
FM-Tools: A Library of
Tools for Formal Methods

— Find, Use, Conserve, Execute —
git: https://gitlab.com/sosy-lab/benchmarking/fm-tools

web: https://fm-tools.sosy-lab.org

Dirk Beyer
LMU Munich, Germany

May 28, 2025, at Fuzzing Summer School in Singapore

May 28, 2025, at Fuzzing Summer School in Singapore 1 / 29

https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://fm-tools.sosy-lab.org

Vision

▶ All tools for formal methods work together to solve hard verification problems
and make our world safer and more secure.

▶ Model checkers and theorem provers can be integrated into the
software-development process as seamless as unit testing today.

▶ Model checkers, theorem provers, SMT solvers, and testers use common
interfaces for interaction and composition.

May 28, 2025, at Fuzzing Summer School in Singapore 2 / 29

Some Steps Towards the Vision

▶ Find: Which tools for software verification exist?
▶ ... for test-case generation?
▶ ... for SMT solving?
▶ ... for hardware verification?
▶ Reuse: How to get executables?
▶ Where to find documentation?
▶ Am I allowed to use it?
▶ How to use them?
▶ Conserve: Which operating system, libraries, environment?

May 28, 2025, at Fuzzing Summer School in Singapore 3 / 29

Requirements for Solution

▶ Support documentation and reuse
▶ Easy to query and generate knowledge base
▶ Long-term availability/executability of tools
▶ Must come with tool support
▶ Approach must be compatible with competitions

May 28, 2025, at Fuzzing Summer School in Singapore 4 / 29

Solution [1]

One central repository:
https://gitlab.com/sosy-lab/benchmarking/fm-tools which gives
information about:
▶ Location of the tool (via DOI, just like other literature)
▶ License
▶ Contact (via ORCID)
▶ Project web site
▶ Options
▶ Requirements (certain Docker container / VM)
▶ Limits

Maintained by formal-methods community

May 28, 2025, at Fuzzing Summer School in Singapore 5 / 29

https://gitlab.com/sosy-lab/benchmarking/fm-tools

Example: Entry for CPAchecker
id: cpachecker
name: CPAchecker
description: |
CPAchecker is a configurable framework for software

verification that
is based on configurable program analysis and
implements many model-checking algorithms
to check for software errors and to verify program properties.

input_languages:
- C

project_url: https://cpachecker.sosy-lab.org
repository_url: https://gitlab.com/sosy-lab/software/cpachecker
spdx_license_identifier: Apache-2.0
benchexec_toolinfo_module: benchexec.tools.cpachecker
fmtools_format_version: "2.0"
fmtools_entry_maintainers:
- dbeyer
- ricffb
- PhilippWendler

May 28, 2025, at Fuzzing Summer School in Singapore 6 / 29

Example: CPAchecker’s Contacts

maintainers:
- orcid: 0000-0003-4832-7662
name: Dirk Beyer
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/dbeyer/

- orcid: 0000-0002-5139-341X
name: Philipp Wendler
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/wendler/

May 28, 2025, at Fuzzing Summer School in Singapore 7 / 29

Example: CPAchecker’s Versions
versions:
- version: "4.0"
doi: 10.5281/zenodo.14203369
benchexec_toolinfo_options: ["--svcomp25", "--heap",

"10000M", "--benchmark", "--timelimit", "900␣s"]
required_ubuntu_packages:
- openjdk-17-jdk-headless

base_container_images:
- docker.io/ubuntu:22.04

- version: "4.0-validation-correctness"
doi: 10.5281/zenodo.14203369
benchexec_toolinfo_options: ["--witness", "${witness}",

"--correctness-witness-validation", "--heap", "5000m",
"--benchmark", "--option",
"witness.checkProgramHash=false", "--option",
"cpa.predicate.memoryAllocationsAlwaysSucceed=true"]

required_ubuntu_packages:
- openjdk-17-jdk-headless

base_container_images:
- docker.io/ubuntu:22.04

May 28, 2025, at Fuzzing Summer School in Singapore 8 / 29

Example: CPAchecker’s Documentation

literature:
- doi: 10.1007/978-3-031-71177-0_30
title: "Software␣Verification␣with␣CPAchecker␣3.0:␣Tutorial␣

and␣User␣Guide"
year: 2024

- doi: 10.1007/978-3-642-22110-1_16
title: "CPAchecker:␣A␣Tool␣for␣Configurable␣Software␣

Verification"
year: 2011

- doi: 10.1007/s10817-017-9432-6
title: "A␣Unifying␣View␣on␣SMT-Based␣Software␣Verification"
year: 2018

May 28, 2025, at Fuzzing Summer School in Singapore 9 / 29

Example: CPAchecker’s Web-Page Entry

May 28, 2025, at Fuzzing Summer School in Singapore 10 / 29

FM-Tools is FAIR

▶ Findable:
overview is available on internet,
generated knowledge base

▶ Accessible:
data retrievable via Git, format is YAML

▶ Interoperable:
Format is defined in schema,
archives identified by DOIs, researchers by ORCIDs

▶ Reusable:
Data are CC-BY, each tool comes with a license,
format of tool archive standardized

May 28, 2025, at Fuzzing Summer School in Singapore 11 / 29

What about the Environment?

1

q

±

�

�

�?

1Image: Flaticon.com
May 28, 2025, at Fuzzing Summer School in Singapore 12 / 29

FM-Weck: Run Tools in Conserved Environment
[2, Proc. FM 2024]

fm-weck run cpachecker:4.0 example-safe.c

Refer to known fm-tools by
name:version

Download, Install and run the
tool
▶ No knowledge of the tools CLI needed
▶ Tool runs in a container (no dependencies on host system)

May 28, 2025, at Fuzzing Summer School in Singapore 13 / 29

FM-Weck: Architecture

May 28, 2025, at Fuzzing Summer School in Singapore 14 / 29

fm-weck

fm-weck run -mfm-weck run fm-weck shell

▶ Download and
execute tool in
container

▶ Expert knowledge
about tool required

▶ Download and
execute tool in
container

▶ No knowledge of
tool needed

▶ Spin up interactive
shell in tool
environment

May 28, 2025, at Fuzzing Summer School in Singapore 15 / 29

Conclusion FM-Tools and FM-Weck

FM-Tools collects and stores essential information to:
▶ Generate a knowledge base about formal-methods tools [1]

https://fm-tools.sosy-lab.org

▶ Conserve tool versions and their required environment
(with help by Zenodo and Podman/Docker)

▶ Run a tool in conserved environment via FM-Weck [2]
▶ Please add your tool

https://fm-tools.sosy-lab.org

May 28, 2025, at Fuzzing Summer School in Singapore 16 / 29

https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org

Application: Competition on Software Testing

Report from 2025 [3, Proc. FASE]
Advances in Automatic Software Testing: Test-Comp 2025

Proc. FASE, Springer, 2025.
https://doi.org/10.1007/978-3-031-90900-9_13

May 28, 2025, at Fuzzing Summer School in Singapore 17 / 29

https://doi.org/10.1007/978-3-031-90900-9_13
https://doi.org/10.1007/978-3-031-90900-9_13

Number of Participants
Number of evaluated test generators for each year (top: number of first-time
participants; bottom: previous year’s participants)

2019 2020 2021 2022 2023 2024 20250

5

10

15

20

25

3 3

6 7

9

4
2

1 3
8

1

6
9 8 7 6

12

Year

Ev
al

ua
te

d
te

st
ge

ne
ra

to
rs active tools (not new)

new tools
inactive/hors concours

May 28, 2025, at Fuzzing Summer School in Singapore 18 / 29

Motivation - Goals

1. Community suffers from unreproducible results
→ Establish set of benchmarks

2. Publicity for tools that are available
→ Provide state-of-the-art overview

3. Support the development of verification tools
→ Give credits and visibility to developers

4. Establish standards
→ Specification language, Test-suites,
Benchmark definitions, Validators

May 28, 2025, at Fuzzing Summer School in Singapore 19 / 29

Schedule of Sessions

Session Test-Comp:
▶ Competition Report, by organizer
▶ System Presentations, 10 min by each team
▶ Open Jury Meeting, Community Discussion

May 28, 2025, at Fuzzing Summer School in Singapore 20 / 29

Procedure – Time Line

Three Steps – Three Deadlines:
▶ Benchmark submission deadline
▶ System submission
▶ Notification of results (approved by teams)

May 28, 2025, at Fuzzing Summer School in Singapore 21 / 29

Test Problem

Input:
▶ C program → GNU/ANSI C standard
▶ Test Specification:

→ Coverage of function call
→ Branch coverage

Output:
▶ Test suite

May 28, 2025, at Fuzzing Summer School in Singapore 22 / 29

Flow of the Test-Comp execution

Test
Generator

Benchmark
Suite

(Programs)

Test
Specification

Test Suite
(Test Vectors)

Test
Validator

Bug
Report

Coverage
Statistics

May 28, 2025, at Fuzzing Summer School in Singapore 23 / 29

Environment

Machines (1000 $ consumer machines):
▶ CPU: 3.4 GHz 64-bit Quad-Core CPU
▶ RAM: 33 GB
▶ OS: GNU/Linux (Ubuntu 24.04)

Resource limits:
▶ 15 GB memory
▶ 15 min CPU time
▶ 4 processing units

May 28, 2025, at Fuzzing Summer School in Singapore 24 / 29

Scoring Schema (since 2019)

Common principles: Ranking measure should be
▶ easy to understand
▶ reproducible
▶ computable in isolation for one tool

Test-Comp:
▶ Coverage of call to function:

1 point or 0 points
▶ Coverage of branches:

Test-Cov coverage value (between 0 and 1)

May 28, 2025, at Fuzzing Summer School in Singapore 25 / 29

Fair and Transparent

Jury:
▶ Team: one member of each participating candidate
▶ Term: one year (until next participants are determined)

Systems:
▶ All systems are available in open GitLab repo
▶ Configurations and Setup in GitLab repository

→ Integrity and reproducibility guaranteed

May 28, 2025, at Fuzzing Summer School in Singapore 26 / 29

Competition Candidates

Qualification:
▶ 20 Qualified
▶ One person can participate with different tools
▶ One tool can participate with several configurations (frameworks, no

tool-name inflation)
Benchmark quality:
▶ Community effort, documented on GitHub

Role of organizer:
▶ Just service: Advice, Technical Help, Executing Runs

May 28, 2025, at Fuzzing Summer School in Singapore 27 / 29

Results – Example: Overall

 0

 2000

 4000

 6000

 8000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

cetfuzz
CoVeriTest

ESBMC-incr
ESBMC-kind

FDSE
Fizzer

FuSeBMC
FuSeBMC-AI
HybridTiger

KLEE
KLEEF

Owi
PRTest

Symbiotic
TracerX

TracerX-WP
UTestGen

WASP-C

M
in

. n
um

be
r o

f t
es

t t
as

ks

Cumulative score

May 28, 2025, at Fuzzing Summer School in Singapore 28 / 29

Thanks to:

▶ Jury (12 people)
▶ 20 Tools evaluated
▶ FASE Steering Committee and PC Chairs
▶ Sponsors: LMU Munich and ETAPS

May 28, 2025, at Fuzzing Summer School in Singapore 29 / 29

References I

[1] Beyer, D.: Find, use, and conserve tools for formal methods. In: Proc.
Festschrift Podelski 65th Birthday. Springer (2024).
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_
and_Conserve_Tools_for_Formal_Methods.pdf

[2] Beyer, D., Wachowitz, H.: FM-Weck: Containerized execution of
formal-methods tools. In: Proc. FM. pp. 39–47. LNCS 14934, Springer (2024).
doi:10.1007/978-3-031-71177-0_3

[3] Beyer, D.: Advances in automatic software testing: Test-Comp 2025. In: Proc.
FASE. pp. 257–274. LNCS 15693, Springer (2025).
doi:10.1007/978-3-031-90900-9_13

May 28, 2025, at Fuzzing Summer School in Singapore 30 / 29

https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-90900-9_13

	Appendix

