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Motivation: Automated, Interactive Proofs

path lookup
A typical verification case-study _— e
* custom data types & function definitions \l_l fle
* expressivene logic (recursion, ) . RAM
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Motivation: Automated, Interactive Proofs

path lookup
. . . director
A typical verification case-study _ e
* custom data types & function definitions \l_l file
content

* expressivene logic (recursion, )

* incremental development

log

BOttleneCk: fOrmUIating & prOVing lemmas partial/corrupt group (no end node)
L2

* break down proof obligations

partial/corrupt node (no trailer)

* automate recurring proof steps

Flashix [Ernst+]




Goal: Theory Exploration

Input
— J R
data Nat = 0 | 1+ Nat I inductive
data List<a> := [] | a :: List<a> 1 types
length([]) = 0 —_— —  recursive
length(x::xs) := 1 + length(xs) functions

[] + ys := ys
(x::Xxs) + ys := x::(Xs + ys)




Goal: Theory Exploration

Input
data Nat = 0 | 1+ Nat L — inductive
data List<a> := [] | a :: List<a> 1 types
Llength([]) = 0 —_— — recursive
length(x::xs) := 1 + length(xs) ‘ functions

[] ++ ys :=ys
(Xx::xs) ++ ys := x::(Xs + ys)
y J Output
lemma length(xs ++ ys) “useful/
= length(xs) + length(ys) intersting”

lemmas




Classic Approach: Term Enumeration
|Claessen, Hughes, Johansson+, Singher & Itzhaky, ...]

Algorithm
repeat

sample phi: Bool with |phi| < N < “complete”
if theory u lemmas proves phi relative to
lemmas := lemmas u {phi} search space

and prover

In practice

 further restrictions: shape, few duplicate vars, ...

* relevance filter: requires induction, ...

* testing (QuickCheck) vs. inductive proofs (HipSpec, TheSy)



Combinatorial Search Spaces  (Table 1)
baseline enumerator statistics THESY
benchmark |F'| candidates true |A| ? time last killed |
nat 8 1131799 501 32 1759 6:50:00 26:38:14 >26h long
list 18 319019 408 32 522 1:48:22 10:55:14 >21h .
tree 11 123178 130 20 38 11:25  16:47 runtimes
append 5 15058 133 22 5 02:03  04:32
filter 6 398 2 o5 16 02:11 00:02
length 5) 7066 558 12 1 01:59 00:00
map 8 34726 103 13 35 07:18  37:33 >11h
remove 7 32302 117 14 13 22:11 13:01 >11h
reverse 4 127926 427 22 1 03:29 00:02
rotate 6 12784 124 20 43 08:50 6:54:22 >11h
runlength 7 68311 182 23 847 {1:12:12  00:40 >11h
—7 . S~
. 6C o . Y) o
exponential interesting productivity

in |definitions|

lemmas are rare

is very sporadic




Example Lemmas over Lists and Trees

length(filter(p, Xxs))
take(n, map(f, xs))
rev(rev(xs))

sum(ys + zs)

length(elems(t))

countif(p, xs)
map(f, take(n, xs))
XS

sum(ys) + sum(zs)

size(t)




Example Lemmas over Lists and Trees

length(filter(p, xs))
take(n, map(f, xs))

countif(p, xs)

map(f, take(n, xs))

rev(rev(xs)) XS
sum(ys) + sum(zs)

size(t)

sum(ys + zs)
length(elems(t))

lemmas from term

enumeration are not

rev(rev(xs)) A necessarily “useful”

= take(length(xs), snoc(xs, zero))




Contribution

LemmaCalc: an approach for theory exploration

quickly explores a structured search space

lemmas are intuitive for humans

lemmas tend to be useful for automation
10.5281/zeno0do.16932462

Focus: equations (associative/distributive laws)
Main method: integrate program transformations and deduction

Evaluation against enumerative theory exploration

RQ1: relative explanatory strength of the sets of lemmas generated?

RQ2: impact of the search space on lemma synthesis time?



one way to present What’s a Lemma?
a computation

—

(x - y)

= X% — 2Xy + V-’

/T

another way to present
a computation with the same result




What’s a Lemma?

(x - y)? "
—(x - y)(x - y)4 definition of ( )2

X? = Xy - yx + y?
X? = Xy - Xy + VY’

5, 2
X 2Xy + y\ use lemma xy = yx




one way to present What’s a Lemma?
a computation

—

rev(xs,; + XS,)

?2??

rev(xs,) + rev(xs;)

/T

another way to present
a computation with the same result




theory
definition

\/_




fusion:

accumulator removal:

theory
definition

\/_

exploration by program transformations

\/
—

f(X, g(y)) — fg(X, y)
h(x,y) = h’(x) ® e(y)
generates

synthetic functions

to represent
intermediate results




fusion:

accumulator removal:  h(x,y)

theory
definition

\/_

exploration by program transformations

\/
SNP) =N

f(X, g(y)) — fg(X, y)
= h'(x) ® e(y)
extracted
lemmas
~

recognition principles
constant functions:
identity functions:
structural equivalence:

—

f(x) = c
f(x) = x
f(x) = g(n(x))




Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; + XS,)

= rev+(xs;, XS;)
rev+'(xs;) @ e?’(xs,)
rev(xs,) ++ rev+’'(xs;)
rev(xs,) + rev(xs;)



Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,)

= rev(xs,) + rev(xs;)
unblocks
rev(rev(xs))
— 1id(xs) = xs



Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,) ;Sion
= rev++(XSi, XS5)

[Wadler, SP]J,
Turchin, ...]



Calculating with Functions

[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,) ;Sion
= rev++(xs;, XS-)

= rev+'(xs;) @ e?’(xs,)
__—=

template for accumulator removal
e?(_) = 2727
Z, ® z, = 777

[Giesl]



Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,) ;Sion
rev+(xs;, XS-)

rev+'(xs;) & e?(xs,)
rev(xs,) + rev++'(xs;)

__—

solution for accumulator removal

e’(_) := rev( )
Z, @ z, = 2z, H+ 24




Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; + XS,)

rev+(xs;, XS-)
rev+'(xs;) & e?(xs,)
rev(xs,) + rev++'(xs;)
rev(xs,) + rev(xs;)

™~

recognize that
rev+’ = rev




Why it works

Fusion regularizes computations
* optimize away intermediate results (original goal)

e fg like f but extra parameters and more complex base case

« fg represents a “canned” (amortized) inductive proof



Fused function rev+(xs,, xs,)

base case:
additional
computation
rev+(xs;, Xs,) = match xs; \/_
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs,) ++ [vy]

A g

like rev extra parameter




Why it works: A.R. picks up what is left by fusion

Fusion regularizes computations
* optimize away intermediate results (original goal)

« fg like f but extra parameters and more complex base case

o fg represents a “canned” (amortized) inductive proof

Accumulator removal factors computations
* push computation fragments out of functions
 template @’ e?(_) represents inductive generalizations

* requires choice, but strictly more powerful than fusion! [Zhu]



Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
avoid accumulator compensation | | compensation

1In recursion operator term




Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
(match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs,) + [y])
(match xs;
| case [] — base?’
| case y::ys — rec’(rev++’'(ys), vy)) & e?(xs,)



Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
(match xs; /\
| case [] — rev(xs,)

| case y::ys — rev+(ys, xs,) + [y])

(match xs;

| case [] — base? _
| case y::ys — rec’(rev++’'(ys), vy)) & e?(xs,)

~ djerjue]sur

() @

0} 2INJONI}S [BUOLIPPE



Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
(match xs; e’(_) = rev(_)
| case [] > rev(xs,) |4 9® Z2 = Zo H 2
.. base =[]
| case y::ys = rev+(ys,
o rec := (original body)
rev(xs,) + (match xs; ‘;;Ezz”’/’/r

| case [] - []
| case y::ys = rev+'(ys) + plyl)



Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term




Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [1] left/right)



Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [] left/right)

(..(rev(xs;) + [yi]) .. + [ynal) + [yl
= rev(xs,) ++ (..([] + [yi]) . + [yn1l) + [yal




Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [] left/right)

* Choose compensation term as original base case

* Choose new recursive case(s) of f' unchanged



Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [] left/right)

* Choose compensation term as original base case

* Choose new recursive case(s) of f' unchanged
(strong limitation: misses some results)



Evaluation

RQ1: What is the relative explanatory
strength of the sets of lemmas generated
by the different methods?

RQ2: What is the impact of the search
space on lemma synthesis time?




LemmaCalc

Results: Number of Lemmas Baseline Enumerator

0

“large” theOI'y'Z Benchmark: list
18 functions 0 o |

20 -

L

il . . -
LEsMyMACALC Enum THESY

H_IH_I
~10s >24h each



Results: Number of Lemmmas

“large” theory:
18 functions

L |

LemmaCalc

Baseline Enumerator

TheSy [Singher, Itzhaky]

o 8

] 1
Benchmark: list

LEMMACALC Enum THESY

W_IH_I
~10s >24h each

> 300K candidates

with conditional
lemmas



LemmaCalc

Results: Number of Lemmmas Baseline Enumerator

0

] 1
Benchmark: list

‘ trivial
(no induction)

redundant Ii

|

20

interesting

(l = S
LEsMyMACALC Enum THESY

N

% covered by
competitor




many

conditional lemmas

1 2[} T T 4 [.]' T T T :iU T T T
Benchmark: nat Benchmark: list Benchmark: tree

100

Bil |- s

Gl 7

1] 0
LEMmAaCaLe Enum THESY LEMMACALC Enum THESY LEMyaACaLe Enum THESY

[ ——

(almost) identical
non-redundant sets




10

Benchmark: append

LEMMACaAL: Enum

THESY

T T
Benchmark: remove

LEMmAaCarLc Enum

THESY

Remark: it is expected that baseline Enum

T T
Benchmark: filter

[
LEMmAaCALC Fnum

T
Benchmark: reverse

LEMMACALC Enum

THESY

30 T T
Benchmark: length

LEMmaCarc Enum

20 T T
Benchmark: rotate

LEmMMaCAaLc Enum

THESY

40

20

Benclinark: map

LEMMACALC Enum

THESY

T T
Benchmark: runlength

LEMMACALC Enum

always dominates LemmaCalc (modulo prover)

THESY




Results and Discussion

* RQ1: methods have comparable explanatory power
but complementary strengths and weaknesses

* RQ2: LemmacCalc is much faster but misses some results

* Key advantage of LemmacCalc over (naive) enumeration

structured search space
— potential to amortize parts of proofs

short-cuts via intermittend deduction

* Main current limitation: accumulator-transformations are
uninformed and independent of recognition algorithms



Related Work

* Buchberger, Claessen, Hughes, Johansson
pioneered theory exploration (tools & larger case studies)

* Sonnex, deAngelis
program transformations make effective proof methods

* Hamilton & Poitin, Klyuchnikov & Romanenko
suggest fusion for lemma inference (= low hanging fruits)

* Giesl: deaccumulation schemes (not implemented)

* lots of work in the PL community (see paper)



Contribution: LemmmaCalc

* quickly explores a productive search space
* lemmas tend to be intuitive and useful

* integrate transformations and deduction

10.5281/zeno0do.16932462



Contribution: LemmmaCalc

* quickly explores a productive search space

 Jemmas tend to be intuitive and useful

* integrate transformations and deduction

* this implementation: proof of concept; 10.5281/zenodo.16932462
current limitations hit “hard ceiling”

* outlook: exploit further short-cuts accumulator transformations
online integration with enumeration

4—/\/\/;_>
1) T 1)

fully automatic unrealized human-guided
simpler properties potential expressive specs



Appendix



Fusing rev(xs, + Xs;)

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y:tys > y it (ys + XS3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(y :: (ys + XS3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(ys + xs;) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys — rev+(ys, xs;) + [y]



Define and Unfold [Bird, Burstall & Darlington]|

revH(xsi:, Xs;) := rev(xs; + Xs;)
= rev(match xs;
| case [] — XS,
| case y::ys = vy it (ys + XS3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(y :: (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(ys + xs;) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs;) + [y]



Shift Function Application [ Turchin, ...]

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y::ys = vy i (ys ++ xs,))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(y :: (ys ++ xs,))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(ys + xs;) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs;) + [y]



Apply Definitions and known Lemmas
|Gill, Launchbury, SPJ]

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y::ys > y 1 (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(y :: (ys ++ xs,))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(ys ++ xs.,) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs;) + [y]



Simplify and Fold [Bird, Burstall & Darlington]|

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y::ys > y 1 (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(y :: (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(ys + xs,) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs,) + [vy]






Fusing rev(rev(xs))

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] - []
| case y::ys — rev(ys) + [y])
= match xs
| case [] — rev([])
| case y::ys — rev(rev(ys) + [y])
= match xs
| case [] = rev([])
| case y::ys — rev([y]) + rev(rev(ys))

= match xs
| case [] - []
| case y::ys = y :: rev2(ys)

= id(xs) = xs



Final Lemmma

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] - []
| case y::ys — rev(ys) + [y])
= match Xxs
| case [] — rev([])
| case y::ys — rev(rev(ys) + [y])
= match xs
| case [] — rev([])
| case y::ys — rev([y]) + rev(rev(ys))

=— match xs
| case [] — []
| case y::ys = y :: rev2(ys)

= id(xs) = xs



Define and Unfold

rev2(xs) :

= rev(rev(xs))

rev(match xs
| case []1 = [1]
| case y::ys = rev(ys) + [y])

match Xxs

| case []
| case vy::
match xs

| case []
| case vy::
match Xxs

| case []
| case y::
id(xs) =

RN
VS

RN
)

VS
XS

rev([])

[Bird, Burstall & Darlington]

— rev(rev(ys) + [y])

rev([])

— rev([y]) + rev(rev(ys))

[]

-y

rev2(ys)



Shift Function Application [ Turchin, ...]

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] — []
| case y::ys — rev(ys) + [v])
= match xs
| case [] = rev([])
| case y::ys — rev(rev(ys) + [v])
= match xs
| case [] = rev([])
| case y::ys = rev([y]) + rev(rev(ys))

= match xs
| case [] — []
| case y::ys = y :: rev2(ys)

= id(xs) = xs



Intermittent Deduction using Prior Lemmas

match xs
| case []
| case y::
match xs
| case []
| case y::

%
yS

-
VS

|Gill, Launchbury, SPJ]

rev([])
— rev(rev(ys) + [v])

rev([])

— rev([y]) + rev(rev(ys))



Intermittent Deduction using Prior Lemmas
|Gill, Launchbury, SPJ]

= match xs

| case [] — rev([])

| case y::ys — rev(rev(ys) + [v])
match Xs

| case [] = rev([])

| case y::ys = rev([y]) + rev(rev(ys))

gy

most difficult step, requires to know already
rev(xs: + xs,) = rev(xs,;) + rev(xs;)




Simplify and Fold [Bird, Burstall & Darlington]

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] — []
| case y::ys — rev(ys) + [y])
= match Xs
| case [] = rev([])
| case y::ys = rev(rev(ys) + [y])
= match xs
| case [] — rev([])
| case y::ys = rev([y]) + rev(rev(ys))
= match xs
| case []1 = [1
| case y::ys > y :: rev2(ys)
= id(xs) = xs



Recognize identity, constant, existing Functions

rev2(xs)

match xs

| case [] - []

| case y::ys = vy :: rev2(ys)
= id(xs)
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