FM-TooLs: A Library of
Tools for Formal Methods
— Find, Use, Conserve, Execute —

git: https://gitlab.com/sosy-lab/benchmarking/fm-tools
web: https://fm-tools.sosy-1lab.org

Dirk Beyer
LMU Munich, Germany

May 28, 2025, at Fuzzing Summer School in Singapore

Software Systems

May 28, 2025, at Fuzzing Summer School in Singapore 1/29

https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://fm-tools.sosy-lab.org

All tools for formal methods work together to solve hard verification problems
and make our world safer and more secure.

Model checkers and theorem provers can be integrated into the
software-development process as seamless as unit testing today.

Model checkers, theorem provers, SMT solvers, and testers use common
interfaces for interaction and composition.

Some Steps Towards the Vision

Find: Which tools for software verification exist?
... for test-case generation?
... for SMT solving?

... for hardware verification?

Reuse: How to get executables?
Where to find documentation?
Am | allowed to use it?

How to use them?

VVVyVYVY VVYYVY

Conserve: Which operating system, libraries, environment?

May 28, 2025, at Fuzzing Summer School in Singapore

Requirements for Solution

» Support documentation and reuse

» Easy to query and generate knowledge base
» Long-term availability /executability of tools
» Must come with tool support

» Approach must be compatible with competitions

May 28, 2025, at Fuzzing Summer School in Singapore 4 /29

Solution [1]

One central repository:

https://gitlab.com/sosy-lab/benchmarking/fm-tools which gives

information about:

| 4

vvyvyvVvyy

>

Location of the tool (via DOI, just like other literature)
License

Contact (via ORCID)

Project web site

Options

Requirements (certain Docker container / VM)

Limits

Maintained by formal-methods community

May 28, 2025, at Fuzzing Summer School in Singapore

5/29

https://gitlab.com/sosy-lab/benchmarking/fm-tools

Example: Entry for CPACHECKER

id: cpachecker
name: CPAchecker
description: |
CPAchecker is a configurable framework for software
verification that
is based on configurable program analysis and
implements many model-checking algorithms

to check for software errors and to verify program properties.

input_languages:

-C
project_url: https://cpachecker.sosy-lab.org
repository_url: https://gitlab.com/sosy-lab/software/cpachecker
spdx_license_identifier: Apache-2.0
benchexec_toolinfo_module: benchexec.tools.cpachecker
fmtools_format_version: "2.0"
fmtools_entry_maintainers:

- dbeyer

- ricffb

- PhilippWendler

May 28, 2025, at Fuzzing Summer School in Singapore

Example: CPAcuHECKER's Contacts

maintainers:
- orcid: 0000-0003-4832-7662
name: Dirk Beyer
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/dbeyer/
- orcid: 0000-0002-5139-341X
name: Philipp Wendler
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/wendler/

May 28, 2025, at Fuzzing Summer School in Singapore 7 /29

Example: CPAcHECKER's Versions

versions:
- version: "4.0"
doi: 10.5281/zenodo. 14203369
benchexec_toolinfo_options: ["--svcomp25"”, "--heap”,
"10000M" | "--benchmark”, "--timelimit”, "900_s"]
required_ubuntu_packages:
- openjdk-17-jdk-headless
base_container_images:
- docker.io/ubuntu:22.04
- version: "4.0-validation-correctness”
doi: 10.5281/zenodo. 14203369

Il

benchexec_toolinfo_options: ["--witness”, "${witness}”,
"--correctness-witness-validation”, "--heap”, "5000m",
"--benchmark”, "--option”,
"witness.checkProgramHash=false"”, "--option”,

"cpa.predicate.memoryAllocationsAlwaysSucceed=true"]
required_ubuntu_packages:
- openjdk-17-jdk-headless
base_container_images:
- docker.io/ubuntu:22.04

May

8, 2025, at Fuzzing Summer School in Singapore 8 /29

Example: CPAcHECKER's Documentation

literature:
- doi: 10.1007/978-3-031-71177-0_30
title: "Software_Verification_with_CPAchecker_3.0:_Tutorial.
and_User_Guide"
year: 2024
- doi: 10.1007/978-3-642-22110-1_16
title: "CPAchecker:_A_Tool_for_Configurable_Software.
Verification”
year: 2011
- doi: 10.1007/s10817-017-9432-6
title: "A_Unifying_View_on_SMT-Based._Software_Verification”
year: 2018

May 28, 2025, at Fuzzing Summer School in Singapore

Example: CPAcHECKER'S Web- Page Entry

0O« - C o QO B fm-tools.sosy-lab.or:

f#ttool-cpachecker ¥ @ & QS L % © ®@ @ € £ O » =

Tools for Formal Methods: Tools

Tools Techniques Competitions Frameworks Inputlanguages Documentation of the YAML Schema ~

Table of Contents

2LS

aise

AProVE (KoAT + LoAT)
BLAST

BRICK

Bubaak

Bubaak-SpLit

CADP

CBMC

cetfuzz

COASTAL
ConcurrentWitness2Test
CoOpeRace
CoVeriTeam-Verifier-AlgoSelection
CoVeriTeam-Verifier-ParallelPortfolio
CoVeriTest
CPA-BAM-BnB
CPA-BAM-SMG
CPA-witness2test
CPAchecker
CPALockator
CProver-witness2test
CPV

Crux

CSeq

Dartagnan

Deagle

DIVINE

EBF

EmergenTheta
ESBMC-incr
ESBMC-kind

FDSE

Code on % GitLab

CPAchecker CPA!/

CPAchecker is a configurable framework for software verification that is based on configurable program analysis
and implements many model-checking algorithms to check for software errors and to verify program properties.

Project URL: https://cpacheckersosy-lab.org
Repository URL: https://gitlab.com/sosy-lab/software/cpachecker
Maintainers: + & Dirk Beyer « & Philipp Wendler
Supported input languages: - C
License: * Apache-2.0
Supported - Algorithm Selection + ARG-Based Analysis * Automata-Based Analysis * Bit-Precise Analysis
techniques: . Bounded Model Checking » CEGAR » Concurrency Support « Explicit-Value Analysis « Interpolation
* k-Induction * Lazy Abstraction * Numeric Interval Analysis * Portfolio * Predicate Abstraction
* Property-Directed Reachability » Ranking Functions * Separation Logic * Shape Analysis
- Symbolic Execution
Used frameworks / solvers: - Apron « CPAchecker = JavaSMT « MathSAT
Releases: * 4.0+ 4.0-validation-correctness « 4.0-validation-violation * 2.3.1 * 2.3 * svcomp24-correctness
+ svcomp24-violation » 2.2 + svcomp22 + 2.1
Literature: + B Software Verification with CPAchecker 3.0: Tutorial and User Guide. 2024, paI: 10.1007/978-3-031-71177-0_30
« "2 CPAchecker: A Tool for Configurable Software Verification. 2011. DOI: 10.1007/978-3-642-22110-1_16
«TA Unifying View on SMT-Based Software Verification. 2018. DOI: 10.1007/s10817-017-9432-6
« "B CPAchecker 2.3 with Strategy Selection (Competition Contribution). 2024. DOY: 10.1007/978-3-031-57256-2_21
« B CPA-RefSel: CPAchecker with Refinement Selection (Competition Contribution). 2016.
DO 10.1007/978-3-662-49674-9_59
« "B CPAchecker with Support for Recursive Pregrams and Floating-Point Arithmetic (Competition
May2ButROR 20 8 faizwing? Sreaniznebuhonl in Singapore

10 / 29

FM-Tools is FAIR

> Findable:
overview is available on internet,
generated knowledge base
> Accessible:
data retrievable via Git, format is YAML
» Interoperable:
Format is defined in schema,
archives identified by DOls, researchers by ORCIDs
> Reusable:
Data are CC-BY, each tool comes with a license,
format of tool archive standardized

May 28, 2025, at Fuzzing Summer School in Singapore 11 /29

Yimage: Flaticon.com

FM-WECK: Run Tools in Conserved Environment
[2, Proc. FM 2024]

Refer to known fm-tools by
name:version

|

[Fm—weck][run][cpachecker 4. @]’example-safe %

T

Download, Install and run the
tool

» No knowledge of the tools CLI needed
» Tool runs in a container (no dependencies on host system)

May 28, 2025, at Fuzzing Summer School in Singapore 13 /29

FM-WECK: Architecture

fm-tools ‘\\

- parse fm-tool yaml
- download tool
- build command line /

Kfm-weck \

- handle caching

\ - start cont;iner /

Config

fm-tool.yml
.weck m-toot.ym

fm-weck run

fm-weck shell

May 28, 2025, at Fuzzing Summer School in Singapore

14 /29

fm-weck

/ \

[fm-weck run] [Fm—weck run —m] [fm—weck shellj

Download and Download and Spin up interactive
execute tool in execute tool in shell in tool
container container environment

No knowledge of Expert knowledge

tool needed about tool required

Conclusion FM-Tools and FM-Weck

FM-TooLS collects and stores essential information to:

> Generate a knowledge base about formal-methods tools [1]
https://fm-tools.sosy-1lab.org

» Conserve tool versions and their required environment
(with help by Zenodo and Podman/Docker)

» Run a tool in conserved environment via FM-WECK [2]
» Please add your tool

https://fm-tools.sosy-1lab.org

May 28, 2025, at Fuzzing Summer School in Singapore

16 / 29

https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org

Application: Competition on Software Testing

Report from 2025 [3, Proc. FASE]
Advances in Automatic Software Testing: Test-Comp 2025

Proc. FASE, Springer, 2025.
https://doi.org/10.1007/978-3-031-90900-9_13

May 28, 2025, at Fuzzing Summer School in Singapore 17 /29

https://doi.org/10.1007/978-3-031-90900-9_13
https://doi.org/10.1007/978-3-031-90900-9_13

Number of Participants

Number of evaluated test generators for each year (top: number of first-time
participants; bottom: previous year's participants)

25 T T T T
0 Hactive tools (not new)
£ 20| |Onew tools .
E‘ Hinactive/hors concours 6 7
[}
a0 15 |- :
3 |
5 10| 2] |3 8 :
& 4 '
T 50 |9 9 =
i 6 8117 |6

0

2019 2020 2021 2022 2023 2024 2025
Year

May 28, 2025, at Fuzzing Summer School in Singapore

Motivation - Goals

1. Community suffers from unreproducible results
— Establish set of benchmarks

2. Publicity for tools that are available
— Provide state-of-the-art overview

3. Support the development of verification tools
— Give credits and visibility to developers

4. Establish standards
— Specification language, Test-suites,
Benchmark definitions, Validators

Schedule of Sessions

Session Test-Comp:
» Competition Report, by organizer
» System Presentations, 10 min by each team

» Open Jury Meeting, Community Discussion

May 28, 2025, at Fuzzing Summer School in Singapore

20 / 29

Procedure — Time Line

Three Steps — Three Deadlines:
» Benchmark submission deadline
» System submission

» Notification of results (approved by teams)

May 28, 2025, at Fuzzing Summer School in Singapore

21 /29

Test Problem

Input:
» C program — GNU/ANSI C standard

» Test Specification:
— Coverage of function call
— Branch coverage

Output:
> Test suite

May 28, 2025, at Fuzzing Summer School in Singapore 22 /29

Flow of the Test-Comp execution

Benchmark
Suite
(Programs)

Test Suite \

(Test Vectors) Bug

Report

Test
Validator

Test
Generator

DN

Coverage
Statistics

Test

Specification

8, 2025, at Fuzzing Summer School in Singapore

N
@

Environment

Machines (1000 $ consumer machines):
» CPU: 3.4 GHz 64-bit Quad-Core CPU
» RAM: 33 GB
» OS: GNU/Linux (Ubuntu 24.04)
Resource limits:
» 15 GB memory
» 15 min CPU time

P 4 processing units

May 28, 2025, at Fuzzing Summer School in Singapore

24 /29

Scoring Schema (since 2019)

Common principles: Ranking measure should be
> easy to understand
» reproducible
» computable in isolation for one tool
Test-Comp:

» Coverage of call to function:
1 point or 0 points

» Coverage of branches:
TEST-COV coverage value (between 0 and 1)

May 28, 2025, at Fuzzing Summer School in Singapore

25 /29

Fair and Transparent

Jury:

» Team: one member of each participating candidate

» Term: one year (until next participants are determined)
Systems:

» All systems are available in open GitLab repo

» Configurations and Setup in GitLab repository
— Integrity and reproducibility guaranteed

May 28, 2025, at Fuzzing Summer School in Singapore

26 / 29

Competition Candidates

Qualification:
» 20 Qualified
» One person can participate with different tools

» One tool can participate with several configurations (frameworks, no
tool-name inflation)

Benchmark quality:
» Community effort, documented on GitHub
Role of organizer:
» Just service: Advice, Technical Help, Executing Runs

2025, at Fuzzing Summer School in Singapore 27 /29

Min. number of test tasks

10000

8000

6000

4000

2000

Results — Example: Overall

cetfuzz -+

CoVeriTest —¥—
ESBMC-incr
ESBMC-kind

FDSE —¥—

o Fizzer —&—

FuSeBMC —H—

FuSeBMC-AI -+ v

HybridTiger =0+

KLEE --®-

KLEEF —5—

Owi %

- PRTest —&—

Symbiotic —&—

TracerX —@—

TracerX-WP —A—

I~ UTestGen —+—

WASP-C =@

0 1000

L

2000 3000 4000 5000

Cumulative score

May 28, 2025, at Fuzzing Summer School in Singapore

28 /

29

Thanks to:

> Jury (12 people)

» 20 Tools evaluated

» FASE Steering Committee and PC Chairs
» Sponsors: LMU Munich and ETAPS

May 28, 2025, at Fuzzing Summer School in Singapore 29 /29

References |

[1] Beyer, D.: Find, use, and conserve tools for formal methods. In: Proc.
Festschrift Podelski 65th Birthday. Springer (2024).
https://www.sosy-1lab.org/research/pub/2024-Podelski65.Find_Use
and_Conserve_Tools_for_Formal_Methods. pdf

[2] Beyer, D., Wachowitz, H.: FM-WEcCK: Containerized execution of
formal-methods tools. In: Proc. FM. pp. 39-47. LNCS 14934, Springer (2024).
doi:10.1007,/978-3-031-71177-0_3

[3] Beyer, D.: Advances in automatic software testing: Test-Comp 2025. In: Proc.
FASE. pp. 257-274. LNCS 15693, Springer (2025).
doi:10.1007,/978-3-031-90900-9_13

May 28, 2025, at Fuzzing Summer School in Singapore 30 /29

https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-71177-0_3
https://doi.org/10.1007/978-3-031-90900-9_13

	Appendix

