Distributed Automatic Contract Construction

Dirk Beyer
LMU Munich, Germany

2024-07-31 VEERSE | Software Systems

MUNCHEN

25 Years KeY
Bad Herrenalb LuowiG- -
LMu MAXIMILIANS-

Happy Birthday, KeY

= Part 1: Distributed Automatic Contract Construction

= Part 2: Find, Use, and Conserve KeY

D. Beyer Distributed Automatic Contract Construction 1/34

Automatic Software Verification

Program

Specification

Result (True/False

Mostly context-sensitive, whole-program analysis

D. Beyer Distributed Automatic Contract Construction 2/34

= Context: (Automatic) Software Model Checking
= We need low response time.

» Therefore, we need massively parallel approaches.

Solution: Decomposition into blocks, construct contracts automatically

D. Beyer 3/34

Based on [5]:

Dirk Beyer, Matthias Kettl, Thomas Lemberger:

Decomposing Software Verification using Distributed Summary Synthesis

Proc. ACM on Software Engineering, Volume 1, Issue FSE, 2024.
https://doi.org/10.1145/3660766

D. Beyer 4/34

https://doi.org/10.1145/3660766

Overview of Decomposition

D. Beyer

-

Verification Task

/

/

~

-

Subtasks \

Subtask 1
Subtask 2
(_
% Subtask 4

Subtask 3

W

Subtask 5

o

Subtask 6

\

/ Parallel Processing \

Subtask 1

AN

Subtask 6

/

Overview of the DSS approach

Distributed Automatic Contract Construction

5/34

Example: Control-Flow Automaton

1 int main()

2 int x = 0;

3 inty = 0;

4 while (n()) {

5 X++;

6 y++;

7 3} X
8 assert(x ==y);

9}

Safe program

CFA of program

D. Beyer Distributed Automatic Contract Construction 6/34

We split a large verification task into multiple smaller subtasks.

Requirements for eligible decompositions:

= Each block has exactly one entry and one exit location.
= Loops should be reflected as loops in the block graph.
= Blocks should as large as possible.

= Blocks not bound to functions.

Approach: We decompose the CFA similar to large-block encoding [3].

D. Beyer 7/34

Example: Decomposition

D. Beyer

preg

[I(nO == 0)]

y =y +1

vcondpg

. __— —

Distributed Automatic Contract Construction

Pl

[n(Q) == 0]

[M(x = y)]

8/34

D. Beyer

Each worker runs independently in an own
compute thread/node.

Preconditions describe good entry states of
a block (over-approximating).

Violation condition needs to be refuted to
prove a program safe.

Preconditions are refined until all violation
conditions are refuted or at least one is
confirmed.

preg

[HnO) ==

<
1
<
o
—_

|-

D@

o]

9/34

Communication Model

= Workers know their successor X—Zf& [=Me

and predecessors. preg 7%
= Workers maintain a list of [0 = 0)] InO == ol
preconditions, violation @ Ix == Dox ==)3
X = x +1
conditions, and their subtask. @
y =y +1
(1) .
vcondpg
—————

D. Beyer Distributed Automatic Contract Construction 10/34

Verification with DSS 1

D. Beyer

Block Result

A
B
C

IMBc:T
lESEﬂlg,(; :T
IMap:x#y

Distributed Automatic Contract Construction

11/34

Verification with DSS 2

D. Beyer

Block Result

A
B
C

™M c:x=y
™Map:x#y
idle

] :C
) 1w
[HnO == 0] [n() == o]
Q [x ==y] [I(x ==y)]
X = x + 1
y:=y+i
l3 AL
X#£Yy
7@
Distributed Automatic Contract Construction 12/34

Verification with DSS 3

D. Beyer

Block Result

IMc:x=y
IMpc:x=y
idle

] :C
=y] p—
[HnO == 0] [n() == o]
Q [x ==y] [I(x ==]
X = x + 1
y:=y+i
X#£Yy
7@
Distributed Automatic Contract Construction 13/34

Verification with DSS 4

D. Beyer

Block Result

idle
idle
IMg:T

x=y

[n(Q) == 0]

[x ==y] II [I(x ==y)]

X#£Yy

Distributed Automatic Contract Construction

14/34

Verification with DSS 5

D. Beyer

Block Result
A idle
B idle
C idle

= Fix-point reached, program safe.

x=y

[n(Q) == 0]

[I(x ==y)]

X#£Yy

Distributed Automatic Contract Construction

15/34

Benchmark Setup:

= We evaluate DSS on the subcategory SoftwareSystems of the SV-COMP'23
benchmarks.

= \We focus on the 2485 safe verification tasks.

= We use the SV-COMP [2] benchmark setup:
15 GB RAM and an 8 core Intel Xeon E3-1230 v5 with 3.40 GHz.

D. Beyer 16/34

D. Beyer

©
=)
S

,_
1S)
S

(s) DSS (8 cores)

Response time

10 100 900
Response time (s) Pred. (2 cores)

Response time of predicate abstraction (x-axis) vs. DSS (y-axis).

DSS introduces overhead which only pays-off for more complex tasks.

A parallel portfolio combines the best of both worlds.

17/34

=R

Speed-up to CPU time
o N W » w o ~ o]

1 core 2 cores 4 cores 8 cores

The ratio of the CPU time compared to the response time for 1, 2, 4, and 8 cores.

The workload is distributed effectively to multiple processing units.]

D. Beyer 18/34

= DSS is a domain-independent software-verification approach.

» DSS effectively distributes the workload to multiple processing units.

Supplementary webpage

D. Beyer 19/34

https://doi.org/10.5281/zenodo.11563223
https://www.sosy-lab.org/research/distributed-summary-synthesis/
https://doi.org/10.5281/zenodo.11563223

Part 2

= Conserve KeY

D. Beyer Distributed Automatic Contract Construction 20/34

= Find: Which tools for software verification exist?
= ... for test-case generation?
= ... for SMT solving?

= .. for hardware verification?

= Reuse: How to get executables?
= Where to find documentation?

= Am | allowed to use it?

= How to use them?

= Conserve: Which operating system, libraries, environment?

D. Beyer 21/34

Support documentation and reuse

Easy to query and generate knowledge base

Long-term availability /executability of tools

Must come with tool support

Approach must be compatible with competitions

D. Beyer 22/34

D. Beyer

One central repository:

https://gitlab.com/sosy-1lab/benchmarking/fm-tools

which gives information about:

Location of the tool (via DOI, just like other literature)
License

Contact (via ORCID)

Project web site

Options

Requirements (certain Docker container / VM)

Maintained by formal-methods community

23/34

https://gitlab.com/sosy-lab/benchmarking/fm-tools

D. Beyer

name: KeY
input_languages:

- Java
project_url: https://www.key-project.org/
repository_url: https://github.com/KeYProject/key
spdx_license_identifier: GPL-2.0
benchexec_toolinfo_module: "benchexec.tools.key_cli”
fmtools_format_version: "2.0"
fmtools_entry_maintainers:

- ricffb

24/34

Example: KeY’s Contacts

maintainers:

D. Beyer

orcid: 0000-0002-5671-2555

name: Wolfgang Ahrendt

institution: Chalmers University of Technology

country: Sweden

url: https://www.cse.chalmers.se/~ahrendt/

orcid: 0000-0002-9672-3291

name: Bernhard Beckert

institution: Karlsruhe Institute of Technology

country: Germany

url: https://formal.kastel.kit.edu/beckert/

orcid: 0000-0001-8000-7613

name: Reiner Hahnle

institution: TU Darmstadt

country: Germany

url: https://www.informatik.tu-darmstadt.de/se/
gruppenmitglieder/groupmembers_detailseite_30784.en.jsp

orcid: 0000-0002-2350-1831

name: Mattias Ulbrich

institution: Karlsruhe Institute of Technology

country: Germany

url: https://formal.kastel.kit.edu/ulbrich/

orcid: 0000-0001-8446-4598 Distributed Automatic Contract Construction

25/34

D. Beyer

versions:
- version: "2.13"
doi: 10.5281/zenodo.12945286
benchexec_toolinfo_options: []
required_ubuntu_packages:
- openjdk-21-jre-headless
base_container_images:
- ubuntu:22.04

26/34

literature:
- doi: 10.1007/978-3-030-64354-6
title: "Deductive_Software_Verification:_Future_Perspectives_-
_Reflections_on_the _Occasion_of_20_Years_of_KeY"
year: 2020
- doi: 10.1007/978-3-319-49812-6
title: "Deductive_Software_Verification.-_The_KeY_Book._-_From_
Theory_to_Practice”
year: 2016
- doi: 10.1007/978-3-319-12154-3_4
title: "The_KeY_Platform_for_Verification_and_Analysis_of_Java
_Programs”
year: 2014
- doi: 10.1007/s10270-004-0058-x
title: "The_KeY_Tool"”
year: 2005
- doi: 10.1007/3-540-40006-0_3
title: "The_KeY_Approach:_Integrating_Object_Oriented_Design.
and_Formal_Verification”
year: 2000

D. Beyer 27/34

D. Beyer

Findable:
overview is available on internet,

generated knowledge base

Accessible:
data retrievable via Git, format is YAML

Interoperable:
Format is defined in schema,
archives identified by DOls, researchers by ORCIDs

Reusable:
Data are CC-BY, each tool comes with a license,
format of tool archive standardized

28/34

]
e
.

1&

'image: Flaticon.com

D. Beyer 29/34

FM-Weck: Run Tools in Conserved Environment
[6, Proc. FM 2024]

Refer to known fm-tools by
identifier:version

J

[f‘m—weck] [run] [key :2.1 3] [BinarySea rch]

!

Download, install, and run the tool

= No knowledge of the tools CLI needed

= Tool runs in a container (no dependencies on host system)

D. Beyer Distributed Automatic Contract Construction 30/34

FM-Weck: Architecture

fm-tools
+ parse fm-tool yaml
- download tool
+ build command line

l
//'fm-weck

- handle caching
\ - start container

(—j%

Config
. fm-weck

fm-weck expert

fm-weck run

fm-weck shell

k/\

fm-tool.yml

D. Beyer Distributed Automatic Contract Construction 31/34

fm-weck

|

[fm-weck run] [fm—weck expert} [Fm—weck shell}

= Download and = Download and = Spin up interactive
execute tool in execute tool in shell in tool
container container environment

* No knowledge of = Expert knowledge
tool needed about tool required

D. Beyer 32/34

CoVeriTeam Service: Run Tool as Web Service

[4, Proc. ICSE 2023, companion]

D. Beyer

Request

~

tool information

verification task |

COVERITEAM SERVICE

tool output

generated files

Response

REST API

prepare env
invoke CoVErRITEAM
bundle results

COVERITEAM

downloads tools

executes tools

Distributed Automatic Contract Construction

33/34

FM-TooLS collects and stores essential information to:

= Run a tool as web service via COVERITEAM SERVICE [4]
= Run a tool in conserved environment via FM-WECK [6]

= Generate a knowledge base about formal-methods tools [1]
https://fm-tools.sosy-lab.org

https://gitlab.com/sosy-1lab/benchmarking/fm-tools

D. Beyer 34/34

https://fm-tools.sosy-lab.org
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools

D. Beyer

[1]

2]

(3]

[4]

(5]

Beyer, D.: Conservation and accessibility of tools for formal methods. In: Proc. Festschrift Podelski 65th
Birthday. Springer (2024)

Beyer, D.: State of the art in software verification and witness validation: SV-COMP 2024. In: Proc.
TACAS (3). pp. 299-329. LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_15

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-block
encoding. In: Proc. FMCAD. pp. 25-32. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351147

Beyer, D., Kanav, S., Wachowitz, H.: COVERITEAM SERVICE: Verification as a service. In: Proc. ICSE,
companion. pp. 21-25. |IEEE (2023). https://doi.org/10.1109/ICSE-Companion58688.2023.00017

Beyer, D., Kettl, M., Lemberger, T.: Decomposing software verification using distributed summary synthesis.

Proc. ACM Softw. Eng. 1(FSE) (2024). https://doi.org/10.1145/3660766

Beyer, D., Wachowitz, H.: FM-WECK: Containerized execution of formal-methods tools. In: Proc. FM.
LNCS, Springer (2024)

34/34

https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1145/3660766

