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A typical verification case-study
● custom data types & function definitions
● expressivene logic (recursion, quantifiers)
● incremental development

Flashix [Ernst+]
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A typical verification case-study
● custom data types & function definitions
● expressivene logic (recursion, quantifiers)
● incremental development

Bottleneck: formulating & proving lemmas
● break down proof obligations
● automate recurring proof steps

Flashix [Ernst+]



 

Goal: Theory Exploration

data Nat      :=  0 | 1+ Nat
data List<a>  := [] | a :: List<a>

length([])    := 0
length(x::xs) := 1 + length(xs)

     [] ++ ys := ys
(x::xs) ++ ys := x::(xs ++ ys)

inductive
types

recursive
functions

Input



 

Goal: Theory Exploration

data Nat      :=  0 | 1+ Nat
data List<a>  := [] | a :: List<a>

length([])    := 0
length(x::xs) := 1 + length(xs)

     [] ++ ys := ys
(x::xs) ++ ys := x::(xs ++ ys)

inductive
types

recursive
functions

lemma length(xs ++ ys)
         == length(xs) + length(ys)
...

“useful/ 
intersting”

lemmas

Input

Output



 

Classic Approach: Term Enumeration
[Claessen, Hughes, Johansson+, Singher & Itzhaky, ...]

In practice
● further restrictions: shape, few duplicate vars, ...
● relevance filter: requires induction, ...
● testing (QuickCheck) vs. inductive proofs (HipSpec, TheSy)

repeat
    sample phi: Bool with |phi| < N
    if theory ∪ lemmas proves phi
        lemmas := lemmas ∪ {phi}

Algorithm

“complete”
relative to 

search space 
and prover



 

Combinatorial Search Spaces (Table 1)

“interesting”
lemmas are rare

exponential
in |definitions|

productivity
is very sporadic

long
runtimes



 

Example Lemmas over Lists and Trees

length(filter(p, xs)) == countif(p, xs)

take(n, map(f, xs))   == map(f, take(n, xs))

rev(rev(xs))          == xs

sum(ys ++ zs)         == sum(ys) + sum(zs)

length(elems(t))      == size(t)

...



 

Example Lemmas over Lists and Trees

length(filter(p, xs)) == countif(p, xs)

take(n, map(f, xs))   == map(f, take(n, xs))

rev(rev(xs))          == xs

sum(ys ++ zs)         == sum(ys) + sum(zs)

length(elems(t))      == size(t)

...

...

rev(rev(xs))

== take(length(xs), snoc(xs, zero))

lemmas from term 
enumeration are not 
necessarily “useful”



 

Contribution

LemmaCalc: an approach for theory exploration
● quickly explores a structured search space
● lemmas are intuitive for humans
● lemmas tend to be useful for automation

Focus: equations (associative/distributive laws)

Main method: integrate program transformations and deduction

Evaluation against enumerative theory exploration
● RQ1: relative explanatory strength of the sets of lemmas generated?
● RQ2: impact of the search space on lemma synthesis time?

10.5281/zenodo.16932462



 

What’s a Lemma?

(x - y)2

    == (x - y)(x - y)
    == x2 – xy - yx + y2

    == x2 – xy - xy + y2

    == x2 – 2xy + y2

one way to present 
a computation

another way to present
a computation with the same result



 

What’s a Lemma?

(x - y)2

    == (x - y)(x - y)
    == x2 – xy - yx + y2

    == x2 – xy - xy + y2

    == x2 – 2xy + y2

definition of (_)2

use lemma xy == yx



 

What’s a Lemma?

rev(xs1 ++ xs2)

    == ???

    == rev(xs2) ++ rev(xs1)

one way to present 
a computation

another way to present
a computation with the same result



 

theory
definition



 

theory
definition

exploration by program transformations
fusion:  f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y)     == h’(x) ⨁ e(y)

generates
synthetic functions

to represent 
intermediate results



 

theory
definition

exploration by program transformations
fusion:  f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y)     == h’(x) ⨁ e(y)

recognition principles
constant functions: f(x) == c
identity functions: f(x) == x
structural equivalence: f(x) == g(π(x))

extracted 
lemmas



 

rev(xs1 ++ xs2)
    == rev++(xs1, xs2)
    == rev++’(xs1) ⨁? e?(xs2)
    == rev(xs2) ++ rev++’(xs1)
    == rev(xs2) ++ rev(xs1)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]



 

rev(xs1 ++ xs2)
    == rev++(xs1, xs2)
    == rev++’(xs1) ⨁? e?(xs2)
    == rev(xs2) ++ rev++’(xs1)
    == rev(xs2) ++ rev(xs1)

rev(rev(xs))
  == ... == id(xs) == xs

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

unblocks



 

rev(xs1 ++ xs2)
    == rev++(xs1, xs2)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

fusion

[Wadler, SPJ, 
Turchin, ...]



 

rev(xs1 ++ xs2)
    == rev++(xs1, xs2)
    == rev++’(xs1) ⨁? e?(xs2)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

fusion

template for accumulator removal
e?(_)   := ???
z1 ⨁? z2 := ???

[Giesl]



 

rev(xs1 ++ xs2)
    == rev++(xs1, xs2)
    == rev++’(xs1) ⨁? e?(xs2)
    == rev(xs2) ++ rev++’(xs1)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

fusion

solution for accumulator removal
e?(_)   := rev(_)
z1 ⨁? z2 := z2 ++ z1



 

rev(xs1 ++ xs2)
    == rev++(xs1, xs2)
    == rev++’(xs1) ⨁? e?(xs2)
    == rev(xs2) ++ rev++’(xs1)
    == rev(xs2) ++ rev(xs1)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

recognize that
rev++’ ≡ rev



 

Why it works

Fusion regularizes computations

● optimize away intermediate results (original goal)

● fg like f but extra parameters and more complex base case

● fg represents a “canned” (amortized) inductive proof



 

Fused function rev++(xs1, xs2)

rev++(xs1, xs2) == match xs1

                  | case []    -> rev(xs2)

                  | case y::ys -> rev++(ys, xs2) ++ [y]

extra parameter

base case:
additional

computation

like rev



 

Why it works: A.R. picks up what is left by fusion

Fusion regularizes computations

● optimize away intermediate results (original goal)

● fg like f but extra parameters and more complex base case

● fg represents a “canned” (amortized) inductive proof

Accumulator removal factors computations 

● push computation fragments out of functions

● template _ ⨁? e?(_) represents inductive generalizations

● requires choice, but strictly more powerful than fusion! [Zhu]



 

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2)

avoid accumulator 
in recursion

compensation
term

compensation
operator



 

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2) 

(match xs1

 | case []    -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y])

   ==

(match xs1

  | case []    -> base?

  | case y::ys -> rec?(rev++’(ys), y)) ⨁? e?(xs2) 



 

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2) 

(match xs1

 | case []    -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y])

   ==

(match xs1

  | case []    -> base?

  | case y::ys -> rec?(rev++’(ys), y)) ⨁? e?(xs2) 

additional structure to
instantiate _

 
⨁
? e

?(_
)



 

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2) 

(match xs1

 | case []    -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y])

   ==

rev(xs2) ++ (match xs1

  | case []    -> []

  | case y::ys -> rev++’(ys) ++ p[y]) 

e?(_)   := rev(_)
z1 ⨁? z2 := z2 ++ z1

base    := []
rec     := (original body)



 

Heuristics for Accumulator Removal

            f(x, z) == f’(x) ⨁? e?(z)

avoid accumulator 
in recursion

compensation
term

compensation
operator



 

Heuristics for Accumulator Removal

            f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

avoid accumulator 
in recursion

compensation
term

compensation
operator



 

Heuristics for Accumulator Removal

            f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

              (..(rev(xs2) ++ [y1]) .. ++ [yn-1]) ++ [yn]

== rev(xs2) ++ (..([]      ++ [y1]) .. ++ [yn-1]) ++ [yn]

avoid accumulator 
in recursion

compensation
term

compensation
operator



 

Heuristics for Accumulator Removal

            f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

● Choose compensation term as original base case
 (side conditions apply)

● Choose new recursive case(s) of f’ unchanged
 (strong limitation: misses some results)

avoid accumulator 
in recursion

compensation
term

compensation
operator



 

Heuristics for Accumulator Removal

            f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

● Choose compensation term as original base case
 (side conditions apply)

● Choose new recursive case(s) of f’ unchanged
 (strong limitation: misses some results)

avoid accumulator 
in recursion

compensation
term

compensation
operator



 

Evaluation

RQ1: What is the relative explanatory 
strength of the sets of lemmas generated 
by the different methods?

RQ2: What is the impact of the search 
space on lemma synthesis time?



 

Results: Number of Lemmas

~10s >24h each

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

“large” theory:
18 functions



 

Results: Number of Lemmas

~10s >24h each

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

“large” theory:
18 functions

> 300K candidates
f(x, g(y)) == ?

with conditional 
lemmas



 

Results: Number of Lemmas
LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

interesting

redundant

% covered by 
competitor

trivial
(no induction)



 

many
conditional lemmas

(almost) identical
non-redundant sets



 

Results

Remark: it is expected that baseline Enum
always dominates LemmaCalc (modulo prover)



 

Results and Discussion

● RQ1: methods have comparable explanatory power
but complementary strengths and weaknesses

● RQ2: LemmaCalc is much faster but misses some results

● Key advantage of LemmaCalc over (naive) enumeration
– structured search space
– potential to amortize parts of proofs
– short-cuts via intermittend deduction

● Main current limitation: accumulator-transformations are 
uninformed and independent of recognition algorithms



 

Related Work

● Buchberger, Claessen, Hughes, Johansson
pioneered theory exploration (tools & larger case studies)

● Sonnex, deAngelis
program transformations make effective proof methods

● Hamilton & Poítin, Klyuchnikov & Romanenko
suggest fusion for lemma inference (= low hanging fruits)

● Giesl: deaccumulation schemes (not implemented)
● lots of work in the PL community (see paper)



 

Contribution: LemmaCalc

● quickly explores a productive search space

● lemmas tend to be intuitive and useful

● integrate transformations and deduction

10.5281/zenodo.16932462



 

Contribution: LemmaCalc

● quickly explores a productive search space

● lemmas tend to be intuitive and useful

● integrate transformations and deduction

● this implementation: proof of concept;
current limitations hit “hard ceiling”

● outlook: exploit further short-cuts accumulator transformations
online integration with enumeration

10.5281/zenodo.16932462

fully automatic
simpler properties

human-guided
expressive specs

unrealized
potential



 

Appendix



 

Fusing rev(xs1 ++ xs2)

rev++(xs1, xs2) := rev(xs1 ++ xs2)
       == rev(match xs1

              | case []    -> xs2

              | case y::ys -> y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(ys ++ xs2) ++ [y]
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev++(ys, xs2) ++ [y]



 

Define and Unfold [Bird, Burstall & Darlington]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
       == rev(match xs1

              | case []    -> xs2

              | case y::ys -> y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(ys ++ xs2) ++ [y]
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev++(ys, xs2) ++ [y]



 

Shift Function Application [Turchin, ...]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
       == rev(match xs1

              | case []    -> xs2

              | case y::ys -> y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(ys ++ xs2) ++ [y]
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev++(ys, xs2) ++ [y]



 

Apply Definitions and known Lemmas
[Gill, Launchbury, SPJ]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
       == rev(match xs1

              | case []    -> xs2

              | case y::ys -> y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(ys ++ xs2) ++ [y]
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev++(ys, xs2) ++ [y]



 

Simplify and Fold [Bird, Burstall & Darlington]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
       == rev(match xs1

              | case []    -> xs2

              | case y::ys -> y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(y :: (ys ++ xs2))
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev(ys ++ xs2) ++ [y]
       == match xs1

          | case []    -> rev(xs2)
          | case y::ys -> rev++(ys, xs2) ++ [y]



 



 

Fusing rev(rev(xs))

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs



 

Final Lemma

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs



 

Define and Unfold [Bird, Burstall & Darlington]

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs



 

Shift Function Application [Turchin, ...]

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs



 

Intermittent Deduction using Prior Lemmas
[Gill, Launchbury, SPJ]

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs



 

Intermittent Deduction using Prior Lemmas
[Gill, Launchbury, SPJ]

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: fg(ys)

       == id(xs) == xs

most difficult step, requires to know already
rev(xs1 ++ xs2) == rev(xs2) ++ rev(xs1)



 

Simplify and Fold [Bird, Burstall & Darlington]

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs



 

Recognize identity, constant, existing Functions

rev2(xs) := rev(rev(xs))

       == rev(match xs

              | case [] -> []

              | case y::ys -> rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev(rev(ys) ++ [y])

       == match xs

          | case [] -> rev([])

          | case y::ys -> rev([y]) ++ rev(rev(ys))

       == match xs

          | case [] -> []

          | case y::ys -> y :: rev2(ys)

       == id(xs) == xs
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