
Deductive Verification:
Reasoning Across

Abstraction Boundaries

May 8, 2024
ConVeY Seminar

Gidon Ernst, LMU Munich
sosy-lab.org/people/ernst

Abstraction is Essential for Trust in Technical Systems

laws of
physics

technical system specification

d hour
d minute

= 1
60

d minute= 2π
60 s

abstract yet precise!

3

Software Verification

software system

laws of
programming

specification

read(write(x)) = x

O(n)

4

Software Verification

software system

laws of
programming

specification

read(write(x)) = x

O(n)

deductive verification:
establish correspondence by

automated mathematical proof

5

Flashix: a fully verified Flash file system (PhD project)

Related: Argosys, FSCQ, Yggdrasil, BilbyFS, ...

6

Flashix: a fully verified Flash file system (PhD project)

endstart

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

path lookup

directory
tree

file
content

file handle

[SSV 12, VSTTE 13] [HVC 13][VSTTE 15]

flash
store

flash
index

RAM
index

...

log ...

index
layer

journal
layer

thesis.tex

endstart

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

abstraction
gap

abstraction
gap

[ABZ 14, iFM SCP 16]

7

Flashix: a fully verified Flash file system (PhD project)

Challenge = bridging different abstraction levels:
modeling, data structures, algorithms, refinement proofs

Technical Difficulties from unbounded state space
and recursion, quantifiers, second-order

8

My Research Goal: Automation ⊕ Expressiveness

software system

laws of
programming

specification

read(write(x)) = x

O(n)

fully automatic
simpler properties

(SV-COMP)

human-guided
expressive specs

(VerifyThis)

open
challenge!

9

class ListSet:

 def init():
 xs = nil

 def insert(x):
 xs = cons(x, xs)

 def erase(x):
 xs = remove(xs, x)

 def hasElement(x):
 return contains(xs, x)

Model (functional lists)

Example: Behavioral Component Models

10

class ListSet:

 def init():
 xs = nil

 def insert(x):
 xs = cons(x, xs)

 def erase(x):
 xs = remove(xs, x)

 def hasElement(x):
 return contains(xs, x)

Model (functional lists)

 initialisation

operations
● input & precondition
● state transition
● output

Example: Behavioral Component Models (think: B and Event-B)

11

class ListSet:

 def init():
 xs = nil

 def insert(x):
 xs = cons(x, xs)

 def erase(x):
 xs = remove(xs, x)

 def hasElement(x):
 return contains(xs, x)

Model (functional lists)

 struct list {
 int head;

 struct list *next;
 }

Source Code (pointers)

Separation
Logic

automatic connection via shape analysis
e.g. [Calcagno et al 09]

Teaser: Model Implementation≃

12

Example: Intuitive specification (= trust)

class ListSet:

 def init():
 xs = nil

 def insert(x):
 xs = cons(x, xs)

 def erase(x):
 xs = remove(xs, x)

 def hasElement(x):
 return contains(xs, x)

Model (functional lists) Specification (sets)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

 def erase(x):
 s = s \ {x}

 def hasElement(x):
 return (x ∈ s)

13

Goal: Design Specification≃

class ListSet:

 def init():
 xs = nil

 def insert(x):
 xs = cons(x, xs)

 def erase(x):
 xs = remove(xs, x)

 def hasElement(x):
 return contains(xs, x)

Model (functional lists) Specification (sets)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

 def erase(x):
 s = s \ {x}

 def hasElement(x):
 return (x ∈ s)

???

14

desired guarantee: same input/output of operations

class Set

class ListSet

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

Proof: Design Specification≃

Opspec(in, ?out)

Opimpl(in, ?out)

15

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee: same input/output of operations

inductive proof: correspondence of states

class Set

class ListSet

?

Opspec(in, ?out)

Opimpl(in, ?out)
simulation

relation

Proof: Design Specification≃ via Simulation Proofs

16

e.g. [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee: same input/output of operations

inductive proof: correspondence of states

class Set

class ListSet

?

Opspec(in, ?out)

Opimpl(in, ?out)

Proof: Design Specification via Simulation Proofs≃

17

Goal: Design Specification (Example again)≃

class ListSet:

 xs = nil

 def insert(x):
 xs = cons(x, xs)

 def erase(x):
 xs = remove(xs, x)

 def hasElement(x):
 return contains(xs, x)

Model (functional lists) Specification (sets)

class SpecSet:

 s = ∅

 def insert(x):
 s = s ∪ {x}

 def erase(x):
 s = s \ {x}

 def hasElement(x):
 return (x ∈ s)

???

Interactive Demo
Deductive Verification in Dafny

18

Comparing one-step of input/output behavior

class ListSet:

 ...

 def hasElement(x):
 return contains(xs, x)

class SpecSet:

 ...

 def hasElement(x):
 return (x ∈ s)

R(xs, s) := ∀ x. (contains(xs, x) <=> x ∈ s)

Solution

19

Construction: collecting observerations

class ListSet:

 ...

 def hasElement(x):
 return contains(xs, x)

class SpecSet:

 ...

 def hasElement(x):
 return (x ∈ s)

R(xs, s) := ∀ x. (contains(xs, x) <=> x ∈ s)

Construction: quantify over possible observations via operations

20

Construction: collecting observerations

class ListSet:

 ...

 def hasElement(x):
 return contains(xs, x)

class SpecSet:

 ...

 def hasElement(x):
 return (x ∈ s)

R(xs, s) := ∀ x. (contains(xs, x) <=> x ∈ s)

Construction: require equivalence of outputs

✔
Remark: corresponds to first frame in Property-Directed Reachability (PDR)

Challenges: Quantifier, Sets (i.e. SMT Arrays), Lists (ADT)

21

Discussion: Observer Equivalence as Starting Point

R(xs, s) := ∀ x. (contains(xs, x) <=> x ∈ s)

 ✔ no creativity needed + automation via SMT

()✔ usually require additional system invariants (abduction, AI)

 ? usually require standard & application-specific lemmas, e.g.

 contains(remove(xs, x), x) <=> false

(?) refinement to source code: loops, pointers, etc, ...

(?) where does the reference/specification come from in the first place?

22

 ! Goal: find lemmas automatically that support automatic proofs

 contains(remove(xs, x), x) <=> false

LemmaCalc: Quick Theory Exploration for
Algebraic Data Types via Program

Transformations [ongoing]
Gidon Ernst, Robin Sögtrop, LMU Munich
Grigory Fedyukovich, FSU

length(elems(tree)) == size(tree)

implabstractionspec

23

Related Work

Lemmas from Stuck Proofs

Rippling [Bundy], Term Induction
ACL2, AdtInd, ...

 ✔ effective

 ✔ like humans conduct proofs

? carries current proof context

? requires inductive generalizations

Theory Exploration

HipSpec [Buchberger, Johansson]
TheSy [Singher & Itzhaky], ...

syntax-guided enumeration

+ inductive proof to check

 ✔ effective & “complete” wrt. oracle

? vast unstructured search space

? reports ”free-form” tautologies

24

LemmaCalc

input
theory:

data types,
function defs

Key Idea: Combine structural function transformations

fusion: f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y) == h’(x) ⨁ e(y)
(conditional) equivalence: pre(x, y) ==> f(x) == g(y)

extracted
lemmas

25

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

26

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

length++(xs, ys)

fixpoint fusion
Wadler, SPJ, Turchin

synthetic function

as compiler optimization:
● eliminates intermediate list
● only one recursive traversal

27

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

length++(xs, ys)

fixpoint fusion
Wadler, SPJ, Turchin

length++’(xs) + length(ys)

yet another
synthetic function

remove
“accumulators”

Giesl

key ingredient
assoc. operators with

neutral elements,
here + with 0

28

Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

length++(xs, ys)

fixpoint fusion
Wadler, SPJ, Turchin

length++’(xs) + length(ys)

remove
“accumulators”

Giesl

recognize & match
● critical to discover lemmas
● (not needed in compilers)
● clever approaches worthwhile

29

Example: Fusing length++

length(xs ++ ys) length++(xs, ys)fuse

length++([], ys)
 = length(ys)

length++(x:xs, ys)
 = 1 + length++(xs, ys)

length([]) = 0
length(x:xs) = 1 + length(xs)

 [] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

skeleton of the recurrence
is maintained

typically differences manifest
in the base cases

deforestation, supercompilation, partial evaluation, ...

30

Recognizing functions

¬ contains(x, xs) ==> remove(x, xs) == id(xs)

31

Recognizing functions

¬ contains(x, xs) ==> remove(x, xs) == id(xs)

remove(x, []) = []

remove(x, y:ys)
 = if x != y
 then x : remove(x,ys)
 else remove(x,ys)

id([]) = []

id(y:ys)
 = x : id(ys)

 ⨅

32

Recognizing functions

¬ contains(x, xs) ==> remove(x, xs) == id(xs)

remove(x, []) = []

remove(x, y:ys)
 = if x != y
 then x : remove(x,ys)
 else remove(x,ys)

id([]) = []

id(y:ys)
 = x : id(ys)

 ⨅

pre(x, []) = ???
pre(x, y:ys) = ???=

33

Recognizing functions

¬ contains(x, xs) ==> remove(x, xs) == id(xs)

remove(x, []) = []

remove(x, y:ys)
 = if x != y
 then x : remove(x,ys)
 else remove(x,ys)

id([]) = []

id(y:ys)
 = x : id(ys)

 ⨅

pre(x, []) = [] == []
pre(x, y:ys) = x != y /\ pre(x, ys)=

34

Recognizing functions

¬ contains(x, xs) ==> remove(x, xs) == id(xs)

pre(x, []) = [] == [] = true
pre(x, y:ys) = x != y /\ pre(x, ys)

not_contains(x, xs)

fuse

recognize

35

Evaluation

Research Questions: compare LemmaCalc against enumerate & check

1. what is the scalability to large(r) theories?

2. what proportion of lemmas can be found?

Experimental Setup
● 8 specific benchmarks: combinations of functions with “interesting” lemmas
● three full theries: nat, list, tree with
● LemmaCalc (with/without conditional lemmas)

● own baseline enumerator (just lemmas f(x, g(y)) = ???)

● TheSy [Singher & Itzhaky, CAV 2021]

36

Scalability on large(r) theories? cost of exploring an
exponential search space

37

LemmaCalc

input
theory:

data types,
function defs

extracted
lemmas

DE
MO

Contribution: lemma synthesis by
combining structural function transformations
fusion: f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y) == h’(x) ⨁ e(y)
(conditional) equivalence: pre(x, y) ==> f(x) == g(y)

38

Scalability on large(r) theories? cost of exploring an
exponential search space

LemmaCalc takes 1–5 seconds on each, resp. 14 seconds on list

39

Proportion of lemmas found

Findings
● approaches and implementations have

complementary strenths and weaknesses
● each finds unique lemmas
● many redundant lemmas (different reasons!)
● LemmaCalc generates nice rewrite rules

40

Summary and Outlook

● Goal: automation ⊕ expressiveness

● Automating equivalence proofs
– Goal directed reasoning from candidates [TACAS 21]

– LemmaCalc: quickly and automatically inferring helper lemmas
sosy-lab.org/research/pub/2023-Draft.LemmaCalc.pdf

fully automatic expressive specsGoal: tackle this

41

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

 def erase(x):
 xs = removefirst(xs, x)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

 def erase(x):
 s = s \ {x}

Intuitive approach: additional class invariant no-duplicates(xs)

contains(removefirst(xs, x), x) <=> false

Example: Duplicate-free Representation

42

Approach 2: recursively defined simulation relations

 R(nil, s) := s = ∅
 R(cons(x,xs), s) := x ∈ s ∧ R(xs, s \ {x})

Solution

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

43

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

Approach 2: recursively defined simulation relations

 R(nil, s) := s = ∅
 R(cons(x,xs), s) := x ∈ s ∧ R(xs, s \ {x})

Template for recursion over lists

44

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

Approach 2: recursively defined simulation relations

 R(nil, s) := s = ∅
 R(cons(x,xs), s) := x ∈ s ∧ R(xs, s \ {x})

Construction: base case via initialization

45

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

Approach 2: recursively defined simulation relations

 R(nil, s) := s = ∅
 R(cons(x,xs), s) := x ∈ s ∧ R(xs, s \ {x})

Construction: which operation matches the recursive case?

46

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

Approach 2: recursively defined simulation relations

 R(nil, s) := s = ∅
 R(cons(x,xs), s) := x ∈ s ∧ R(xs, s \ {x})

Construction: which operation matches the recursive case?

ListSet.insert(x)

Approach: “Producer”-operation explains the recurrence of R

47

class ListSet:

 def init():
 xs = nil

 def insert(x):
 if not contains(xs, x):
 xs = cons(x, xs)

class SpecSet:

 def init():
 s = ∅

 def insert(x):
 s = s ∪ {x}

Approach 2: recursively defined simulation relations

 R(nil, s) := s = ∅
 R(cons(x,xs), s) := x ∈ s ∧ R(xs, s \ {x})

Construction: which operation matches the recursive case?

● difference in observations via hasElement (somewhat involved)
● duplication-freedom is implied (via inductive lemma)

48

Proof Obligations of Forward Simulation (well known)

Given two System Models as Data Types

 A = (AState, AInit, AOp1, ..., AOpn)

 C = (CState, CInit, COp1, ..., COpn)

Refinement B <= A as Horn clauses (here deterministic systems), find R:

as = AInit() /\ cs = CInit() ==> R(as, cs)

R(as,cs) /\ (as’,out) = AOpi(in,as) /\ (cs’,out’) = COpi(in,cs)

 ==> out == out‘ /\ R(as’,cs’)

output equivalence inductive preservation

initialization

49

No runtime errors
● Legion: Coverage-guided Testing (with D. Liu+) [ASE 20]
● Korn: C verification with Horn clauses [VMCAI 22]

Automating functional correctness proofs
● Inference of data abstractions (with G. Fedyukovich) [TACAS 21]
● Synthesis of lemmas (submitted, with G. Fedyukovich)
● Cuvée: An SMT-LIB engineering Toolkit (ongoing)

High-level security for low-level C code
● Security Concurrent Separation Logic (SecCSL) [Ernst & Murray, CAV 19]
● Declassification policies [T. Murray, M. Tiwari, D. Naumann, CCS 23], Amazon grant

Falsification of Hybrid Systems
● FalStar: adaptive “Las-Vegas” tree search [Ernst+, TOMACS 21]
● Extending rapidly-exploring random trees to trajectories (ongoing, with J. Fejlek, S. Ratschan)

Competitions and Challenges
● VerifyThis [iFM 23, TACAS 20], SV-COMP, Test-Comp, ARCH-COMP

Recent Research:
● explore design space
● understand relative

strengths of methods
● experiment with novel

angles of attack

