Deductive Verification: Reasoning Across Abstraction Boundaries

> May 8, 2024 ConVeY Seminar Gidon Ernst, LMU Munich sosy-lab.org/people/ernst

Abstraction is Essential for Trust in Technical Systems

Software Verification

software system

= p->pSrc; $t = \delta p Src -> a[0];$ nt = &pLeft[1]; i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ >pRightTab = pRight->pTab; t isOuter;

(NEVER(pLeft->pTab==0 || pRightTab==0)) con Juter = (pRight->fg.jointype & JT OUTER)!=0;

specification

Software Verification

Flashix: a fully verified Flash file system

(PhD project)

Related: Argosys, FSCQ, Yggdrasil, BilbyFS, ...

Flashix: a fully verified Flash file system

(PhD project)

[ABZ 14, iFM SCP 16]

Flashix: a fully verified Flash file system

(PhD project)

Challenge = bridging different abstraction levels: modeling, data structures, algorithms, refinement proofs

Technical Difficulties from unbounded state space and recursion, quantifiers, second-order

Example: Behavioral Component Models

```
(functional lists)
Model
class ListSet:
  def init():
    xs = nil
  def insert(x):
    xs = cons(x, xs)
  def erase(x):
    xs = remove(xs, x)
  def hasElement(x):
    return contains(xs, x)
```

Example: Behavioral Component Models (think: B and Event-B)

Teaser: Model ≃ Implementation

Example: Intuitive specification (= trust)

Model	(functional lists)
class	ListSet:
def	init():
xs	; = nil
def	insert(x):
xs	s = cons(x, xs)
def	erase(x):
xs	= remove(xs, x)
def	hasElement(x):
re	eturn contains(xs, x)

Specif	ication (sets)
class	SpecSet:
def	init():
s	= Ø
def	insert(x):
s	= s ∪ {x}
def	erase(x):
s	= $s \setminus \{x\}$
def	hasElement(x):
re	eturn (x ∈ s)

Goal: Design ~ Specification

Proof: Design ~ Specification

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee: sa

same input/output of <u>operations</u>

Proof: Design ~ Specification via Simulation Proofs

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee:same input/output of operationsinductive proof:correspondence of states

Proof: Design ~ Specification via Simulation Proofs

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee:same input/output of operationsinductive proof:correspondence of states

Goal: Design ~ Specification (Example again)

Comparing one-step of input/output behavior

class SpecSet:	las
•••	•••
def hasElement(x): return (x ∈ s)	de :

Solution

 $R(xs, s) := \forall x. (contains(xs, x) \iff x \in s)$

Construction: collecting observerations

class SpecSet:
•••
def hasElementx: return (x ∈ s)

Construction: quantify over possible observations via operations

$$R(xs, s) := \forall x. (contains(xs, x) \iff x \in s)$$

Construction: collecting observerations

class ListSet:
•••
<pre>def hasElement(x): return contains(xs, x)</pre>

class SpecSet:
def hasElementx: return (x ∈ s)

Construction: require equivalence of outputs

$$R(xs, s) := \forall x. (\underline{contains(xs, x)} \iff \underline{x \in s}) \checkmark$$

Remark: corresponds to first frame in Property-Directed Reachability (PDR)

Challenges: Quantifier, Sets (i.e. SMT Arrays), Lists (ADT)

$$R(xs, s) := \forall x. (contains(xs, x) \iff x \in s)$$

- \checkmark no creativity needed + automation via SMT
- (\checkmark) usually require additional <u>system invariants</u> (abduction, AI)
 - **?** usually require standard & application-specific <u>lemmas</u>, e.g.

contains(remove(xs, x), x) \iff false

- (?) refinement to <u>source code</u>: loops, pointers, etc, ...
- (?) where does the reference/specification come from in the first place?

LemmaCalc: Quick Theory Exploration for Algebraic Data Types via Program Transformations [ongoing]

<u>Gidon Ernst</u>, Robin Sögtrop, LMU Munich Grigory Fedyukovich, FSU

! Goal: find lemmas automatically that support automatic proofs

length(elems(tree)) = size(tree)

spec abstraction

impl

Related Work

Lemmas from Stuck Proofs

Rippling [Bundy], Term Induction ACL2, AdtInd, ...

Theory Exploration

HipSpec [Buchberger, Johansson] TheSy [Singher & Itzhaky], ...

✓ effective

- ✓ like humans conduct proofs
- **?** carries current proof context
- **?** requires inductive generalizations

syntax-guided enumeration

- + inductive proof to check
- ✓ effective & "complete" wrt. oracle
- **?** <u>vast</u> unstructured search space
- **?** reports "free-form" tautologies

LemmaCalc

length(xs ++ ys) = length(xs) + length(ys)

$$length(xs ++ ys) = length(xs) + length(ys)$$

fixpoint fusion Wadler, SPJ, Turchin

length++(xs, ys)

synthetic function

as compiler optimization:

- eliminates intermediate list
- only one recursive traversal

length(xs ++ ys) = length(xs) + length(ys)

Example: Fusing **length++**

deforestation, supercompilation, partial evaluation, ...

skeleton of the recurrence is maintained

<u>typically</u> differences manifest in the base cases

 \neg contains(x, xs) \implies remove(x, xs) = id(xs)

 \neg contains(x, xs) \implies remove(x, xs) = id(xs)

- contains(x, xs) \implies remove(x, xs) = id(xs)

$$\neg$$
 contains(x, xs) \implies remove(x, xs) = id(xs)

Evaluation

Research Questions: compare LemmaCalc against enumerate & check

- 1. what is the scalability to large(r) theories?
- 2. what proportion of lemmas can be found?

Experimental Setup

- 8 specific benchmarks: combinations of functions with "interesting" lemmas
- three full theries: nat, list, tree with
- LemmaCalc (with/without conditional lemmas)
- own baseline enumerator (just lemmas f(x, g(y)) = ???)
- TheSy [Singher & Itzhaky, CAV 2021]

Scalability on large(r) theories?

cost of exploring an exponential search space

		1	baseline enumerator statistics						TheSy	
benchmark	F	candidates	false	true	lemma	unknown	time	last	killed	
nat	8	1131799	1129504	309	159^{\dagger}	1 827	09:53	26:38:14	$>\!\!26\mathrm{h}$	
list	18	320978	203993	384	31	116569	6:21:16	10:55:14	$>\!\!21\mathrm{h}$	
tree	11	123488	107569	118	26^{\dagger}	15776	6:31:37	16:47		
append	5	15295	12584	128	18	2564	10:13	04:32		
filter	6	398	75	2	5	319	00:39	00:02		
length	5	7066	6495	556	14	1	00:22	00:00		
map	6	17721	14494	31	17^{\dagger}	3179	10:08	37:33	>11h	
remove	7	32916	24059	121	14	8722	54:16	13:01	>11h	
reverse	4	127926	127476	425	24	1	07:45	00:02		
rotate	6	12784	12597	123	21	43	00:34	6:54:22	>11h	
runlength	6	68311	67499	221	27^{\dagger}	564	06:39	00:40	> 11h	

LemmaCalc

Scalability on large(r) theories?

cost of exploring an exponential search space

		baseline enumerator statistics						TheSy	
benchmark	F	candidates	false	true	lemma	unknown	time	last	killed
nat	8	1131799	1129504	309	159^{\dagger}	1 827	09:53	26:38:14	>26h
list	18	320978	203993	384	31	116569	6:21:16	10:55:14	$>\!\!21\mathrm{h}$
tree	11	123488	107569	118	26^{\dagger}	15776	6:31:37	16:47	
append	5	15295	12584	128	18	2564	10:13	04:32	
filter	6	398	75	2	5	319	00:39	00:02	
length	5	7066	6495	556	14	1	00:22	00:00	
map	6	17721	14494	31	17^{\dagger}	3179	10:08	37:33	>11h
remove	7	32916	24059	121	14	8722	54:16	13:01	> 11h
reverse	4	127926	127476	425	24	1	07:45	00:02	
rotate	6	12784	12597	123	21	43	00:34	6:54:22	> 11h
runlength	6	68311	67499	221	27^{\dagger}	564	06:39	00:40	>11h

LemmaCalc takes 1–5 <u>seconds</u> on each, resp. 14 seconds on **list**

Proportion of lemmas found

Findings

- approaches and implementations have <u>complementary</u> strenths and weaknesses
- each finds unique lemmas
- many redundant lemmas (different reasons!)
- LemmaCalc generates <u>nice rewrite rules</u>

Summary and Outlook

- Automating equivalence proofs
 - Goal directed reasoning from candidates [TACAS 21]
 - LemmaCalc: quickly and automatically inferring helper lemmas sosy-lab.org/research/pub/2023-Draft.LemmaCalc.pdf

Example: Duplicate-free Representation

```
class ListSet:
    def init():
        xs = nil
    def insert(x):
        if not contains(xs, x):
            xs = cons(x, xs)
    def erase(x):
        xs = removefirst(xs, x)
```

```
class SpecSet:
  def init():
    s = Ø
  def insert(x):
    s = s ∪ {x}
  def erase(x):
    s = s \ {x}
```

Intuitive approach: additional class invariant no-duplicates(xs)

 $contains(removefirst(xs, x), x) \iff false$

```
class ListSet:
    def init():
        xs = nil
    def insert(x):
        if not contains(xs, x):
            xs = cons(x, xs)
```

```
class SpecSet:
  def init():
    s = Ø
  def insert(x):
    s = s ∪ {x}
```

Solution

$$\begin{array}{rcl} R(nil, s) &:= & s = \phi \\ R(cons(x,xs), s) &:= & x \in s \land R(xs, s \setminus \{x\}) \end{array}$$

```
class ListSet:
  def init():
    xs = nil
  def insert(x):
    if not contains(xs, x):
        xs = cons(x, xs)
```

```
class SpecSet:
    def init():
        s = Ø
    def insert(x):
        s = s ∪ {x}
```

Template for recursion over lists

$$\begin{array}{rcl} R(nil, s) &\coloneqq& s = \phi \\ R(cons(x,xs), s) &\coloneqq& x \in s \land R(xs, s \setminus \{x\}) \end{array}$$

Construction: base case via initialization

$$R(nil, s) := s = \phi$$

R(cons(x,xs), s) := x \in s \land R(xs, s \setminus \{x\})


```
class SpecSet:
  def init():
    s = Ø
  def insert(x):
    s = s ∪ {x}
```

Construction: which operation matches the recursive case?

$$\begin{array}{rcl} R(nil, s) &:= & s = \phi \\ R(cons(x,xs), s) &:= & x \in s \land R(xs, s \setminus \{x\}) \end{array}$$


```
class SpecSet:
  def init():
    s = Ø
  def insert(x):
    s = s ∪ {x}
```

Construction: which operation matches the recursive case?

$$R(nil, s) := s = \phi$$

$$R(cons(x,xs), s) := x \in s \land R(xs) s \setminus \{x\})$$

$$ListSet.insert(x)$$

Approach: "Producer"-operation explains the recurrence of R


```
class SpecSet:
    def init():
        s = Ø
    def insert(x):
        s = s ∪ {x}
```

Construction: which operation matches the recursive case?

$$R(nil, s) := s = \phi$$

R(cons(x,xs), s) := x \in s \land R(xs, s \setminus \{x\})

- difference in observations via hasElement
- duplication-freedom is implied

(somewhat involved) (via inductive lemma)

Proof Obligations of Forward Simulation (well known)

Given two System Models as Data Types

C = (CState, CInit, COp_1 , ..., COp_n)

Refinement $B \leq A$ as Horn clauses (here deterministic systems), find R: as = AInit() \land cs = CInit() \implies R(as, cs) initialization

output equivalence inductive preservation

No runtime errors

- Legion: Coverage-guided Testing (with D. Liu+) [ASE 20]
- Korn: C verification with Horn clauses [VMCAI 22]

Automating functional correctness proofs

- Inference of data abstractions (with G. Fedyukovich) [TACAS 21]
- Synthesis of lemmas (submitted, with G. Fedyukovich)
- Cuvée: An SMT-LIB engineering Toolkit (ongoing)

High-level security for low-level C code

- Security Concurrent Separation Logic (SecCSL) [Ernst & Murray, CAV 19]
- Declassification policies [T. Murray, M. Tiwari, D. Naumann, CCS 23], Amazon grant

Falsification of Hybrid Systems

- FalStar: adaptive "Las-Vegas" tree search [Ernst+, TOMACS 21]
- Extending rapidly-exploring random trees to trajectories (ongoing, with J. Fejlek, S. Ratschan)

Competitions and Challenges

• VerifyThis [iFM 23, TACAS 20], SV-COMP, Test-Comp, ARCH-COMP

Recent Research:

- explore design space
- understand relative strengths of methods
- experiment with novel angles of attack