
Gidon Ernst, Augsburg University, LMU Munich
Grigory Fedyukovich, Florida State University
https://doi.org/10.5281/zenodo.16932462

LemmaCalc:

Quick Theory Exploration
for Algebraic Data Types
via Program Transformations

iFM 2025, Paris
November 20

Gidon Ernst, Augsburg University, LMU Munich
Grigory Fedyukovich, Florida State University
https://doi.org/10.5281/zenodo.16932462

fully automatic
simpler properties

human-guided
expressive specs

open
challenge!

LemmaCalc:

Quick Theory Exploration
for Algebraic Data Types
via Program Transformations

Motivation: Automated, Interactive Proofs
path lookup

directory
tree

file
content

file handle

flash
store

flash
index

RAM
index

...

log ...

index
layer

journal
layer

thesis.tex

endstart

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

A typical verification case-study
● custom data types & function definitions
● expressivene logic (recursion, quantifiers)
● incremental development

Flashix [Ernst+]

Motivation: Automated, Interactive Proofs
path lookup

directory
tree

file
content

file handle

flash
store

flash
index

RAM
index

...

log ...

index
layer

journal
layer

thesis.tex

endstart

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

A typical verification case-study
● custom data types & function definitions
● expressivene logic (recursion, quantifiers)
● incremental development

Bottleneck: formulating & proving lemmas
● break down proof obligations
● automate recurring proof steps

Flashix [Ernst+]

Goal: Theory Exploration

data Nat := 0 | 1+ Nat
data List<a> := [] | a :: List<a>

length([]) := 0
length(x::xs) := 1 + length(xs)

 [] ++ ys := ys
(x::xs) ++ ys := x::(xs ++ ys)

inductive
types

recursive
functions

Input

Goal: Theory Exploration

data Nat := 0 | 1+ Nat
data List<a> := [] | a :: List<a>

length([]) := 0
length(x::xs) := 1 + length(xs)

 [] ++ ys := ys
(x::xs) ++ ys := x::(xs ++ ys)

inductive
types

recursive
functions

lemma length(xs ++ ys)
 == length(xs) + length(ys)
...

“useful/
intersting”

lemmas

Input

Output

Classic Approach: Term Enumeration
[Claessen, Hughes, Johansson+, Singher & Itzhaky, ...]

In practice
● further restrictions: shape, few duplicate vars, ...
● relevance filter: requires induction, ...
● testing (QuickCheck) vs. inductive proofs (HipSpec, TheSy)

repeat
 sample phi: Bool with |phi| < N
 if theory ∪ lemmas proves phi
 lemmas := lemmas ∪ {phi}

Algorithm

“complete”
relative to

search space
and prover

Combinatorial Search Spaces (Table 1)

“interesting”
lemmas are rare

exponential
in |definitions|

productivity
is very sporadic

long
runtimes

Example Lemmas over Lists and Trees

length(filter(p, xs)) == countif(p, xs)

take(n, map(f, xs)) == map(f, take(n, xs))

rev(rev(xs)) == xs

sum(ys ++ zs) == sum(ys) + sum(zs)

length(elems(t)) == size(t)

...

Example Lemmas over Lists and Trees

length(filter(p, xs)) == countif(p, xs)

take(n, map(f, xs)) == map(f, take(n, xs))

rev(rev(xs)) == xs

sum(ys ++ zs) == sum(ys) + sum(zs)

length(elems(t)) == size(t)

...

...

rev(rev(xs))

== take(length(xs), snoc(xs, zero))

lemmas from term
enumeration are not
necessarily “useful”

Contribution

LemmaCalc: an approach for theory exploration
● quickly explores a structured search space
● lemmas are intuitive for humans
● lemmas tend to be useful for automation

Focus: equations (associative/distributive laws)

Main method: integrate program transformations and deduction

Evaluation against enumerative theory exploration
● RQ1: relative explanatory strength of the sets of lemmas generated?
● RQ2: impact of the search space on lemma synthesis time?

10.5281/zenodo.16932462

What’s a Lemma?

(x - y)2

 == (x - y)(x - y)
 == x2 – xy - yx + y2

 == x2 – xy - xy + y2

 == x2 – 2xy + y2

one way to present
a computation

another way to present
a computation with the same result

What’s a Lemma?

(x - y)2

 == (x - y)(x - y)
 == x2 – xy - yx + y2

 == x2 – xy - xy + y2

 == x2 – 2xy + y2

definition of (_)2

use lemma xy == yx

What’s a Lemma?

rev(xs1 ++ xs2)

 == ???

 == rev(xs2) ++ rev(xs1)

one way to present
a computation

another way to present
a computation with the same result

theory
definition

theory
definition

exploration by program transformations
fusion: f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y) == h’(x) ⨁ e(y)

generates
synthetic functions

to represent
intermediate results

theory
definition

exploration by program transformations
fusion: f(x, g(y)) == fg(x, y)
accumulator removal: h(x,y) == h’(x) ⨁ e(y)

recognition principles
constant functions: f(x) == c
identity functions: f(x) == x
structural equivalence: f(x) == g(π(x))

extracted
lemmas

rev(xs1 ++ xs2)
 == rev++(xs1, xs2)
 == rev++’(xs1) ⨁? e?(xs2)
 == rev(xs2) ++ rev++’(xs1)
 == rev(xs2) ++ rev(xs1)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

rev(xs1 ++ xs2)
 == rev++(xs1, xs2)
 == rev++’(xs1) ⨁? e?(xs2)
 == rev(xs2) ++ rev++’(xs1)
 == rev(xs2) ++ rev(xs1)

rev(rev(xs))
 == ... == id(xs) == xs

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

unblocks

rev(xs1 ++ xs2)
 == rev++(xs1, xs2)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

fusion

[Wadler, SPJ,
Turchin, ...]

rev(xs1 ++ xs2)
 == rev++(xs1, xs2)
 == rev++’(xs1) ⨁? e?(xs2)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

fusion

template for accumulator removal
e?(_) := ???
z1 ⨁? z2 := ???

[Giesl]

rev(xs1 ++ xs2)
 == rev++(xs1, xs2)
 == rev++’(xs1) ⨁? e?(xs2)
 == rev(xs2) ++ rev++’(xs1)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

fusion

solution for accumulator removal
e?(_) := rev(_)
z1 ⨁? z2 := z2 ++ z1

rev(xs1 ++ xs2)
 == rev++(xs1, xs2)
 == rev++’(xs1) ⨁? e?(xs2)
 == rev(xs2) ++ rev++’(xs1)
 == rev(xs2) ++ rev(xs1)

Calculating with Functions
[Bird, Burstall & Darlington, Meijer, ...]

recognize that
rev++’ ≡ rev

Why it works

Fusion regularizes computations

● optimize away intermediate results (original goal)

● fg like f but extra parameters and more complex base case

● fg represents a “canned” (amortized) inductive proof

Fused function rev++(xs1, xs2)

rev++(xs1, xs2) == match xs1

 | case [] -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y]

extra parameter

base case:
additional

computation

like rev

Why it works: A.R. picks up what is left by fusion

Fusion regularizes computations

● optimize away intermediate results (original goal)

● fg like f but extra parameters and more complex base case

● fg represents a “canned” (amortized) inductive proof

Accumulator removal factors computations

● push computation fragments out of functions

● template _ ⨁? e?(_) represents inductive generalizations

● requires choice, but strictly more powerful than fusion! [Zhu]

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2)

avoid accumulator
in recursion

compensation
term

compensation
operator

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2)

(match xs1

 | case [] -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y])

 ==

(match xs1

 | case [] -> base?

 | case y::ys -> rec?(rev++’(ys), y)) ⨁? e?(xs2)

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2)

(match xs1

 | case [] -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y])

 ==

(match xs1

 | case [] -> base?

 | case y::ys -> rec?(rev++’(ys), y)) ⨁? e?(xs2)

additional structure to
instantiate _

⨁
? e

?(_
)

Accumulator Removal for rev++(xs1, xs2)

rev++(xs1, xs2) == rev++’(xs1) ⨁? e?(xs2)

(match xs1

 | case [] -> rev(xs2)

 | case y::ys -> rev++(ys, xs2) ++ [y])

 ==

rev(xs2) ++ (match xs1

 | case [] -> []

 | case y::ys -> rev++’(ys) ++ p[y])

e?(_) := rev(_)
z1 ⨁? z2 := z2 ++ z1

base := []
rec := (original body)

Heuristics for Accumulator Removal

 f(x, z) == f’(x) ⨁? e?(z)

avoid accumulator
in recursion

compensation
term

compensation
operator

Heuristics for Accumulator Removal

 f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

avoid accumulator
in recursion

compensation
term

compensation
operator

Heuristics for Accumulator Removal

 f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

 (..(rev(xs2) ++ [y1]) .. ++ [yn-1]) ++ [yn]

== rev(xs2) ++ (..([] ++ [y1]) .. ++ [yn-1]) ++ [yn]

avoid accumulator
in recursion

compensation
term

compensation
operator

Heuristics for Accumulator Removal

 f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

● Choose compensation term as original base case
 (side conditions apply)

● Choose new recursive case(s) of f’ unchanged
 (strong limitation: misses some results)

avoid accumulator
in recursion

compensation
term

compensation
operator

Heuristics for Accumulator Removal

 f(x, z) == f’(x) ⨁? e?(z)

● Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. ++ with [] left/right)

● Choose compensation term as original base case
 (side conditions apply)

● Choose new recursive case(s) of f’ unchanged
 (strong limitation: misses some results)

avoid accumulator
in recursion

compensation
term

compensation
operator

Evaluation

RQ1: What is the relative explanatory
strength of the sets of lemmas generated
by the different methods?

RQ2: What is the impact of the search
space on lemma synthesis time?

Results: Number of Lemmas

~10s >24h each

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

“large” theory:
18 functions

Results: Number of Lemmas

~10s >24h each

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

“large” theory:
18 functions

> 300K candidates
f(x, g(y)) == ?

with conditional
lemmas

Results: Number of Lemmas
LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

interesting

redundant

% covered by
competitor

trivial
(no induction)

many
conditional lemmas

(almost) identical
non-redundant sets

Results

Remark: it is expected that baseline Enum
always dominates LemmaCalc (modulo prover)

Results and Discussion

● RQ1: methods have comparable explanatory power
but complementary strengths and weaknesses

● RQ2: LemmaCalc is much faster but misses some results

● Key advantage of LemmaCalc over (naive) enumeration
– structured search space
– potential to amortize parts of proofs
– short-cuts via intermittend deduction

● Main current limitation: accumulator-transformations are
uninformed and independent of recognition algorithms

Related Work

● Buchberger, Claessen, Hughes, Johansson
pioneered theory exploration (tools & larger case studies)

● Sonnex, deAngelis
program transformations make effective proof methods

● Hamilton & Poítin, Klyuchnikov & Romanenko
suggest fusion for lemma inference (= low hanging fruits)

● Giesl: deaccumulation schemes (not implemented)
● lots of work in the PL community (see paper)

Contribution: LemmaCalc

● quickly explores a productive search space

● lemmas tend to be intuitive and useful

● integrate transformations and deduction

10.5281/zenodo.16932462

Contribution: LemmaCalc

● quickly explores a productive search space

● lemmas tend to be intuitive and useful

● integrate transformations and deduction

● this implementation: proof of concept;
current limitations hit “hard ceiling”

● outlook: exploit further short-cuts accumulator transformations
online integration with enumeration

10.5281/zenodo.16932462

fully automatic
simpler properties

human-guided
expressive specs

unrealized
potential

Appendix

Fusing rev(xs1 ++ xs2)

rev++(xs1, xs2) := rev(xs1 ++ xs2)
 == rev(match xs1

 | case [] -> xs2

 | case y::ys -> y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(ys ++ xs2) ++ [y]
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev++(ys, xs2) ++ [y]

Define and Unfold [Bird, Burstall & Darlington]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
 == rev(match xs1

 | case [] -> xs2

 | case y::ys -> y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(ys ++ xs2) ++ [y]
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev++(ys, xs2) ++ [y]

Shift Function Application [Turchin, ...]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
 == rev(match xs1

 | case [] -> xs2

 | case y::ys -> y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(ys ++ xs2) ++ [y]
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev++(ys, xs2) ++ [y]

Apply Definitions and known Lemmas
[Gill, Launchbury, SPJ]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
 == rev(match xs1

 | case [] -> xs2

 | case y::ys -> y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(ys ++ xs2) ++ [y]
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev++(ys, xs2) ++ [y]

Simplify and Fold [Bird, Burstall & Darlington]

rev++(xs1, xs2) := rev(xs1 ++ xs2)
 == rev(match xs1

 | case [] -> xs2

 | case y::ys -> y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(y :: (ys ++ xs2))
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev(ys ++ xs2) ++ [y]
 == match xs1

 | case [] -> rev(xs2)
 | case y::ys -> rev++(ys, xs2) ++ [y]

Fusing rev(rev(xs))

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

Final Lemma

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

Define and Unfold [Bird, Burstall & Darlington]

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

Shift Function Application [Turchin, ...]

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

Intermittent Deduction using Prior Lemmas
[Gill, Launchbury, SPJ]

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

Intermittent Deduction using Prior Lemmas
[Gill, Launchbury, SPJ]

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: fg(ys)

 == id(xs) == xs

most difficult step, requires to know already
rev(xs1 ++ xs2) == rev(xs2) ++ rev(xs1)

Simplify and Fold [Bird, Burstall & Darlington]

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

Recognize identity, constant, existing Functions

rev2(xs) := rev(rev(xs))

 == rev(match xs

 | case [] -> []

 | case y::ys -> rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev(rev(ys) ++ [y])

 == match xs

 | case [] -> rev([])

 | case y::ys -> rev([y]) ++ rev(rev(ys))

 == match xs

 | case [] -> []

 | case y::ys -> y :: rev2(ys)

 == id(xs) == xs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

