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4/35Software Verification

specification

read(write(x)) = x

O(n)
laws of 

programming

software system

abstraction = trust
● easy to understand
● precise, unambiguous
● application-specific



5/35Example: Flashix [Reif+, 2009...]

endstart
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abstract view of
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node groups

Theory: step-wise refinement
with power-cuts and concurrency

Practical: >15KLoC formal models and proofs
follow-up: trustworthy code generator

3 PhDs defended, ~20 papers published
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6/35Example: Array List in Dafny

class ArrayList<T> {
  var data: array<T>
  var length: int
  ghost var content: seq<T>

  method add(last: T)
    ensures  content == old(content) + [last]
    requires invariant()
    ensures  invariant()

}

● behavior: easy & intuitive
● implementation as well as 

abstraction mechanism is 
private to the class



7/35Example: Array List in Dafny

class ArrayList<T> {
  var data: array<T>
  var length: int
  ghost var content: seq<T>

  method add(last: T)
    ensures  content == old(content) + [last]
    requires invariant()
    ensures  invariant()

  predicate invariant() { ... }
}

● behavior: easy & intuitive
● implementation as well as 

abstraction mechanism is 
private to the class



8/35Actually...

class ArrayList<T> {
  var data: array<T>
  var length: int

    ghost var content: seq<T>

  method add(last: T)

      ensures  content == old(content) + [last]

      requires invariant()

      ensures   invariant()

  predicate invariant() { ... }

}

Software Engineers:
“formal == difficult & strange”



9/35Example: Specification Inference

method Abs(x: int)

    returns (y: int)

{

    if 0 <= x then {

        y := x;

    } else {

        y := -x;

    }

}



10/35Example: Specification Inference

method Abs(x: int)

    returns (y: int)

    requires true

    ensures 0 <= x ==> y ==  x

    ensures x  < 0 ==> y == -x

{

    if 0 <= x then {

        y := x;

    } else {

        y := -x;

    }

}



11/35Contribution: An Approach for the
Inference of Module Abstractions

behavioral (= executable)
implementation

Framework: Structured Algebraic Specifications [Reif+ 98, ...]

● state: concrete data 
structures

● behaviors of operations 
defined by programs



12/35Contribution: An Approach for the
Inference of Module Abstractions

axiomatic (= abstract)
characterization

behavioral (= executable)
implementation

inference 
algorithm

Framework: Structured Algebraic Specifications [Reif+ 98, ...]

● state: concrete data 
structures

● behaviors of operations 
defined by programs

● state: implicit as sequences 
of update operations

● behaviors: congruence 
from observer operations



13/35✎  Behavioral Equivalence

“Observable” module (🐘) [Goguen 99]
● type St state representation

● obs: In x St -> Out observer operations 

● upd: In x St -> St update operations

behavioral
signature



14/35✎  Behavioral Equivalence

“Observable” module (🐘) [Goguen 99]
● type St state representation

● obs: In x St -> Out observer operations 

● upd: In x St -> St update operations

behavioral
signature

Theorem [Bidoit & Hennicker 99]: Unique model class when

states are identified by the observations one can make
  st1 == st2 <=> ∀ in. obs(in, st1) == obs(in, st2)

observations can be explained from prior states via lemmas
  obs(in, upd(in’, st)) == χ(in, in’, obs(_, st))



15/35Example: Stacks

behavioral (= executable)
implementation

type St⟨α⟩ := List⟨α⟩

empty()      := []
push(x, xs)  := x :: xs
pop([])      := []
pop(x :: xs) := xs
top([])      := None
top(x :: xs) := Some(x)



16/35Example: Stacks

behavioral (= executable)
implementation

type St⟨α⟩ := List⟨α⟩

empty()      := []
push(x, xs)  := x :: xs
pop([])      := []
pop(x :: xs) := xs
top([])      := None
top(x :: xs) := Some(x)

axiomatic (= abstract)
characterization

type St⟨α⟩ generated by
empty, push, pop

top(empty())     == ???
top(push(x, st)) == ???
top(pop(st))     == ???

st1 == st2

  <=> top(st1) == top(st2)



17/35Developing the Axiomatization

top(empty()) == ???



18/35Developing the Axiomatization

top(empty()) == top([]) == ???

temporarily looking
under the hood



19/35Developing the Axiomatization

top(empty()) == top([]) == None

temporarily looking
under the hood

... but obtain result
with no further 

reference to state



20/35Developing the Axiomatization

top(empty()) == top([]) == None

top(push(x, xs)) == top(x :: xs) == Some(x)

top(pop(xs))
  == ???
 



21/35Developing the Axiomatization

top(empty()) == top([]) == None

top(push(x, xs)) == top(x :: xs) == Some(x)

top(pop(xs))
  == match xs
     case []      => None
     case y :: ys => top(ys)

discerns cases
to apply Def. pop



22/35Developing the Axiomatization

top(empty()) == top([]) == None

top(push(x, xs)) == top(x :: xs) == Some(x)

top(pop(xs))
  == match xs
     case []      => None
     case y :: ys => top(ys)

discerns cases
to apply Def. pop

not an acceptable lemma

● top is too weak observer
● results in bad equivalence



23/35Inference of Module Abstractions

Given: module implementation ( )🐘
Goal: find nice characterization of possible behaviors

Contribution

✎ Structured: theoretical foundations

 Automatic: provide an algorithm

 “Towards”:🚧 lemma inference as key building block



24/35✎  Adding Expressiveness

Idea 1: “reify” problematic updates as data

  data Γ := □ | Pop(Γ)

Idea 2: introduce generalized observers

  top*(□, st)      <~> top(st)

  top*(Pop(c), st) <~> top*(c, pop(st))

Expectation: lemmas for such observers “more feasible”

~> defines top* during
     lemma discovery
<~ defines top in the
     axiomatic spec.



25/35✎  Adding Expressiveness

Idea 1: “reify” problematic updates as data

  data Γ := □ | Pop(Γ)

Idea 2: introduce generalized observers

  top*(□, st)      <~> top(st)

  top*(Pop(c), st) <~> top*(c, pop(st))

Expectation: lemmas for such observers “more feasible”

Consequence: behavioral equivalence now strong enough
  st1 == st2

    <=> ∀ c. top*(c, st1) == top*(c, st2)

Proposition: suffices to work with generalized observers only



26/35Completing the Axiomatization

top*(Pop(c), push(x, st))
  == top*(c, st)

top*(c, pop(st))
  == top*(Pop(c), st)

top*(c, empty())
  == None

top*(□, push(x, st))
  == Some(x)

“obvious”

via the implementation:
pop(push(x, xs)) == xs

by construction



27/35Inference of Module Abstractions

Given: module implementation ( )🐘
Goal: find nice characterization of possible behaviors

Contribution

✎ Structured: theoretical foundations

 Automatic: provide an algorithm

 “Towards”:🚧 lemma inference as key building block



28/35Inference Algorithm

Input System as Behavioral Algebraic Specification

Output Axiomatic Characterization + Signature Extension

State in i-th refinement loop
● reified operations data Γi := □ | ...

● unsolved equations obs*(in, c, upd(in’, st)) == ???

● discovered lemmas       ... == χ(in, in’, obs*(_, st))

Oracles
● discovery mechanism for lemmas
● calculation of global well-founded order



29/35Inference of Module Abstractions

Given: module implementation ( )🐘
Goal: find nice characterization of possible behaviors

Contribution

✎ Structured: theoretical foundations

 Automatic: provide an algorithm

 “Towards”:🚧 lemma inference as key building block



30/35 🚧 Lemma Inference as Key Building Block

Task: Given lhs(x) == ??? find rhs so that  lhs(x) == rhs(x)

Avoid: Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]
● huge combinatorial search space rhs ∈ Terms(vars=x,size=k)



31/35 🚧 Lemma Inference as Key Building Block

Task: Given lhs(x) == ??? find rhs so that  lhs(x) == rhs(x)

Avoid: Overly-complex and redundant rhs

Classic approach: term enumeration [Buchberger, Claessen, ...]
● huge combinatorial search space rhs ∈ Terms(vars=x,size=k)

Idea [Ernst+]: calculate with functions [Burstall, Darlington 77])
● need new methods for comparison, e.g., recursive unification
● Insights (not here): much more efficient, lemmas of “good” shape



32/35Example: Lemmas from Fusion [Wadler 88]

Let  fg(c) := top∗(c, empty())



33/35Example: Lemmas from Fusion [Wadler 88]

Let  fg(c) := top∗(c, empty())

fg(c) == top∗(c, empty())

      == match c

         case □       => top∗(□, empty()) == None

         case Pop(c’) => ...

unfold fg



34/35Example: Lemmas from Fusion [Wadler 88]

Let  fg(c) := top∗(c, empty())

fg(c) == top∗(c, empty())

      == match c

         case □       => top∗(□, empty()) == None

         case Pop(c’) => top*(c’, pop(empty()) == fg(c’)

unfold fg

fold fg

Now easy to recognize that fg is constant None



35/35Summary

Contribution:

Approach to infer axiomatic abstractions from implementations

Outlook
● implementation and experiments
● demonstrate lemma discovery as a key enabler for novel reasoning

Big thanks to you, Prof. Reif, for your inspiration and guidance
during the Elite-SE master and during the PhD.

We wish you a happy birthday and lots of interesting research yet to come!
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