Benchmarking and
Preserving Tools for Formal Methods

Dirk Beyer

2025-09-05, at Boise State University

Software Systems

/ 51

Part 1: Reliable Benchmarking

Dirk Beyer, Stefan Léwe, and Philipp Wendler.
Reliable Benchmarking;:

Requirements and Solutions. [1]

STTT 2019

https://doi.org/10.1007/s10009-017-0469-y

Motivation — Example SV-COMP 2025

» Competition on Software Verification (SV-COMP) [2]

> Largest competition in area of formal methods
(consider also SAT-COMP and SMT-COMP)

> 62 verifiers, 18 witness validators

» 33353 verification tasks

> 942 284 verification runs, 2312 days of CPU time

» 21.8 million validation runs, 2573 days of CPU time

Motivation — Example CPAchecker

» Regression tests for development

» 50 tool configurations with each on avg. 4000 runs
» In total more than 150 million runs in 8 years

» We use BencHCrouD [3] with BEncHEXEC [1]

» Together with research and teaching experiments:
About 1 million executions per week

Evaluation of Research Result

» Result “Theorem”
Evaluation “Proof”

» Result “Algorithm”
Evaluation “Algorithm Analysis, properties, Big-O”

» Result “Heuristics for Complex Problems”
Evaluation “Performance Experiments”

5/ 51

Comparative Evaluation

» Old: Done by competitors
» New: Done by independent competitions

51

Background: Requirements

Repeatability
» everything documented
(machine, version of tool and OS, parameters)
» deterministic tool
> reliable benchmarking (here)
Reproducibility
> everything above
» availability of tool (FM-Tools),
benchmark set (SV-COMP), configuration,
environment (FM-Weck)
» published and archived, appropriate license
Replicability
(not discussed here)

Benchmarking is Important

» Evaluation of new approaches

» Evaluation of tools

» Competitions

» Tool development (testing, optimizations)

8 /51

Benchmarking is Hard

» Influence of 1/0
» Networking
» Distributed tools
» User input

/ 51

Benchmarking is Hard

Influence of I/

User input

Not relevant for :[;> Easy?
. asy’
most verification tools

51

Benchmarking is Hard

Influence of I/

User input

Not relevant for
most verification tools

» Different hardware
architectures

» Heterogeneity of tools

» Parallel benchmarks

Relevant!

51

Goals

» Reproducibility
» Avoid non-deterministic effects and interferences
» Provide defined set of resources

» Accurate results
» For verification tools (and similar)

» On Linux

10 /5

Checklist

1. Measure and Limit Resources Accurately
> Time
» Memory

Terminate Processes Reliably
Assign Cores Deliberately
Respect Non-Uniform Memory Access

Avoid Swapping

S T

Isolate Individual Runs

» Communication
> File system

Measure and Limit Resources Accurately

> Wall time and CPU time

» Define memory consumption

» Size of address space? Too large
» Size of heap? Too low
> Size of resident set (RSS)?

» Measure peak consumption
» Always define memory limit for reproducibility

» Include sub-processes

51

Measuring CPU time with “time”

~$ time verifier

real Xs
user Ys
sys Zs

13 /51

Measuring CPU time with “time”

~$ time verifier

-

\
4

s
AN

real Xs
user Ys
sys Zs

13 /51

Measuring CPU time with “time”

~$ time verifier CPU time may not be

incl in m remen
N N —\\ included easurement

s
AN

real Xs
user Ys
sys Zs

13 /51

Limiting memory with “ulimit”
~$ ulimit -v 1048576 # 1 GiB
~$ verifier

\
4 4

13 /51

Limiting memory with “ulimit”
~$ ulimit -v 1048576 # 1 GiB
~$ verifier

\
4 4

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
13 / 51

Process may use 1 GiB

Limiting memory with “ulimit”
~$ ulimit -v 1048576 # 1 GiB
~$ verifier

\
4 4

A va
A) N

What about shared memory?

13 /51

Terminate Processes Reliably

~$ verifier

-

\
4

A
A)

AN

. Process might keep running
~$ kill <PID> and occupy resources

13 /51

Assign Cores Deliberately

» Hyper Threading:
Multiple threads sharing execution units

» Shared caches

14 / 51

Respect Non-Uniform Memory Access (NUMA)

» Memory regions have different performance depending on
current CPU core

» Hierarchical NUMA makes things worse

15 / 51

Type 1stopo on your machine (Ubuntu: package hwloc)

Machine (256GB)

Socket P#0 (64GB) Socket F
| NUMANode P#0 (32GB) | NUM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core
| PU P#0 | | PUP#1 | | PUP#2 | | PUP#3 | | PU P#4 | | PUP#5 | | PUP#6 | | PUP#T | PU
| NUMANode P#1 (32GB) \’7 memory reglon NUM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core
| PUP#8 | | PU P#9 | | PU P#10 | | PUP#11 | | PU P#12 | | PUP#13 | | PU P#14 | | PU P#15 | PU
N
Socket P#1 (64GB) | core | Socket P
] I
I
| NUMANode P#2 (32GB) | NUM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core
| PU P#32 | | PU P#33 | | PUP#34 | | PU P#35 | | PU P#36 | | PU P#37 | | PU P#38 | | PU P#39 |

I

z
E
2

NUMANode P#3 (32GB) |

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core

| PU P#40 | | PU P#41 | | PU P#42 | | PU P#43 | | PU P#44 | | PU P#45 | | PU P#46 | | PU P#47 |

I

Isolate Individual Runs

> Excerpt of start script taken from some verifier in

SV-COMP:
... (tool started here)

killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

» Thanks for thinking of cleanup

17 / 51

Isolate Individual Runs

> Excerpt of start script taken from some verifier in
SV-COMP:

... (tool started here)

killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

» Thanks for thinking of cleanup
» But what if there are parallel runs? @ @

~

Isolate Individual Runs

» Temp files with constant names like /tmp/mytool. tmp
collide

» State stored in places like ~/.mytool
hinders reproducibility

> Sometimes even auto-generated

> Restrict changes to file system
as far as possible

18 / 51

Cgroups

» Linux kernel “control groups”

» Reliable tracking of spawned processes

» Resource limits and measurements per cgroup

> CPU time
> Memory
> 1/0 etc.

19 /51

Cgroups

> Hierarchical tree of sets

/]
et]

of processes

5542 (bash)
5544 (firefox)

~—

S

)

1130 (verifier)
1131 (subprocessl)

|

20 / 51

Namespaces

vV v Vvyy

Light-weight virtualization
Only one kernel running, no additional layers
Change how processes see the system

Identifiers like PIDs, paths, etc. can have different
meanings in each namespace

» PID 42 can be a different process in each namespace

» Directory / can be a different directory in each namespace
> ...

Can be used to build application containers
without possibility to escape

Usable without root access

Overlay File System

» Protect file system from changes made by subject tool
» Allow subject tool to write to specific folders
» Collect what is written to a folder (into the layer)

» Easy clean-up after execution of the subject tool

22 / 51

Overlay FS — Possible Directory Access Modes

Read Write temp | Write persistent
existing content content content
hidden X 4 X
read only v X X
overlay v v X
full access v X v

23 / 51

Benchmarking Containers

» Encapsulate groups of processes

» Limited resources (memory, cores)

» Total resource consumption measurable
>

All other processes hidden
and no communication with them

> Disabled network access

» Adjusted file-system layout
> Private /tmp
> Writes redirected to
temporary RAM disk

24 /51

BenchExec

» A Framework for Reliable Benchmarking
and Resource Measurement

» Provides benchmarking containers
based on cgroups, namespaces, overlay FS

» Allocates hardware resources appropriately

» Low system requirements
(modern Linux kernel and cgroups access)

Open source: Apache 2.0 License
Written in Python 3
https://github.com/sosy-lab/benchexec

Used in International Competition on Software Verification
(SV-COMP) and by StarExec

Originally developed for software-
verification, but applicable to
arbitrary tools

https://github.com/sosy-lab/benchexec

BenchExec Architecture

Bench. BENCHEXEC N
Def. benchexec HTML
‘ ‘ Table
= | o
‘ . Results ‘ g N
N v
csv
Input
Files
runexec

Benchmarks a single run of a tool (in container)

benchexec
Benchmarks multiple runs

table-generator
Generates CSV and interactive HTML tables

27 / 51

BenchExec: runexec

vV V. VvV YV

v

Benchmarks a single run of a tool
Measures and limits resources using cgroups
Runnable as stand-alone tool and as Python module

Easy integration into other benchmarking frameworks
and infrastructure

Example:

runexec —-timelimit 100 --memlimit 16000000000
--cores 0-7,16-23 --memoryNodes O
--<TOOL_CMD>

BenchExec: runexec

runexec

Run

U £* Process

Resource Limitation /
Measurement

runexec

Run

U £* Process

Resource Limitation / "\
Measurement \

Isolation
~_ Isolation

-
N
N

CPU Cores |83 @ & 2| Memory

29 / 51

BenchExec: benchexec

» Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

> Allocates hardware resources

» Can check whether tool result is as expected
for given input file and property

30 / 51

BenchExec: table-generator

> Aggregates results
» Extracts statistic values from tool output
» Generates CSV and interactive HTML tables (with plots)

» Computes result differences and regression counts

31 /51

BenchExec Configuration

» Tool command line
> Expected result

> Resource limits
» CPU time, wall time
> Memory

» Container setup

» Network access
» File-system layout

» Where to put result files

51

Please Read More

Dirk Beyer, Stefan Léwe, and Philipp Wendler.
Reliable Benchmarking:

Requirements and Solutions. [1]
STTT 2019

» More details
» Study of hardware influence on benchmarking results

» Suggestions how to present results
(result aggregation, rounding, plots, etc.)

https://doi.org/10.1007/s10009-017-0469-y

Conclusion — Part 1: BENCHEXEC

Don't use time, ulimit, etc.
Always use cgroups and namespaces!

https: //github.com /sosy-lab/benchexec

Now with
11/ containers:

34 /51

https://github.com/sosy-lab/benchexec

Part 2: Preserving Tools

Dirk Beyer.
Find, Use, and Conserve Tools for Formal Methods. [4]
Proc. Podelski 65™" 2024

Dirk Beyer, and Henrik Wachowitz.
FM-Weck: Containerized Execution
of Formal-Methods Tools. [5]

FM 2024

35 /51

https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-71177-0_3

All tools for formal methods work together to solve hard
verification problems and make our world safer and more
secure.

Model checkers and theorem provers can be integrated
into the software-development process as seamless as unit
testing today.

Model checkers, theorem provers, SMT solvers, and testers
use common interfaces for interaction and composition.

Some Steps Towards the Vision

Find: Which tools for software verification exist?

... for SMT solving?

>
> ... for test-case generation?
>
» ... for hardware verification?

» Reuse: How to get executables?
» Where to find documentation?
» Am | allowed to use it?

» How to use them?

» Conserve: Which operating system, libraries,
environment?

51

Requirements for Solution

» Support documentation and reuse

» Easy to query and generate knowledge base
» Long-term availability /executability of tools
» Must come with tool support

» Approach must be compatible with competitions

38 / 51

Solution [4]

One central repository:
https://gitlab.com/sosy-lab/benchmarking/fm-tools
which gives information about:

> Location of the tool (via DOI, just like other literature)
> License

» Contact (via ORCID)

» Project web site

» Options

» Requirements (certain Docker container / VM)

» Limits

Maintained by formal-methods community

39 / 51

https://gitlab.com/sosy-lab/benchmarking/fm-tools

Example: Entry for CPACHECKER

id: cpachecker
name: CPAchecker
description: |
CPAchecker is a configurable framework for
software verification that is based on
configurable program analysis and ...
input_languages:
-C
project_url: https://cpachecker.sosy-lab.org
repository_url:
https://gitlab.com/sosy-lab/software/cpachecker
spdx_license_identifier: Apache-2.0
benchexec_toolinfo_module:
benchexec.tools.cpachecker
fmtools_format_version: "2.0"
fmtools_entry_maintainers:
- dbeyer
- ricffb
- PhilippWendler

40

Example: CPAcuHECcKER's Contacts

maintainers:
- orcid: 0000-0003-4832-7662
name: Dirk Beyer
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/dbeyer/
- orcid: 0000-0002-5139-341X
name: Philipp Wendler
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/wendler/

41 / 51

Example: CPAcHECKER's Versions

versions:
- version: "4.0"
doi: 10.5281/zenodo.14203369
benchexec_toolinfo_options: ["--svcomp25",
"--heap", "10000M", "--benchmark",
"--timelimit", "900.s"]
required_ubuntu_packages:
- openjdk-17-jdk-headless
base_container_images:
- docker.io/ubuntu:22.04
- version: "4.0-validation-correctness"
doi: 10.5281/zenodo.14203369
benchexec_toolinfo_options: ["--witness",

"${witness}",
"-—correctness-witness-validation",
"--heap", "5000m", "--benchmark", ...]

required_ubuntu_packages:

- openjdk-17-jdk-headless
base_container_images:

- docker.io/ubuntu:22.04

42

Example: CPAcHECKER's Documentation

literature:
- doi: 10.1007/978-3-031-71177-0_30
title: "Software Verification,with, ,CPAchecker
3.0: Tutorial and User ,Guide"
year: 2024
- doi: 10.1007/978-3-642-22110-1 16
title: "CPAchecker: A Tool for Configurable
Software Verification"
year: 2011
- doi: 10.1007/s10817-017-9432-6
title: "A Unifying View on SMT-Based Softwarej
Verification"
year: 2018

43

51

Example: CPAcHEckER's Web-Page Entry

O« > C @

O B fm-tools.sosy-lab.org/#tool-cpachecker ¢¥ L Qsearc o % © O ®@ € £ O » =

Tools for Formal Methods: Tools

Tools Techniques Competitions Frameworks Input Languages ~Documentation of the YAML Schema

Table of Contents
s
aise
AProVE (KoAT + LoAT)
BLAST

BRICK
Bubaak
Bubaak-SpLit
CADP

CBMC

cetfuzz

COASTAL
ConcurrentWitness2Test
CoOpeRace
C iTe ifier-

Code on GitLab

CPAchecker CPA/

CPAchecker is a for software
and i many model-checking algori

that is based on configurable program analysis
to check for software errors and to verify program properties.

Project URL: hittps://cpacheckersosy-lab.org
URL: hitps://gi pachecker
Maintainers: - @ Dirk Beyer + @ Philipp Wendler

Supported input languages: - C
License: + Apache-2.0
Supported - Algorithm Selection + ARG-Based Analysis + Automata-Based Analysis « Bit-Precise Analysis

CoVeriTeam-Verifier-ParallelPortfolio
CoVeriTest

CPA-BAM-BnB

CPA-BAM-SMG

CPA-witness2test

CPAchecker

CPALockator

CProver-witness2test

Crux
CSeq
Dartagnan
Deagle
DIVINE

EBF
EmergenTheta
ESBMC-incr
ESBMC-kind

Frama-C-SV
FuSeBMC
FuSeBMC-AI
Gazer-Theta

+ Bounded Model Checking » CEGAR + Concurrency Support * Explicit-Value Analysis + Interpolation
+ kInduction « Lazy Abstraction » Numeric Interval Analysis - Portfolio + Predicate Abstraction

« Property-Directed Reachability + Ranking Functions - Separation Logic + Shape Analysis

+ Symbolic Execution

Used frameworks / solvers: « Apron « CPAchecker *JavaSMT « MathSAT

Releases: * 4.0+ 4.0-validation-correctness + 4.0-validat lation 2.3.1+ 2.3 + svcomp24-correctness
* svcomp24-violation + 2.2 « svcomp22 + 2.1
Literature: - @Saﬁware Verification with CPAchecker 3.0: Tutorial and User Guide. 2024. pot: 10.1007/978-3-031-71177-0_30
+ "B CPAchecker: A Tool for Configurable Software Verification. 2011. DOT: 10.1007/978-3-642-22110-1_16
« B A Unifying View on SMT-Based Software Verification. 2018. DOI: 10.1007/510817-017-9432-6
+ "B CPAchecker 2.3 with Strategy Selection (Competition Ct 2024. por: 10, 2

+ ") CPA-RefSel: CPAchecker with Refinement Selection (Competition Contribution). 2016.
DOI: 10.1007/978-3-662-49674-9_59

+ B CPAchecker with Support for Recursive Programs and Floating-Point Arithmetic (Competition
15. DOL: 10, 24

+ B CPAchecker with Sequential Combination of Explicit-Value Analyses and Predicate Analyses (Competition
14. Ot 10. 54862:8_27

« B CPAlien: Shape Analyzer for CPAchecker (Competition C
+ B CPAchecker with Sequential Combination of Explicit-State Analysis and Predicate Analysis (Competition

ZeBoLdolooziozs gl

). 2014. po: 10. 28

44 / 51

FM-Tools is FAIR

> Findable:
overview is available on internet,
generated knowledge base
> Accessible:
data retrievable via Git, format is YAML
» Interoperable:
Format is defined in schema,
archives identified by DOls, researchers by ORCIDs
> Reusable:
Data are CC-BY, each tool comes with a license,
format of tool archive standardized

image: Flaticon.com

FM-WECK: Run Tools in Conserved Environment
[5, Proc. FM 2024]

Refer to known fm-tools
by name:version

|

[fm—weck] [run] [cpachecker :4. O} ’ example-safe [éj

T

Download, Install and run
the tool

» No knowledge of the tools CLI needed
» Tool runs in a container (no dependencies on host system)

47 / 51

FM-WECK: Architecture

(/’%m-weck

- handle caching
\ - start container

f—}%

Config
.weck

fm-tools
- parse fm-tool yaml
+ download tool
+ build command line
\
%

fm-tool.yml

fm-weck run

fm-weck shell

48 / 51

fm-weck

/ \

(fm-weck run) [(fm-weck expert| (fm-weck shell)

Download and Download and Spin up
execute tool execute tool interactive
in container in container shell in tool
No knowledge Expert environment
of tool needed knowledge

about tool

required

Conclusion — Part 2: FM-Tools and FM-Weck

FM-TooLS collects and stores essential information to:

> Generate a knowledge base about formal-methods tools [4]
https://fm-tools.sosy-lab.org

» Conserve tool versions and their required environment
(with help by Zenodo and Podman/Docker)

» Run a tool in conserved environment via FM-WECK [5]
» Please add your tool

https://fm-tools.sosy-1lab.org

50 / 51

https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org

References |

[1]

2]

(3]

[4]

(5]

Beyer, D., Lowe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1-29 (2019).
doi:10.1007 /s10009-017-0469-y

Beyer, D., Strejéek, J.: Improvements in software verification and witness
validation: SV-COMP 2025. In: Proc. TACAS (3). pp. 151-186. LNCS 15698,
Springer (2025). doi:10.1007 /978-3-031-90660-2_9

Beyer, D., Chien, P.C., Jankola, M.: BENCHCLOUD: A platform for scalable
performance benchmarking. In: Proc. ASE. pp. 2386-2389. ACM (2024).
doi:10.1145/3691620.3695358

Beyer, D.: Find, use, and conserve tools for formal methods. In: Proc. Festschrift
Podelski 65th Birthday. Springer (2024).
https://wuw.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_
Conserve_Tools_for_Formal_Methods.pdf

Beyer, D., Wachowitz, H.: FM-WECK: Containerized execution of formal-methods
tools. In: Proc. FM. pp. 39-47. LNCS 14934, Springer (2024).
doi:10.1007/978-3-031-71177-0_3

51 /51

https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1145/3691620.3695358
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-71177-0_3

