
Towards Automatic Structured

Inference of Module Abstraction

Festkolloquium on the occasion of
the 65th birthday of Prof. Dr. Wolfgang Reif

June 6 -- Augsburg University

Gidon Ernst
Marian Lingsch-Rosenfeld

3/35Software Verification (Analogy)

technical system specification

laws of
physics

d hour
d minute

= 1
60

4/35Software Verification

specification

read(write(x)) = x

O(n)
laws of

programming

software system

abstraction = trust
● easy to understand
● precise, unambiguous
● application-specific

5/35Example: Flashix [Reif+, 2009...]

endstart

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

Theory: step-wise refinement
with power-cuts and concurrency

Practical: >15KLoC formal models and proofs
follow-up: trustworthy code generator

3 PhDs defended, ~20 papers published

path lookup

directory
tree

file
content

file handle

flash
store

flash
index

RAM
index

...

log ...

index
layer

journal
layer

thesis.tex

endstart

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

Dynamic
Logic

challenges:
abstraction and

modularity

6/35Example: Array List in Dafny

class ArrayList<T> {
 var data: array<T>
 var length: int
 ghost var content: seq<T>

 method add(last: T)
 ensures content == old(content) + [last]
 requires invariant()
 ensures invariant()

}

● behavior: easy & intuitive
● implementation as well as

abstraction mechanism is
private to the class

7/35Example: Array List in Dafny

class ArrayList<T> {
 var data: array<T>
 var length: int
 ghost var content: seq<T>

 method add(last: T)
 ensures content == old(content) + [last]
 requires invariant()
 ensures invariant()

 predicate invariant() { ... }
}

● behavior: easy & intuitive
● implementation as well as

abstraction mechanism is
private to the class

8/35Actually...

class ArrayList<T> {
 var data: array<T>
 var length: int

 ghost var content: seq<T>

 method add(last: T)

 ensures content == old(content) + [last]

 requires invariant()

 ensures invariant()

 predicate invariant() { ... }

}

Software Engineers:
“formal == difficult & strange”

9/35Example: Specification Inference

method Abs(x: int)

 returns (y: int)

{

 if 0 <= x then {

 y := x;

 } else {

 y := -x;

 }

}

10/35Example: Specification Inference

method Abs(x: int)

 returns (y: int)

 requires true

 ensures 0 <= x ==> y == x

 ensures x < 0 ==> y == -x

{

 if 0 <= x then {

 y := x;

 } else {

 y := -x;

 }

}

11/35Contribution: An Approach for the
Inference of Module Abstractions

behavioral (= executable)
implementation

Framework: Structured Algebraic Specifications [Reif+ 98, ...]

● state: concrete data
structures

● behaviors of operations
defined by programs

12/35Contribution: An Approach for the
Inference of Module Abstractions

axiomatic (= abstract)
characterization

behavioral (= executable)
implementation

inference
algorithm

Framework: Structured Algebraic Specifications [Reif+ 98, ...]

● state: concrete data
structures

● behaviors of operations
defined by programs

● state: implicit as sequences
of update operations

● behaviors: congruence
from observer operations

13/35✎ Behavioral Equivalence

“Observable” module (🐘) [Goguen 99]
● type St state representation

● obs: In x St -> Out observer operations

● upd: In x St -> St update operations

behavioral
signature

14/35✎ Behavioral Equivalence

“Observable” module (🐘) [Goguen 99]
● type St state representation

● obs: In x St -> Out observer operations

● upd: In x St -> St update operations

behavioral
signature

Theorem [Bidoit & Hennicker 99]: Unique model class when

states are identified by the observations one can make
 st1 == st2 <=> ∀ in. obs(in, st1) == obs(in, st2)

observations can be explained from prior states via lemmas
 obs(in, upd(in’, st)) == χ(in, in’, obs(_, st))

15/35Example: Stacks

behavioral (= executable)
implementation

type St⟨α⟩ := List⟨α⟩

empty() := []
push(x, xs) := x :: xs
pop([]) := []
pop(x :: xs) := xs
top([]) := None
top(x :: xs) := Some(x)

16/35Example: Stacks

behavioral (= executable)
implementation

type St⟨α⟩ := List⟨α⟩

empty() := []
push(x, xs) := x :: xs
pop([]) := []
pop(x :: xs) := xs
top([]) := None
top(x :: xs) := Some(x)

axiomatic (= abstract)
characterization

type St⟨α⟩ generated by
empty, push, pop

top(empty()) == ???
top(push(x, st)) == ???
top(pop(st)) == ???

st1 == st2

 <=> top(st1) == top(st2)

17/35Developing the Axiomatization

top(empty()) == ???

18/35Developing the Axiomatization

top(empty()) == top([]) == ???

temporarily looking
under the hood

19/35Developing the Axiomatization

top(empty()) == top([]) == None

temporarily looking
under the hood

... but obtain result
with no further

reference to state

20/35Developing the Axiomatization

top(empty()) == top([]) == None

top(push(x, xs)) == top(x :: xs) == Some(x)

top(pop(xs))
 == ???

21/35Developing the Axiomatization

top(empty()) == top([]) == None

top(push(x, xs)) == top(x :: xs) == Some(x)

top(pop(xs))
 == match xs
 case [] => None
 case y :: ys => top(ys)

discerns cases
to apply Def. pop

22/35Developing the Axiomatization

top(empty()) == top([]) == None

top(push(x, xs)) == top(x :: xs) == Some(x)

top(pop(xs))
 == match xs
 case [] => None
 case y :: ys => top(ys)

discerns cases
to apply Def. pop

not an acceptable lemma

● top is too weak observer
● results in bad equivalence

23/35Inference of Module Abstractions

Given: module implementation ()🐘
Goal: find nice characterization of possible behaviors

Contribution

✎ Structured: theoretical foundations

 Automatic: provide an algorithm

 “Towards”:🚧 lemma inference as key building block

24/35✎ Adding Expressiveness

Idea 1: “reify” problematic updates as data

 data Γ := □ | Pop(Γ)

Idea 2: introduce generalized observers

 top*(□, st) <~> top(st)

 top*(Pop(c), st) <~> top*(c, pop(st))

Expectation: lemmas for such observers “more feasible”

~> defines top* during
 lemma discovery
<~ defines top in the
 axiomatic spec.

25/35✎ Adding Expressiveness

Idea 1: “reify” problematic updates as data

 data Γ := □ | Pop(Γ)

Idea 2: introduce generalized observers

 top*(□, st) <~> top(st)

 top*(Pop(c), st) <~> top*(c, pop(st))

Expectation: lemmas for such observers “more feasible”

Consequence: behavioral equivalence now strong enough
 st1 == st2

 <=> ∀ c. top*(c, st1) == top*(c, st2)

Proposition: suffices to work with generalized observers only

26/35Completing the Axiomatization

top*(Pop(c), push(x, st))
 == top*(c, st)

top*(c, pop(st))
 == top*(Pop(c), st)

top*(c, empty())
 == None

top*(□, push(x, st))
 == Some(x)

“obvious”

via the implementation:
pop(push(x, xs)) == xs

by construction

27/35Inference of Module Abstractions

Given: module implementation ()🐘
Goal: find nice characterization of possible behaviors

Contribution

✎ Structured: theoretical foundations

 Automatic: provide an algorithm

 “Towards”:🚧 lemma inference as key building block

28/35Inference Algorithm

Input System as Behavioral Algebraic Specification

Output Axiomatic Characterization + Signature Extension

State in i-th refinement loop
● reified operations data Γi := □ | ...

● unsolved equations obs*(in, c, upd(in’, st)) == ???

● discovered lemmas ... == χ(in, in’, obs*(_, st))

Oracles
● discovery mechanism for lemmas
● calculation of global well-founded order

29/35Inference of Module Abstractions

Given: module implementation ()🐘
Goal: find nice characterization of possible behaviors

Contribution

✎ Structured: theoretical foundations

 Automatic: provide an algorithm

 “Towards”:🚧 lemma inference as key building block

30/35 🚧 Lemma Inference as Key Building Block

Task: Given lhs(x) == ??? find rhs so that lhs(x) == rhs(x)

Avoid: Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]
● huge combinatorial search space rhs ∈ Terms(vars=x,size=k)

31/35 🚧 Lemma Inference as Key Building Block

Task: Given lhs(x) == ??? find rhs so that lhs(x) == rhs(x)

Avoid: Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]
● huge combinatorial search space rhs ∈ Terms(vars=x,size=k)

Idea [Ernst+]: calculate with functions [Burstall, Darlington 77])
● need new methods for comparison, e.g., recursive unification
● Insights (not here): much more efficient, lemmas of “good” shape

32/35Example: Lemmas from Fusion [Wadler 88]

Let fg(c) := top∗(c, empty())

33/35Example: Lemmas from Fusion [Wadler 88]

Let fg(c) := top∗(c, empty())

fg(c) == top∗(c, empty())

 == match c

 case □ => top∗(□, empty()) == None

 case Pop(c’) => ...

unfold fg

34/35Example: Lemmas from Fusion [Wadler 88]

Let fg(c) := top∗(c, empty())

fg(c) == top∗(c, empty())

 == match c

 case □ => top∗(□, empty()) == None

 case Pop(c’) => top*(c’, pop(empty()) == fg(c’)

unfold fg

fold fg

Now easy to recognize that fg is constant None

35/35Summary

Contribution:

Approach to infer axiomatic abstractions from implementations

Outlook
● implementation and experiments
● demonstrate lemma discovery as a key enabler for novel reasoning

Big thanks to you, Prof. Reif, for your inspiration and guidance
during the Elite-SE master and during the PhD.

We wish you a happy birthday and lots of interesting research yet to come!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

