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Abstraction is Essential for Trust in Technical Systems

laws of 
physics

technical system specification

d hour
d minute

= 1
60

d minute= 2π
60 s

abstract yet precise!
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Software Verification

software system

laws of 
programming

specification

read(write(x)) = x

O(n)
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Software Verification

software system

laws of 
programming

specification

read(write(x)) = x

O(n)

deductive verification:
establish correspondence by 

automated mathematical proof
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Flashix: a fully verified Flash file system (PhD project)

Related: Argosys, FSCQ, Yggdrasil, BilbyFS, ...
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Flashix: a fully verified Flash file system (PhD project)

endstart

...
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partial/corrupt group (no end node)
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a buffered block

failed write or power cut
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individual nodes
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file
content

file handle

[SSV 12, VSTTE 13] [HVC 13][VSTTE 15]
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endstart
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individual nodes
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[ABZ 14, iFM SCP 16]
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Flashix: a fully verified Flash file system (PhD project)

Challenge = bridging different abstraction levels:
modeling, data structures, algorithms, refinement proofs

Technical Difficulties from unbounded state space
and recursion, quantifiers, second-order
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My Research Goal:   Automation ⊕ Expressiveness

software system

laws of 
programming

specification

read(write(x)) = x

O(n)

fully automatic
simpler properties

(SV-COMP)

human-guided
expressive specs

(VerifyThis)

open
challenge!
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    xs = cons(x, xs)

  def erase(x):
    xs = remove(xs, x)

  def hasElement(x):
    return contains(xs, x)

Model  (functional lists)

Example: Behavioral Component Models
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    xs = cons(x, xs)

  def erase(x):
    xs = remove(xs, x)

  def hasElement(x):
    return contains(xs, x)

Model  (functional lists)

  initialisation 

operations
● input & precondition
● state transition
● output

Example: Behavioral Component Models (think: B and Event-B)
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    xs = cons(x, xs)

  def erase(x):
    xs = remove(xs, x)

  def hasElement(x):
    return contains(xs, x)

Model  (functional lists)

  struct list {
    int          head;

 struct list *next;
  }

Source Code (pointers)

Separation
Logic

automatic connection via shape analysis
e.g. [Calcagno et al 09]

Teaser: Model  Implementation≃
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Example: Intuitive specification (= trust)

class ListSet:

  def init():
    xs = nil

  def insert(x):
    xs = cons(x, xs)

  def erase(x):
    xs = remove(xs, x)

  def hasElement(x):
    return contains(xs, x)

Model  (functional lists) Specification (sets)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

  def erase(x):
    s = s \ {x}

  def hasElement(x):
    return (x ∈ s)
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Goal: Design  Specification≃

class ListSet:

  def init():
    xs = nil

  def insert(x):
    xs = cons(x, xs)

  def erase(x):
    xs = remove(xs, x)

  def hasElement(x):
    return contains(xs, x)

Model  (functional lists) Specification (sets)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

  def erase(x):
    s = s \ {x}

  def hasElement(x):
    return (x ∈ s)

???
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desired guarantee: same input/output of operations

class Set

class ListSet

e.g.   [He, Hoare, Sanders 86] [Liskov & Wing 94]

Proof: Design  Specification≃

Opspec(in, ?out )

Opimpl(in, ?out )
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e.g.   [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee: same input/output of operations

inductive proof: correspondence of states

class Set

class ListSet

?

Opspec(in, ?out )

Opimpl(in, ?out )
simulation 

relation

Proof: Design  Specification≃  via Simulation Proofs
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e.g.   [He, Hoare, Sanders 86] [Liskov & Wing 94]

desired guarantee: same input/output of operations

inductive proof: correspondence of states

class Set

class ListSet

?

Opspec(in, ?out )

Opimpl(in, ?out )

Proof: Design  Specification via Simulation Proofs≃
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Goal: Design  Specification (Example again)≃

class ListSet:

  
    xs = nil

  def insert(x):
    xs = cons(x, xs)

  def erase(x):
    xs = remove(xs, x)

  def hasElement(x):
    return contains(xs, x)

Model  (functional lists) Specification (sets)

class SpecSet:

  
    s = ∅

  def insert(x):
    s = s ∪ {x}

  def erase(x):
    s = s \ {x}

  def hasElement(x):
    return (x ∈ s)

???

Interactive Demo
Deductive Verification in Dafny
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Comparing one-step of input/output behavior

class ListSet:

  ...

  def hasElement(x):
    return contains(xs, x)

class SpecSet:

  ...

  def hasElement(x):
    return (x ∈ s)

R(xs, s)  :=  ∀ x. (contains(xs, x) <=> x ∈ s)

Solution
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Construction: collecting observerations

class ListSet:

  ...

  def hasElement(x):
    return contains(xs, x)

class SpecSet:

  ...

  def hasElement(x):
    return (x ∈ s)

R(xs, s)  :=  ∀ x. (contains(xs, x) <=> x ∈ s)

Construction: quantify over possible observations via operations
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Construction: collecting observerations

class ListSet:

  ...

  def hasElement(x):
    return contains(xs, x)

class SpecSet:

  ...

  def hasElement(x):
    return (x ∈ s)

R(xs, s)  :=  ∀ x. (contains(xs, x) <=> x ∈ s)

Construction: require equivalence of outputs

✔
Remark: corresponds to first frame in Property-Directed Reachability (PDR)

Challenges: Quantifier, Sets (i.e. SMT Arrays), Lists (ADT)
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Discussion: Observer Equivalence as Starting Point

R(xs, s)  :=  ∀ x. (contains(xs, x) <=> x ∈ s)

 ✔ no creativity needed + automation via SMT

( )✔ usually require additional system invariants (abduction, AI)

 ? usually require standard & application-specific lemmas, e.g.

        contains(remove(xs, x), x) <=> false

(?) refinement to source code: loops, pointers, etc, ...

(?) where does the reference/specification come from in the first place?
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 ! Goal: find lemmas automatically that support automatic proofs

        contains(remove(xs, x), x) <=> false

LemmaCalc: Quick Theory Exploration for 
Algebraic Data Types via Program 

Transformations [ongoing]
Gidon Ernst, Robin Sögtrop, LMU Munich
Grigory Fedyukovich, FSU

length(elems(tree)) == size(tree)

implabstractionspec
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Related Work

Lemmas from Stuck Proofs

Rippling [Bundy], Term Induction 
ACL2, AdtInd, ...

 ✔ effective 

 ✔ like humans conduct proofs

? carries current proof context

? requires inductive generalizations

Theory Exploration

HipSpec [Buchberger, Johansson] 
TheSy [Singher & Itzhaky], ...

syntax-guided enumeration

+ inductive proof to check

 ✔ effective & “complete” wrt. oracle

? vast unstructured search space

? reports ”free-form” tautologies
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LemmaCalc

input
theory:

data types,
function defs

Key Idea: Combine structural function transformations

fusion:  f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y)     == h’(x) ⨁ e(y)
(conditional) equivalence: pre(x, y) ==> f(x) == g(y)

extracted 
lemmas
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Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)
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Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

length++(xs, ys)

fixpoint fusion
Wadler, SPJ, Turchin

synthetic function

as compiler optimization:
● eliminates intermediate list
● only one recursive traversal
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Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

length++(xs, ys)

fixpoint fusion
Wadler, SPJ, Turchin

length++’(xs) + length(ys)

yet another
synthetic function

remove
“accumulators”

Giesl

key ingredient
assoc. operators with

neutral elements,
here + with 0
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Key Idea: Combine Structural Function Transformations
[Bird, Burstall & Darlington, ...]

length(xs ++ ys) == length(xs) + length(ys)

length++(xs, ys)

fixpoint fusion
Wadler, SPJ, Turchin

length++’(xs) + length(ys)

remove
“accumulators”

Giesl

recognize & match
● critical to discover lemmas
● (not needed in compilers)
● clever approaches worthwhile
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Example: Fusing length++

length(xs ++ ys) length++(xs, ys)fuse

length++([], ys)
  = length(ys)

length++(x:xs, ys)
  = 1 + length++(xs, ys)

length([])   = 0
length(x:xs) = 1 + length(xs)

    [] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

skeleton of the recurrence
is maintained

typically differences manifest
in the base cases

deforestation, supercompilation, partial evaluation, ...
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Recognizing functions

¬ contains(x, xs)  ==>  remove(x, xs) == id(xs)



31

Recognizing functions

¬ contains(x, xs)  ==>  remove(x, xs) == id(xs)

remove(x, []) = []

remove(x, y:ys)
  = if x != y
    then x : remove(x,ys)
    else     remove(x,ys)

id([]) = []

id(y:ys)
  = x : id(ys)

 ⨅
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Recognizing functions

¬ contains(x, xs)  ==>  remove(x, xs) == id(xs)

remove(x, []) = []

remove(x, y:ys)
  = if x != y
    then x : remove(x,ys)
    else     remove(x,ys)

id([]) = []

id(y:ys)
  = x : id(ys)

 ⨅

pre(x, [])   = ???
pre(x, y:ys) = ???= 
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Recognizing functions

¬ contains(x, xs)  ==>  remove(x, xs) == id(xs)

remove(x, []) = []

remove(x, y:ys)
  = if x != y
    then x : remove(x,ys)
    else     remove(x,ys)

id([]) = []

id(y:ys)
  = x : id(ys)

 ⨅

pre(x, [])   = [] == []
pre(x, y:ys) = x != y /\ pre(x, ys)= 
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Recognizing functions

¬ contains(x, xs)  ==>  remove(x, xs) == id(xs)

pre(x, [])   = [] == [] = true
pre(x, y:ys) = x != y /\ pre(x, ys)

not_contains(x, xs)

fuse

recognize
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Evaluation

Research Questions: compare LemmaCalc against enumerate & check

1. what is the scalability to large(r) theories?

2. what proportion of lemmas can be found?

Experimental Setup
● 8 specific benchmarks: combinations of functions with “interesting” lemmas
● three full theries: nat, list, tree with 
● LemmaCalc (with/without conditional lemmas)

● own baseline enumerator (just lemmas f(x, g(y)) = ???)

● TheSy [Singher & Itzhaky, CAV 2021]
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Scalability on large(r) theories? cost of exploring an
exponential search space
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LemmaCalc

input
theory:

data types,
function defs

extracted 
lemmas

DE
MO

Contribution: lemma synthesis by
combining structural function transformations
fusion:  f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y)     == h’(x) ⨁ e(y)
(conditional) equivalence: pre(x, y) ==> f(x) == g(y)
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Scalability on large(r) theories? cost of exploring an
exponential search space

LemmaCalc takes 1–5 seconds on each, resp. 14 seconds on list
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Proportion of lemmas found

Findings
● approaches and implementations have 

complementary strenths and weaknesses
● each finds unique lemmas
● many redundant lemmas (different reasons!)
● LemmaCalc generates nice rewrite rules
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Summary and Outlook

● Goal:    automation ⊕ expressiveness

● Automating equivalence proofs
– Goal directed reasoning from candidates [TACAS 21]

– LemmaCalc: quickly and automatically inferring helper lemmas
sosy-lab.org/research/pub/2023-Draft.LemmaCalc.pdf

fully automatic expressive specsGoal: tackle this 
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

  def erase(x):
    xs = removefirst(xs, x)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

  def erase(x):
    s = s \ {x}

Intuitive approach: additional class invariant  no-duplicates(xs)

contains(removefirst(xs, x), x) <=> false

Example: Duplicate-free Representation
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Approach 2: recursively defined simulation relations

           R(nil, s) :=  s = ∅          
    R(cons(x,xs), s) :=  x ∈ s ∧ R(xs, s \ {x})

Solution

class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

Approach 2: recursively defined simulation relations

           R(nil, s) :=  s = ∅          
    R(cons(x,xs), s) :=  x ∈ s ∧ R(xs, s \ {x})

Template for recursion over lists
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

Approach 2: recursively defined simulation relations

           R(nil, s) :=  s = ∅          
    R(cons(x,xs), s) :=  x ∈ s ∧ R(xs, s \ {x})

Construction: base case via initialization
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

Approach 2: recursively defined simulation relations

           R(nil, s) :=  s = ∅          
    R(cons(x,xs), s) :=  x ∈ s ∧ R(xs, s \ {x})

Construction: which operation matches the recursive case?
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

Approach 2: recursively defined simulation relations

           R(nil, s) :=  s = ∅          
    R(cons(x,xs), s) :=  x ∈ s ∧ R(xs, s \ {x})

Construction: which operation matches the recursive case?

ListSet.insert(x)

Approach: “Producer”-operation explains the recurrence of R
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class ListSet:

  def init():
    xs = nil

  def insert(x):
    if not contains(xs, x):
      xs = cons(x, xs)

class SpecSet:

  def init():
    s = ∅

  def insert(x):
    s = s ∪ {x}

Approach 2: recursively defined simulation relations

           R(nil, s) :=  s = ∅          
    R(cons(x,xs), s) :=  x ∈ s ∧ R(xs, s \ {x})

Construction: which operation matches the recursive case?

● difference in observations via hasElement  (somewhat involved)
● duplication-freedom is implied (via inductive lemma)
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Proof Obligations of Forward Simulation (well known)

Given two System Models as Data Types

   A = (AState, AInit, AOp1, ..., AOpn)

   C = (CState, CInit, COp1, ..., COpn)

Refinement B <= A as Horn clauses (here deterministic systems), find R:

as = AInit() /\ cs = CInit() ==> R(as, cs)

R(as,cs) /\ (as’,out) = AOpi(in,as) /\ (cs’,out’) = COpi(in,cs)

    ==> out == out‘ /\ R(as’,cs’)

output equivalence inductive preservation

initialization
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No runtime errors
● Legion: Coverage-guided Testing (with D. Liu+) [ASE 20]
● Korn: C verification with Horn clauses [VMCAI 22]

Automating functional correctness proofs
● Inference of data abstractions (with G. Fedyukovich) [TACAS 21]
● Synthesis of lemmas (submitted, with G. Fedyukovich)
● Cuvée: An SMT-LIB engineering Toolkit (ongoing)

High-level security for low-level C code
● Security Concurrent Separation Logic (SecCSL) [Ernst & Murray, CAV 19]
● Declassification policies [T. Murray, M. Tiwari, D. Naumann, CCS 23], Amazon grant

Falsification of Hybrid Systems
● FalStar: adaptive “Las-Vegas” tree search [Ernst+, TOMACS 21]
● Extending rapidly-exploring random trees to trajectories (ongoing, with J. Fejlek, S. Ratschan)

Competitions and Challenges
● VerifyThis [iFM 23, TACAS 20], SV-COMP, Test-Comp, ARCH-COMP

Recent Research:
● explore design space
● understand relative

strengths of methods
● experiment with novel

angles of attack


