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Hey! Would you mind taking
over the (meta) physical purpose
of this parable for me briefly?



Software Verification (Analogy) 3/35

technical system specification

laws of d hour 1
physics d minute 60




Software Verification 4/35

software system specification
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abstraction = trust

* easy to understand
* precise, unambiguous
* application-specific




%fh, Example: Flashix [Reif+, 2009...]
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Theory: step-wise refinement
with power-cuts and concurrency

Practical: >15KLoC formal models and proofs
follow-up: trustworthy code generator

start

3 PhDs defended, ~20 papers published i
N




Example: Array List in Dafny 6/35

class ArrayList<T> {

var data: array<T> * behavior: easy & intuitive
var length: int * implementation as well as
ghost var content: seq<T> abstraction mechanism is

private to the class

method add(last: T)

ensures content = old(content) + [last]
requires invariant()
ensures invariant()



Example: Array List in Dafny 7/35

class ArrayList<T> {

var data: array<T> * behavior: easy & intuitive
var length: int * implementation as well as
ghost var content: seq<T> abstraction mechanism is

private to the class

method add(last: T)

ensures content = old(content) + [last]
requires invariant()
ensures invariant()

predicate invariant() { ... } <<::::
}




Actually... 8/35

Software Engineers:
“formal = difficult & strange”

class ArrayList<T> {
var data: array<T>
var length: 1int
R AAY &0 KAMVARVYE AskOexe

method add(last: T)
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Example: Specification Inference 9/35

method Abs(x: int)
returns (y: int)

{
if 0 < x then {
y = X;
} else {
y = -X;



Example: Specification Inference 10/35

method Abs(x: int)
returns (y: int)
requires true

ensures 0 < X = y = X
ensures x < 0 = y = -X
{
if 0 < x then {
y = X5
} else {
y = =X,



Contribution: An Approach for the 11/35
Inference of Module Abstractions

behavioral (= executable)
implementation

* state: concrete data
structures

* behaviors of operations
defined by programs

Framework: Structured Algebraic Specifications [Reif+ 98, ...]



Contribution: An Approach for the 12/35
Inference of Module Abstractions

behavioral (= executable)

implementation

* state: concrete data
structures

* behaviors of operations
defined by programs

o

axiomatic (= abstract)
characterization

inference
algorithm

* state: implicit as sequences
of update operations

* behaviors: congruence
from observer operations

Framework: Structured Algebraic Specifications [Reif+ 98, ...]




N Behavioral Equivalence 13/35

“Observable” module () [Goguen 99]

* type St state representation
behavioral

* obs: In x St — Out observer operations signature

. update operations



N Behavioral Equivalence 14/35

“Observable” module () [Goguen 99]

* type St state representation
behavioral

* obs: In x St — Out observer operations signature

* upd: In x St — St  update operations

Theorem [Bidoit & Hennicker 99]: Unique model class when
states are identified by the observations one can make
st;, = st, & V in. obs(in, sti) = obs(in, st,)
observations can be explained from prior states via lemmas
obs(in, upd(in', st)) = x(in, in’, obs(_, st))




Example: Stacks

behavioral (= executable)
implementation

type St(a) := List(a)

() = []
(X, XS) = X :: XS
([1) = []
(x :: XS) := Xxs
top([]) = None
top(x xs) := Some(x)

15/35



Example: Stacks

behavioral (= executable)
implementation

type St(a) := List(a)

empty() = []
push(x, Xs) = X :: XS
pop(L]) =[]
pop(x :: XS) := XS
top([]) := None
top(x :: xs) := Some(x)

16/35

axiomatic (= abstract)
characterization

type St(a) generated by
empty, push, pop

top(empty()) = 77?7
top(push(x, st)) = 2?27
top(pop(st)) = 77?7
st; = st

& top(st;) = top(st,)



Developing the Axiomatization 17/35

top( () = 222



Developing the Axiomatization 18/35

top( ()) = top([]) = 2727

N

temporarily looking
under the hood




Developing the Axiomatization 19/35

top(empty()) = top([]) = None ... but obtain result

with no further
/\_ reference to state

temporarily looking
under the hood




Developing the Axiomatization 20/35

top( ()) = top([]) = None
top( (x, xs)) = top(x :: xs) = Some(x)

top(pop(xs))

— 777



Developing the Axiomatization 21/35

top(empty()) = top([]) = None
top(push(x, xs)) = top(x :: xs) = Some(x)

top(pop(xs))
=— match xs

case [] = None
case y :: ys = top(ys)

AN

discerns cases
to apply Def. pop




Developing the Axiomatization 22/35

top(empty()) = top([]) = None

top(push(x, xs)) = top(x :: xs) = Some(x)

top(pop(xs)) A
= match Xs
case [] — None not an acceptable lemma
case y = ys = top(ys) >  top is too weak observer
k * results in bad equivalence
discerns cases
to apply Deft. pop




Inference of Module Abstractions 23/35

Given: module implementation (M)

Goal: find nice characterization of possible behaviors

Contribution

N Structured: theoretical foundations

{0} Automatic:  provide an algorithm

74 “Towards”™  lemma inference as key building block



N Adding Expressiveness

Idea 1: “reify” problematic updates as data
data I := o | Pop(I)

Idea 2: introduce generalized observers

top*(O, st) «> top(st)

topx(Pop(c), st) «> top*(c, pop(s

24/35

n

- defines top* during
lemma discovery

¢ defines top in the
axiomatic spec.

Expectation: lemmas for such observers “more feasible”




N Adding Expressiveness

Idea 1: “reify” problematic updates as data
data I := o | Pop(I)

Idea 2: introduce generalized observers
top*(O, st) «> top(st)
topx(Pop(c), st) <> top*(c, pop(st))

Expectation: lemmas for such observers “more feasible”

Consequence: behavioral equivalence now strong enough
st; = st
& V c. topx(c, st;) = topx(c, st,)

Proposition: suffices to work with generalized observers only

25/35



Completing the Axiomatization 26/35

topx(Pop(c), push(x, st)) via the implementation:
= top=*(c, st) pop(push(x, xs)) = xs

topx(c, pop(st))
= topx(Pop(c), st) by construction

N\

topx(c, empty())
=— Nonhe

> “obvious”

topx(o, push(x, st))
= Some(x)




Inference of Module Abstractions 27/35

Given: module implementation (M)

Goal: find nice characterization of possible behaviors

Contribution

N Structured: theoretical foundations

{O} Automatic:  provide an algorithm

74 “Towards”™  lemma inference as key building block



{O; Inference Algorithm 28/35

Input System as Behavioral Algebraic Specification

Output Axiomatic Characterization + Signature Extension

State in i-th refinement loop

* reified operations data I, := O |

* unsolved equations obsx(in, c, (in', st)) = 27?7
e discovered lemmas ... = ¥(in, in’, obs*(_, st))
Oracles

* discovery mechanism for lemmas

* calculation of global well-founded order



Inference of Module Abstractions 29/35

Given: module implementation (M)

Goal: find nice characterization of possible behaviors

Contribution

N Structured: theoretical foundations

{0} Automatic:  provide an algorithm




7% Lemma Inference as Key Building Block 30/35

Task: Given lhs(x) = ??? find rhs so that 1hs(x) = rhs(x)

Avoid:  Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]

* huge combinatorial search space rhs € Terms(vars=x,size=k)



7% Lemma Inference as Key Building Block 31/35

Task: Given lhs(x) = ??? find rhs so that 1hs(x) = rhs(x)

Avoid:  Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]

* huge combinatorial search space rhs € Terms(vars=x,size=k)

Idea [Ernst+]: calculate with functions [Burstall, Darlington 77])

* need new methods for comparison, e.g., recursive unification

* Insights (not here): much more efficient, lemmas of “good” shape



Example: Lemmas from Fusion [ Wadler 88] 32/35

Let fg(c) := topx(c, empty())



Example: Lemmas from Fusion [ Wadler 88] 33/35

Let fg(c) := topx(c, empty())
fg(c) = topx*(c, empty()) 2 unfold fg
= match c
case O = topx(o, empty()) = None

case Pop(c') = ...



Example: Lemmas from Fusion [ Wadler 88] 34/35

Let fg(c) := topx(c, empty())
() = top(c, cnpty()) = ol 78
= match c
case O = topx*(o, empty()) = None
case Pop(c') = topx(c’, pop(empty()) = fg(c')
N
fold fg

Now easy to recognize that fg is constant None




Summary 35/35

Contribution:

Approach to infer axiomatic abstractions from implementations

Outlook
* implementation and experiments

* demonstrate lemma discovery as a key enabler for novel reasoning

Big thanks to you, Prof. Reif, for your inspiration and guidance
during the Elite-SE master and during the PhD.

We wish you a happy birthday and lots of interesting research yet to come!
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