
Benchmarking and
Preserving Tools for Formal Methods

Dirk Beyer

2025-09-05, at Boise State University

1 / 51

Part 1: Reliable Benchmarking

Dirk Beyer, Stefan Löwe, and Philipp Wendler.
Reliable Benchmarking:
Requirements and Solutions. [1]
STTT 2019

2 / 51

https://doi.org/10.1007/s10009-017-0469-y

Motivation — Example SV-COMP 2025

▶ Competition on Software Verification (SV-COMP) [2]
▶ Largest competition in area of formal methods

(consider also SAT-COMP and SMT-COMP)
▶ 62 verifiers, 18 witness validators
▶ 33 353 verification tasks
▶ 942 284 verification runs, 2 312 days of CPU time
▶ 21.8 million validation runs, 2 573 days of CPU time

3 / 51

Motivation — Example CPAchecker

▶ Regression tests for development
▶ 50 tool configurations with each on avg. 4 000 runs
▶ In total more than 150 million runs in 8 years
▶ We use BenchCloud [3] with BenchExec [1]
▶ Together with research and teaching experiments:

About 1 million executions per week

4 / 51

Evaluation of Research Result

▶ Result “Theorem”
Evaluation “Proof”

▶ Result “Algorithm”
Evaluation “Algorithm Analysis, properties, Big-O”

▶ Result “Heuristics for Complex Problems”
Evaluation “Performance Experiments”

5 / 51

Comparative Evaluation

▶ Old: Done by competitors
▶ New: Done by independent competitions

6 / 51

Background: Requirements

Repeatability
▶ everything documented

(machine, version of tool and OS, parameters)
▶ deterministic tool
▶ reliable benchmarking (here)

Reproducibility
▶ everything above
▶ availability of tool (FM-Tools),

benchmark set (SV-COMP), configuration,
environment (FM-Weck)

▶ published and archived, appropriate license
Replicability

(not discussed here)

7 / 51

Benchmarking is Important

▶ Evaluation of new approaches
▶ Evaluation of tools
▶ Competitions
▶ Tool development (testing, optimizations)

Reliable, reproducible, and accurate results needed!

8 / 51

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant for
most verification tools

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

9 / 51

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant for
most verification tools

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

9 / 51

Benchmarking is Hard

▶ Influence of I/O
▶ Networking
▶ Distributed tools
▶ User input

Not relevant for
most verification tools

Easy?

▶ Different hardware
architectures

▶ Heterogeneity of tools
▶ Parallel benchmarks

Relevant!

9 / 51

Goals

▶ Reproducibility
▶ Avoid non-deterministic effects and interferences
▶ Provide defined set of resources

▶ Accurate results
▶ For verification tools (and similar)
▶ On Linux

10 / 51

Checklist

1. Measure and Limit Resources Accurately
▶ Time
▶ Memory

2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Non-Uniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

▶ Communication
▶ File system

11 / 51

Measure and Limit Resources Accurately

▶ Wall time and CPU time
▶ Define memory consumption

▶ Size of address space? Too large
▶ Size of heap? Too low
▶ Size of resident set (RSS)?

▶ Measure peak consumption
▶ Always define memory limit for reproducibility
▶ Include sub-processes

12 / 51

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Terminate Processes Reliably

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp

ro
ce

ss
1

Su
bp

ro
ce

ss
2

Su
bp

ro
ce

ss
n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

13 / 51

Assign Cores Deliberately

▶ Hyper Threading:
Multiple threads sharing execution units

▶ Shared caches

14 / 51

Respect Non-Uniform Memory Access (NUMA)

▶ Memory regions have different performance depending on
current CPU core

▶ Hierarchical NUMA makes things worse

15 / 51

Type lstopo on your machine (Ubuntu: package hwloc)

CPU

memory region

core

16 / 51

Isolate Individual Runs

▶ Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

▶ Thanks for thinking of cleanup

▶ But what if there are parallel runs?

17 / 51

Isolate Individual Runs

▶ Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

▶ Thanks for thinking of cleanup
▶ But what if there are parallel runs?

17 / 51

Isolate Individual Runs

▶ Temp files with constant names like /tmp/mytool.tmp
collide

▶ State stored in places like ~/.mytool
hinders reproducibility
▶ Sometimes even auto-generated

▶ Restrict changes to file system
as far as possible

18 / 51

Cgroups

▶ Linux kernel “control groups”
▶ Reliable tracking of spawned processes
▶ Resource limits and measurements per cgroup

▶ CPU time
▶ Memory
▶ I/O etc.

Solution on Linux
for race-free handling of multiple processes!

19 / 51

Cgroups

▶ Hierarchical tree of sets of processes

/

. . .

/user1

/benchmarks

/benchmarks/run1

5542 (bash)
5544 (firefox)
. . .

. . .

1130 (verifier)
1131 (subprocess1)
. . .

20 / 51

Namespaces

▶ Light-weight virtualization
▶ Only one kernel running, no additional layers
▶ Change how processes see the system
▶ Identifiers like PIDs, paths, etc. can have different

meanings in each namespace
▶ PID 42 can be a different process in each namespace
▶ Directory / can be a different directory in each namespace
▶ . . .

▶ Can be used to build application containers
without possibility to escape

▶ Usable without root access

21 / 51

Overlay File System

▶ Protect file system from changes made by subject tool
▶ Allow subject tool to write to specific folders
▶ Collect what is written to a folder (into the layer)
▶ Easy clean-up after execution of the subject tool

22 / 51

Overlay FS — Possible Directory Access Modes

Read Write temp Write persistent
existing content content content

hidden ✗ ✓ ✗

read only ✓ ✗ ✗

overlay ✓ ✓ ✗

full access ✓ ✗ ✓

23 / 51

Benchmarking Containers

▶ Encapsulate groups of processes
▶ Limited resources (memory, cores)
▶ Total resource consumption measurable
▶ All other processes hidden

and no communication with them
▶ Disabled network access
▶ Adjusted file-system layout

▶ Private /tmp
▶ Writes redirected to

temporary RAM disk

24 / 51

BenchExec

▶ A Framework for Reliable Benchmarking
and Resource Measurement

▶ Provides benchmarking containers
based on cgroups, namespaces, overlay FS

▶ Allocates hardware resources appropriately
▶ Low system requirements

(modern Linux kernel and cgroups access)

25 / 51

BenchExec

▶ Open source: Apache 2.0 License
▶ Written in Python 3
▶ https://github.com/sosy-lab/benchexec
▶ Used in International Competition on Software Verification

(SV-COMP) and by StarExec
▶ Originally developed for software-

verification, but applicable to
arbitrary tools

26 / 51

https://github.com/sosy-lab/benchexec

BenchExec Architecture

runexec

· · ·
runexec

benchexec
Bench.
Def.

Input
Files

XML
Results

table-generator

HTML
Table

CSV
Data

BenchExec

runexec
Benchmarks a single run of a tool (in container)

benchexec
Benchmarks multiple runs

table-generator
Generates CSV and interactive HTML tables

27 / 51

BenchExec: runexec

▶ Benchmarks a single run of a tool
▶ Measures and limits resources using cgroups
▶ Runnable as stand-alone tool and as Python module
▶ Easy integration into other benchmarking frameworks

and infrastructure
▶ Example:

runexec ––timelimit 100 ––memlimit 16000000000
––cores 0-7,16-23 ––memoryNodes 0
––<TOOL_CMD>

28 / 51

BenchExec: runexec

Iso
la

tio
n

Resource Limitation /
Measurement

2 Process

Run
runexec

Iso
la

tio
n

Resource Limitation /
Measurement

2 Process

Run
runexec

CPU Cores 3 3 3 3 Memory

29 / 51

BenchExec: benchexec

▶ Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

▶ Allocates hardware resources

▶ Can check whether tool result is as expected
for given input file and property

30 / 51

BenchExec: table-generator

▶ Aggregates results
▶ Extracts statistic values from tool output
▶ Generates CSV and interactive HTML tables (with plots)
▶ Computes result differences and regression counts

31 / 51

BenchExec Configuration

▶ Tool command line
▶ Expected result
▶ Resource limits

▶ CPU time, wall time
▶ Memory

▶ Container setup
▶ Network access
▶ File-system layout

▶ Where to put result files

32 / 51

Please Read More

Dirk Beyer, Stefan Löwe, and Philipp Wendler.
Reliable Benchmarking:
Requirements and Solutions. [1]
STTT 2019
▶ More details
▶ Study of hardware influence on benchmarking results
▶ Suggestions how to present results

(result aggregation, rounding, plots, etc.)

33 / 51

https://doi.org/10.1007/s10009-017-0469-y

Conclusion — Part 1: BenchExec

Be careful when benchmarking!

Don’t use time, ulimit, etc.
Always use cgroups and namespaces!

BenchExec
https://github.com/sosy-lab/benchexec

34 / 51

https://github.com/sosy-lab/benchexec

Part 2: Preserving Tools
Dirk Beyer.
Find, Use, and Conserve Tools for Formal Methods. [4]
Proc. Podelski 65th 2024

Dirk Beyer, and Henrik Wachowitz.
FM-Weck: Containerized Execution
of Formal-Methods Tools. [5]
FM 2024

35 / 51

https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-71177-0_3

Vision

▶ All tools for formal methods work together to solve hard
verification problems and make our world safer and more
secure.

▶ Model checkers and theorem provers can be integrated
into the software-development process as seamless as unit
testing today.

▶ Model checkers, theorem provers, SMT solvers, and testers
use common interfaces for interaction and composition.

36 / 51

Some Steps Towards the Vision

▶ Find: Which tools for software verification exist?
▶ ... for test-case generation?
▶ ... for SMT solving?
▶ ... for hardware verification?
▶ Reuse: How to get executables?
▶ Where to find documentation?
▶ Am I allowed to use it?
▶ How to use them?
▶ Conserve: Which operating system, libraries,

environment?

37 / 51

Requirements for Solution

▶ Support documentation and reuse
▶ Easy to query and generate knowledge base
▶ Long-term availability/executability of tools
▶ Must come with tool support
▶ Approach must be compatible with competitions

38 / 51

Solution [4]

One central repository:
https://gitlab.com/sosy-lab/benchmarking/fm-tools
which gives information about:
▶ Location of the tool (via DOI, just like other literature)
▶ License
▶ Contact (via ORCID)
▶ Project web site
▶ Options
▶ Requirements (certain Docker container / VM)
▶ Limits

Maintained by formal-methods community

39 / 51

https://gitlab.com/sosy-lab/benchmarking/fm-tools

Example: Entry for CPAchecker
id: cpachecker
name: CPAchecker
description: |
CPAchecker is a configurable framework for
software verification that is based on
configurable program analysis and ...

input_languages:
- C

project_url: https://cpachecker.sosy-lab.org
repository_url:

https://gitlab.com/sosy-lab/software/cpachecker
spdx_license_identifier: Apache-2.0
benchexec_toolinfo_module:

benchexec.tools.cpachecker
fmtools_format_version: "2.0"
fmtools_entry_maintainers:
- dbeyer
- ricffb
- PhilippWendler

40 / 51

Example: CPAchecker’s Contacts

maintainers:
- orcid: 0000-0003-4832-7662
name: Dirk Beyer
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/dbeyer/

- orcid: 0000-0002-5139-341X
name: Philipp Wendler
institution: LMU Munich
country: Germany
url: https://www.sosy-lab.org/people/wendler/

41 / 51

Example: CPAchecker’s Versions
versions:
- version: "4.0"
doi: 10.5281/zenodo.14203369
benchexec_toolinfo_options: ["--svcomp25",

"--heap", "10000M", "--benchmark",
"--timelimit", "900␣s"]

required_ubuntu_packages:
- openjdk-17-jdk-headless

base_container_images:
- docker.io/ubuntu:22.04

- version: "4.0-validation-correctness"
doi: 10.5281/zenodo.14203369
benchexec_toolinfo_options: ["--witness",

"${witness}",
"--correctness-witness-validation",
"--heap", "5000m", "--benchmark", ...]

required_ubuntu_packages:
- openjdk-17-jdk-headless

base_container_images:
- docker.io/ubuntu:22.04

42 / 51

Example: CPAchecker’s Documentation

literature:
- doi: 10.1007/978-3-031-71177-0_30
title: "Software␣Verification␣with␣CPAchecker␣

3.0:␣Tutorial␣and␣User␣Guide"
year: 2024

- doi: 10.1007/978-3-642-22110-1_16
title: "CPAchecker:␣A␣Tool␣for␣Configurable␣

Software␣Verification"
year: 2011

- doi: 10.1007/s10817-017-9432-6
title: "A␣Unifying␣View␣on␣SMT-Based␣Software␣

Verification"
year: 2018

43 / 51

Example: CPAchecker’s Web-Page Entry

44 / 51

FM-Tools is FAIR

▶ Findable:
overview is available on internet,
generated knowledge base

▶ Accessible:
data retrievable via Git, format is YAML

▶ Interoperable:
Format is defined in schema,
archives identified by DOIs, researchers by ORCIDs

▶ Reusable:
Data are CC-BY, each tool comes with a license,
format of tool archive standardized

45 / 51

What about the Environment?

1
�

q 

±

�

�

�?

1Image: Flaticon.com
46 / 51

FM-Weck: Run Tools in Conserved Environment
[5, Proc. FM 2024]

fm-weck run cpachecker:4.0 example-safe.c

Refer to known fm-tools
by name:version

Download, Install and run
the tool
▶ No knowledge of the tools CLI needed
▶ Tool runs in a container (no dependencies on host system)

47 / 51

FM-Weck: Architecture

48 / 51

fm-weck

fm-weck expertfm-weck run fm-weck shell

▶ Download and
execute tool
in container

▶ Expert
knowledge
about tool
required

▶ Download and
execute tool
in container

▶ No knowledge
of tool needed

▶ Spin up
interactive
shell in tool
environment

49 / 51

Conclusion — Part 2: FM-Tools and FM-Weck
FM-Tools collects and stores essential information to:
▶ Generate a knowledge base about formal-methods tools [4]

https://fm-tools.sosy-lab.org
▶ Conserve tool versions and their required environment

(with help by Zenodo and Podman/Docker)
▶ Run a tool in conserved environment via FM-Weck [5]
▶ Please add your tool

https://fm-tools.sosy-lab.org

50 / 51

https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org
https://fm-tools.sosy-lab.org

References I

[1] Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
doi:10.1007/s10009-017-0469-y

[2] Beyer, D., Strejček, J.: Improvements in software verification and witness
validation: SV-COMP 2025. In: Proc. TACAS (3). pp. 151–186. LNCS 15698,
Springer (2025). doi:10.1007/978-3-031-90660-2_9

[3] Beyer, D., Chien, P.C., Jankola, M.: BenchCloud: A platform for scalable
performance benchmarking. In: Proc. ASE. pp. 2386–2389. ACM (2024).
doi:10.1145/3691620.3695358

[4] Beyer, D.: Find, use, and conserve tools for formal methods. In: Proc. Festschrift
Podelski 65th Birthday. Springer (2024).
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_
Conserve_Tools_for_Formal_Methods.pdf

[5] Beyer, D., Wachowitz, H.: FM-Weck: Containerized execution of formal-methods
tools. In: Proc. FM. pp. 39–47. LNCS 14934, Springer (2024).
doi:10.1007/978-3-031-71177-0_3

51 / 51

https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1145/3691620.3695358
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Find_Use_and_Conserve_Tools_for_Formal_Methods.pdf
https://doi.org/10.1007/978-3-031-71177-0_3

