31 17" 3179 10:08 37:33 >11h
remove 7 32916 24059 121 14 8722 54:16 13:01 >11h

reverse 4 127926 127476 425 24 1 07:45 00:02
rotate 6 12784 12597 123 21 43 00:34 6:54:22 >11h
runlength 6 68311 67499 221 271 564 06:39 00:40 >11h

LemmacCalc takes 1-5 seconds on each, resp. 14 seconds on list

120

100

80

60

40

20

Proportion of lemmas found

T T
Benchmark: nat

Struct Cond

Findings

 approaches and implementations have

Enum

THESY

60

I I
Benchmark: list

Struct Cond

Enum

complementary strenths and weaknesses

* each finds unique lemmas
* many redundant lemmas (different reasons!)
* LemmaCalc generates nice rewrite rules

THESY

30

T T
Benchmark: tree

Struct Cond Enum THESY

Color Pattern
B Struct [trivial
O Cond [0 implied
B Enum W reduced
B TueSy

39

Summary and Outlook

* Goal: automation ® expressiveness

— NN
1a) T 1a)

fully automatic ~ Goal: tackle this expressive specs

* Automating equivalence proofs
— Goal directed reasoning from candidates [TACAS 21]

— LemmaCalc: quickly and automatically inferring helper lemmas
sosy-lab.org/research/pub/2023-Draft.LemmaCalc.pdf

40

Example: Duplicate-free Representation

class ListSet:

def init():
XS = nil

def insert(x):
if not contains(xs, x):
Xxs = cons(x, Xs)

def erase(x):
Xxs = removefirst(xs, x)

class SpecSet:

def init():
S =9

def insert(x):
s = s U {x}

def erase(x):

s = s \ {x}

Intuitive approach: additional class invariant no-duplicates(xs)

contains(removefirst(xs, x), x) & false

41

Approach 2: recursively defined simulation relations

class ListSet:

def init():
XS = nil

def insert(x):
if not contains(xs, x):
xs = cons(x, Xs)

Solution

class SpecSet:

def init():
S =09

def insert(x):
s = s U {x}

R(nil, s)

R(cons(x,xs), s) -

A R(xs, s \ {ix})

42

Approach 2: recursively defined simulation relations

class ListSet:

def init():
XS = nil

def insert(x):
if not contains(xs, x):
xs = cons(x, Xs)

Template for recursion over lists

class SpecSet:

def init():
S =09

def insert(x):
s = s U {x}

R(nil, s) :=
R(cons(x,xs), s) :=

A R(xs,

43

Approach 2: recursively defined simulation relations

class ListSet: class SpecSet:
def init(): def init():
XS =:n1 | S = ¢
def insert(x): def insert(x):
if not contains(xs, x): s = s u {x}
xs = cons(x, Xs)

Construction: base case via initialization

R, s) = |s = ¢

4

Approach 2: recursively defined simulation relations

class ListSet: class SpecSet:
def init(): def init():
Xs = nil S =9
def insert(x): def insert(x):
if not contains(xs, x): s = s U {x}
xs = cons(x, Xs)

Construction: which operation matches the recursive case?

R(nil, s) = s = ¢
R([cons(x,xsﬁ, S) (= X € S A R s \ {x})

Approach 2: recursively defined simulation relations

class ListSet: class SpecSet:
def init(): def init():
Xs = nil S =9
def insert(x): def insert(x):
if not contains(xs, x): s = s U {x}
xs = cons(x, Xs)

Construction: which operation matches the recursive case?

R(nil, s) = s = ¢
R([cons(x,xsﬁ, S) (= X € S A R s \ {x})

\\ ListSet.insert(x)

Approach: “Producer”-operation explains the recurrence of R

Approach 2: recursively defined simulation relations

class ListSet: class SpecSet:
def init(): def init():
Xs = nil S = ¢
def insert(x): def insert(x):
if|f not contains(xs, x) s = s u {x}
XS = cons(x, XS)

Construction: which operation matches the recursive case?

R(nit, = S = @
R(cons(x,xs), = X € S A R(xs,[s \ {x}])

e difference in observations via hasElement (somewhat involved)

* duplication-freedom is implied (via inductive lemma)
47

Proof Obligations of Forward Simulation (well known)

Given two System Models as Data Types

A =
C =

(AState, AInit,
(CState, CInit,

AOpi, ..., AOp.)
cop:, ..., COpn)

Refinement B < A as Horn clauses (here deterministic systems), find R:

as = AInit() A cs = CInit() = R(as, cs) } initialization

R(as,cs) A (as',out) =

—> out = out"

W—I

output equivalence

AOpi(in,as) A (cs’,out’)
N R(as’,cs')

a—l

inductive preservation

COpi(in,cs)

48

Recent Research:
 explore design space
* Legion: Coverage-guided Testing (with D. Liu+) [ASE 20] e understand relative

* Korn: C verification with Horn clauses [VMCAI 22] strengths of methods
e experiment with novel

angles of attack

No runtime errors

Automating functional correctness proofs

* Inference of data abstractions (with G. Fedyukovich) [TACAS 21]

* Synthesis of lemmas (submitted, with G. Fedyukovich)

* Cuvée: An SMT-LIB engineering Toolkit (ongoing)
High-level security for low-level C code

* Security Concurrent Separation Logic (SecCSL) [Ernst & Murray, CAV 19]

* Declassification policies [T. Murray, M. Tiwari, D. Naumann, CCS 23], Amazon grant
Falsification of Hybrid Systems

* FalStar: adaptive “Las-Vegas” tree search [Ernst+, TOMACS 21]

* Extending rapidly-exploring random trees to trajectories (ongoing, with J. Fejlek, S. Ratschan)
Competitions and Challenges

* VerifyThis [iFM 23, TACAS 20], SV-COMP, Test-Comp, ARCH-COMP 49

