Towards Automatic Structured

Inference of Module Abstraction

Festkolloquium on the occasion of
the 65" birthday of Prof. Dr. Wolfgang Reif
June 6 -- Augsburg University

Gidon Ernst
Marian Lingsch-Rosenfeld

. SoSy-Lab
LMU|::

Software Systems

Hey! Would you mind taking
over the (meta) physical purpose
of this parable for me briefly?

Software Verification (Analogy) 3/35

technical system specification

laws of d hour 1
physics d minute 60

Software Verification 4/35

software system specification

= p->pSrc; .
= bplert (1)) laws of read(write(x)) = x
i=0; i<pSrc—>nSrc—1§ i++, pRight++, plLeft++){ .
gltiesgﬁf;%l;ﬂab = pRight->pTab; prOgrammlng
(NEVER(pLeft->pTab==0 || pRightTab==0)) con O(n)

Juter = (pRight->fg.jointype & JT_OUTER)!=0;

abstraction = trust

* easy to understand
* precise, unambiguous
* application-specific

%fh, Example: Flashix [Reif+, 2009...]

: |
W johndoe - File Manager
File Edit View Go Help
%« & 4 0r & nome fjohndoe/ / 3]
DEVICES - . -
File System 1 - -
= W R R
PLACES 2 ’
& johndoe Desktop Documents Downloads Music
B Desktop
2 Wastebas| ket | O % Al S o
—_— L 4 - y - .
METWORK | pictures Public Templates Videos D y namic directory
=! Browse Network
I . tree
8items, 8 file
content

RAM

Theory: step-wise refinement
with power-cuts and concurrency

Practical: >15KLoC formal models and proofs
follow-up: trustworthy code generator

start

3 PhDs defended, ~20 papers published i
N

Example: Array List in Dafny 6/35

class ArrayList<T> {

var data: array<T> * behavior: easy & intuitive
var length: int * implementation as well as
ghost var content: seq<T> abstraction mechanism is

private to the class

method add(last: T)

ensures content = old(content) + [last]
requires invariant()
ensures invariant()

Example: Array List in Dafny 7/35

class ArrayList<T> {

var data: array<T> * behavior: easy & intuitive
var length: int * implementation as well as
ghost var content: seq<T> abstraction mechanism is

private to the class

method add(last: T)

ensures content = old(content) + [last]
requires invariant()
ensures invariant()

predicate invariant() { ... } <<::::
}

Actually... 8/35

Software Engineers:
“formal = difficult & strange”

class ArrayList<T> {
var data: array<T>
var length: 1int
R AAY &0 KAMVARVYE AskOexe

method add(last: T)
SHAOTkA K EVEY 11 @5k IMViEV = 1= @8 AV
Ok 1@k A Rkl)keeBV > =
SHASTkA KPS kEEV =

Okt Wk RS SOHSEVY= ¢ L, @
}

Example: Specification Inference 9/35

method Abs(x: int)
returns (y: int)

{
if 0 < x then {
y = X;
} else {
y = -X;

Example: Specification Inference 10/35

method Abs(x: int)
returns (y: int)
requires true

ensures 0 < X = y = X
ensures x < 0 = y = -X
{
if 0 < x then {
y = X5
} else {
y = =X,

Contribution: An Approach for the 11/35
Inference of Module Abstractions

behavioral (= executable)
implementation

* state: concrete data
structures

* behaviors of operations
defined by programs

Framework: Structured Algebraic Specifications [Reif+ 98, ...]

Contribution: An Approach for the 12/35
Inference of Module Abstractions

behavioral (= executable)

implementation

* state: concrete data
structures

* behaviors of operations
defined by programs

o

axiomatic (= abstract)
characterization

inference
algorithm

* state: implicit as sequences
of update operations

* behaviors: congruence
from observer operations

Framework: Structured Algebraic Specifications [Reif+ 98, ...]

N Behavioral Equivalence 13/35

“Observable” module () [Goguen 99]

* type St state representation
behavioral

* obs: In x St — Out observer operations signature

. update operations

N Behavioral Equivalence 14/35

“Observable” module () [Goguen 99]

* type St state representation
behavioral

* obs: In x St — Out observer operations signature

* upd: In x St — St update operations

Theorem [Bidoit & Hennicker 99]: Unique model class when
states are identified by the observations one can make
st;, = st, & V in. obs(in, sti) = obs(in, st,)
observations can be explained from prior states via lemmas
obs(in, upd(in', st)) = x(in, in’, obs(_, st))

Example: Stacks

behavioral (= executable)
implementation

type St(a) := List(a)

() = []
(X, XS) = X :: XS
([1) = []
(x :: XS) := Xxs
top([]) = None
top(x xs) := Some(x)

15/35

Example: Stacks

behavioral (= executable)
implementation

type St(a) := List(a)

empty() = []
push(x, Xs) = X :: XS
pop(L]) =[]
pop(x :: XS) := XS
top([]) := None
top(x :: xs) := Some(x)

16/35

axiomatic (= abstract)
characterization

type St(a) generated by
empty, push, pop

top(empty()) = 77?7
top(push(x, st)) = 2?27
top(pop(st)) = 77?7
st; = st

& top(st;) = top(st,)

Developing the Axiomatization 17/35

top(() = 222

Developing the Axiomatization 18/35

top(()) = top([]) = 2727

N

temporarily looking
under the hood

Developing the Axiomatization 19/35

top(empty()) = top([]) = None ... but obtain result

with no further
/_ reference to state

temporarily looking
under the hood

Developing the Axiomatization 20/35

top(()) = top([]) = None
top((x, xs)) = top(x :: xs) = Some(x)

top(pop(xs))

— 777

Developing the Axiomatization 21/35

top(empty()) = top([]) = None
top(push(x, xs)) = top(x :: xs) = Some(x)

top(pop(xs))
=— match xs

case [] = None
case y :: ys = top(ys)

AN

discerns cases
to apply Def. pop

Developing the Axiomatization 22/35

top(empty()) = top([]) = None

top(push(x, xs)) = top(x :: xs) = Some(x)

top(pop(xs)) A
= match Xs
case [] — None not an acceptable lemma
case y = ys = top(ys) > top is too weak observer
k * results in bad equivalence
discerns cases
to apply Deft. pop

Inference of Module Abstractions 23/35

Given: module implementation (M)

Goal: find nice characterization of possible behaviors

Contribution

N Structured: theoretical foundations

{0} Automatic: provide an algorithm

74 “Towards”™ lemma inference as key building block

N Adding Expressiveness

Idea 1: “reify” problematic updates as data
data I := o | Pop(I)

Idea 2: introduce generalized observers

top*(O, st) «> top(st)

topx(Pop(c), st) «> top*(c, pop(s

24/35

n

- defines top* during
lemma discovery

¢ defines top in the
axiomatic spec.

Expectation: lemmas for such observers “more feasible”

N Adding Expressiveness

Idea 1: “reify” problematic updates as data
data I := o | Pop(I)

Idea 2: introduce generalized observers
top*(O, st) «> top(st)
topx(Pop(c), st) <> top*(c, pop(st))

Expectation: lemmas for such observers “more feasible”

Consequence: behavioral equivalence now strong enough
st; = st
& V c. topx(c, st;) = topx(c, st,)

Proposition: suffices to work with generalized observers only

25/35

Completing the Axiomatization 26/35

topx(Pop(c), push(x, st)) via the implementation:
= top=*(c, st) pop(push(x, xs)) = xs

topx(c, pop(st))
= topx(Pop(c), st) by construction

N\

topx(c, empty())
=— Nonhe

> “obvious”

topx(o, push(x, st))
= Some(x)

Inference of Module Abstractions 27/35

Given: module implementation (M)

Goal: find nice characterization of possible behaviors

Contribution

N Structured: theoretical foundations

{O} Automatic: provide an algorithm

74 “Towards”™ lemma inference as key building block

{O; Inference Algorithm 28/35

Input System as Behavioral Algebraic Specification

Output Axiomatic Characterization + Signature Extension

State in i-th refinement loop

* reified operations data I, := O |

* unsolved equations obsx(in, c, (in', st)) = 27?7
e discovered lemmas ... = ¥(in, in’, obs*(_, st))
Oracles

* discovery mechanism for lemmas

* calculation of global well-founded order

Inference of Module Abstractions 29/35

Given: module implementation (M)

Goal: find nice characterization of possible behaviors

Contribution

N Structured: theoretical foundations

{0} Automatic: provide an algorithm

7% Lemma Inference as Key Building Block 30/35

Task: Given lhs(x) = ??? find rhs so that 1hs(x) = rhs(x)

Avoid: Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]

* huge combinatorial search space rhs € Terms(vars=x,size=k)

7% Lemma Inference as Key Building Block 31/35

Task: Given lhs(x) = ??? find rhs so that 1hs(x) = rhs(x)

Avoid: Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]

* huge combinatorial search space rhs € Terms(vars=x,size=k)

Idea [Ernst+]: calculate with functions [Burstall, Darlington 77])

* need new methods for comparison, e.g., recursive unification

* Insights (not here): much more efficient, lemmas of “good” shape

Example: Lemmas from Fusion [Wadler 88] 32/35

Let fg(c) := topx(c, empty())

Example: Lemmas from Fusion [Wadler 88] 33/35

Let fg(c) := topx(c, empty())
fg(c) = topx*(c, empty()) 2 unfold fg
= match c
case O = topx(o, empty()) = None

case Pop(c') = ...

Example: Lemmas from Fusion [Wadler 88] 34/35

Let fg(c) := topx(c, empty())
() = top(c, cnpty()) = ol 78
= match c
case O = topx*(o, empty()) = None
case Pop(c') = topx(c’, pop(empty()) = fg(c')
N
fold fg

Now easy to recognize that fg is constant None

Summary 35/35

Contribution:

Approach to infer axiomatic abstractions from implementations

Outlook
* implementation and experiments

* demonstrate lemma discovery as a key enabler for novel reasoning

Big thanks to you, Prof. Reif, for your inspiration and guidance
during the Elite-SE master and during the PhD.

We wish you a happy birthday and lots of interesting research yet to come!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

