LemmaCalc:

Quick Theory Exploration
for Algebraic Data Types
via Program Transformations 1,

Gidon Ernst, Augsburg University, LMU Munich
Grigory Fedyukovich, Florida State University
https://doi.org/10.5281/zeno0do.16932462

1IFM 2025, Paris
November 20

LemmaCalc:

Quick Theory Exploration
for Algebraic Data Types
via Program Transformations 1,

Gidon Ernst, Augsburg University, LMU Munich
Grigory Fedyukovich, Florida State University
https://doi.org/10.5281/zeno0do.16932462

T 1) T

fully automatic open human-guided
simpler properties challenge! expressive specs

Motivation: Automated, Interactive Proofs

path lookup
A typical verification case-study _— e
* custom data types & function definitions \l_l fle
* expressivene logic (recursion,) . RAM

index

index

* incremental development

flash
store

og o TP |

partial/corrupt group (no end node)

A
;
=[] |

partial/corrupt node (no trailer)

Flashix [Ernst+]

Motivation: Automated, Interactive Proofs

path lookup
. . . director
A typical verification case-study _ e
* custom data types & function definitions \l_l file
content

* expressivene logic (recursion,)

* incremental development

log

BOttleneCk: fOrmUIating & prOVing lemmas partial/corrupt group (no end node)
L2

* break down proof obligations

partial/corrupt node (no trailer)

* automate recurring proof steps

Flashix [Ernst+]

Goal: Theory Exploration

Input
— J R
data Nat = 0 | 1+ Nat I inductive
data List<a> := [] | a :: List<a> 1 types
length([]) = 0 —_— — recursive
length(x::xs) := 1 + length(xs) functions

[] + ys := ys
(x::Xxs) + ys := x::(Xs + ys)

Goal: Theory Exploration

Input
data Nat = 0 | 1+ Nat L — inductive
data List<a> := [] | a :: List<a> 1 types
Llength([]) = 0 —_— — recursive
length(x::xs) := 1 + length(xs) ‘ functions

[] ++ ys :=ys
(Xx::xs) ++ ys := x::(Xs + ys)
y J Output
lemma length(xs ++ ys) “useful/
= length(xs) + length(ys) intersting”

lemmas

Classic Approach: Term Enumeration
|Claessen, Hughes, Johansson+, Singher & Itzhaky, ...]

Algorithm
repeat

sample phi: Bool with |phi| < N < “complete”
if theory u lemmas proves phi relative to
lemmas := lemmas u {phi} search space

and prover

In practice

 further restrictions: shape, few duplicate vars, ...

* relevance filter: requires induction, ...

* testing (QuickCheck) vs. inductive proofs (HipSpec, TheSy)

Combinatorial Search Spaces (Table 1)
baseline enumerator statistics THESY
benchmark |F'| candidates true |A| ? time last killed |
nat 8 1131799 501 32 1759 6:50:00 26:38:14 >26h long
list 18 319019 408 32 522 1:48:22 10:55:14 >21h .
tree 11 123178 130 20 38 11:25 16:47 runtimes
append 5 15058 133 22 5 02:03 04:32
filter 6 398 2 o5 16 02:11 00:02
length 5) 7066 558 12 1 01:59 00:00
map 8 34726 103 13 35 07:18 37:33 >11h
remove 7 32302 117 14 13 22:11 13:01 >11h
reverse 4 127926 427 22 1 03:29 00:02
rotate 6 12784 124 20 43 08:50 6:54:22 >11h
runlength 7 68311 182 23 847 {1:12:12 00:40 >11h
—7 . S~
. 6C o . Y) o
exponential interesting productivity

in |definitions|

lemmas are rare

is very sporadic

Example Lemmas over Lists and Trees

length(filter(p, Xxs))
take(n, map(f, xs))
rev(rev(xs))

sum(ys + zs)

length(elems(t))

countif(p, xs)
map(f, take(n, xs))
XS

sum(ys) + sum(zs)

size(t)

Example Lemmas over Lists and Trees

length(filter(p, xs))
take(n, map(f, xs))

countif(p, xs)

map(f, take(n, xs))

rev(rev(xs)) XS
sum(ys) + sum(zs)

size(t)

sum(ys + zs)
length(elems(t))

lemmas from term

enumeration are not

rev(rev(xs)) A necessarily “useful”

= take(length(xs), snoc(xs, zero))

Contribution

LemmaCalc: an approach for theory exploration

quickly explores a structured search space

lemmas are intuitive for humans

lemmas tend to be useful for automation
10.5281/zeno0do.16932462

Focus: equations (associative/distributive laws)
Main method: integrate program transformations and deduction

Evaluation against enumerative theory exploration

RQ1: relative explanatory strength of the sets of lemmas generated?

RQ2: impact of the search space on lemma synthesis time?

one way to present What’s a Lemma?
a computation

—

(x - y)

= X% — 2Xy + V-’

/T

another way to present
a computation with the same result

What’s a Lemma?

(x - y)? "
—(x - y)(x - y)4 definition of ()2

X? = Xy - yx + y?
X? = Xy - Xy + VY’

5, 2
X 2Xy + y\ use lemma xy = yx

one way to present What’s a Lemma?
a computation

—

rev(xs,; + XS,)

?2??

rev(xs,) + rev(xs;)

/T

another way to present
a computation with the same result

theory
definition

\/_

fusion:

accumulator removal:

theory
definition

\/_

exploration by program transformations

\/
—

f(X, g(y)) — fg(X, y)
h(x,y) = h’(x) ® e(y)
generates

synthetic functions

to represent
intermediate results

fusion:

accumulator removal: h(x,y)

theory
definition

\/_

exploration by program transformations

\/
SNP) =N

f(X, g(y)) — fg(X, y)
= h'(x) ® e(y)
extracted
lemmas
~

recognition principles
constant functions:
identity functions:
structural equivalence:

—

f(x) = c
f(x) = x
f(x) = g(n(x))

Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; + XS,)

= rev+(xs;, XS;)
rev+'(xs;) @ e?’(xs,)
rev(xs,) ++ rev+’'(xs;)
rev(xs,) + rev(xs;)

Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,)

= rev(xs,) + rev(xs;)
unblocks
rev(rev(xs))
— 1id(xs) = xs

Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,) ;Sion
= rev++(XSi, XS5)

[Wadler, SP]J,
Turchin, ...]

Calculating with Functions

[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,) ;Sion
= rev++(xs;, XS-)

= rev+'(xs;) @ e?’(xs,)
__—=

template for accumulator removal
e?(_) = 2727
Z, ® z, = 777

[Giesl]

Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; ++ XS,) ;Sion
rev+(xs;, XS-)

rev+'(xs;) & e?(xs,)
rev(xs,) + rev++'(xs;)

__—

solution for accumulator removal

e’(_) := rev()
Z, @ z, = 2z, H+ 24

Calculating with Functions
[Bird, Burstall & Darlington, Meijjer, ...]

rev(xs; + XS,)

rev+(xs;, XS-)
rev+'(xs;) & e?(xs,)
rev(xs,) + rev++'(xs;)
rev(xs,) + rev(xs;)

™~

recognize that
rev+’ = rev

Why it works

Fusion regularizes computations
* optimize away intermediate results (original goal)

e fg like f but extra parameters and more complex base case

« fg represents a “canned” (amortized) inductive proof

Fused function rev+(xs,, xs,)

base case:
additional
computation
rev+(xs;, Xs,) = match xs; \/_
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs,) ++ [vy]

A g

like rev extra parameter

Why it works: A.R. picks up what is left by fusion

Fusion regularizes computations
* optimize away intermediate results (original goal)

« fg like f but extra parameters and more complex base case

o fg represents a “canned” (amortized) inductive proof

Accumulator removal factors computations
* push computation fragments out of functions
 template @’ e?(_) represents inductive generalizations

* requires choice, but strictly more powerful than fusion! [Zhu]

Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
avoid accumulator compensation | | compensation

1In recursion operator term

Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
(match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs,) + [y])
(match xs;
| case [] — base?’
| case y::ys — rec’(rev++’'(ys), vy)) & e?(xs,)

Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
(match xs; /\
| case [] — rev(xs,)

| case y::ys — rev+(ys, xs,) + [y])

(match xs;

| case [] — base? _
| case y::ys — rec’(rev++’'(ys), vy)) & e?(xs,)

~ djerjue]sur

() @

0} 2INJONI}S [BUOLIPPE

Accumulator Removal for rev+(xs;, xs.)

rev+(xs;, xs,) = rev+'(xs;) & e?’(xs,)
(match xs; e’(_) = rev(_)
| case [] > rev(xs,) |4 9® Z2 = Zo H 2
.. base =[]
| case y::ys = rev+(ys,
o rec := (original body)
rev(xs,) + (match xs; ‘;;Ezz”’/’/r

| case [] - []
| case y::ys = rev+'(ys) + plyl)

Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [1] left/right)

Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [] left/right)

(..(rev(xs;) + [yi]) .. + [ynal) + [yl
= rev(xs,) ++ (..([] + [yi]) . + [yn1l) + [yal

Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [] left/right)

* Choose compensation term as original base case

* Choose new recursive case(s) of f' unchanged

Heuristics for Accumulator Removal

f(x, z) = f'(x) & e?’(z)

_—= A ~

avoid accumulator compensation | | compensation
1In recursion operator term

* Choose new base case of f’ and compensation operator from
functions with neutral elements (e.g. + with [] left/right)

* Choose compensation term as original base case

* Choose new recursive case(s) of f' unchanged
(strong limitation: misses some results)

Evaluation

RQ1: What is the relative explanatory
strength of the sets of lemmas generated
by the different methods?

RQ2: What is the impact of the search
space on lemma synthesis time?

LemmaCalc

Results: Number of Lemmas Baseline Enumerator

0

“large” theOI'y'Z Benchmark: list
18 functions 0 o |

20 -

L

il . . -
LEsMyMACALC Enum THESY

H_IH_I
~10s >24h each

Results: Number of Lemmmas

“large” theory:
18 functions

L |

LemmaCalc

Baseline Enumerator

TheSy [Singher, Itzhaky]

o 8

] 1
Benchmark: list

LEMMACALC Enum THESY

W_IH_I
~10s >24h each

> 300K candidates

with conditional
lemmas

LemmaCalc

Results: Number of Lemmmas Baseline Enumerator

0

] 1
Benchmark: list

‘ trivial
(no induction)

redundant Ii

|

20

interesting

(l = S
LEsMyMACALC Enum THESY

N

% covered by
competitor

many

conditional lemmas

1 2[} T T 4 [.]' T T T :iU T T T
Benchmark: nat Benchmark: list Benchmark: tree

100

Bil |- s

Gl 7

1] 0
LEMmAaCaLe Enum THESY LEMMACALC Enum THESY LEMyaACaLe Enum THESY

[——

(almost) identical
non-redundant sets

10

Benchmark: append

LEMMACaAL: Enum

THESY

T T
Benchmark: remove

LEMmAaCarLc Enum

THESY

Remark: it is expected that baseline Enum

T T
Benchmark: filter

[
LEMmAaCALC Fnum

T
Benchmark: reverse

LEMMACALC Enum

THESY

30 T T
Benchmark: length

LEMmaCarc Enum

20 T T
Benchmark: rotate

LEmMMaCAaLc Enum

THESY

40

20

Benclinark: map

LEMMACALC Enum

THESY

T T
Benchmark: runlength

LEMMACALC Enum

always dominates LemmaCalc (modulo prover)

THESY

Results and Discussion

* RQ1: methods have comparable explanatory power
but complementary strengths and weaknesses

* RQ2: LemmacCalc is much faster but misses some results

* Key advantage of LemmacCalc over (naive) enumeration

structured search space
— potential to amortize parts of proofs

short-cuts via intermittend deduction

* Main current limitation: accumulator-transformations are
uninformed and independent of recognition algorithms

Related Work

* Buchberger, Claessen, Hughes, Johansson
pioneered theory exploration (tools & larger case studies)

* Sonnex, deAngelis
program transformations make effective proof methods

* Hamilton & Poitin, Klyuchnikov & Romanenko
suggest fusion for lemma inference (= low hanging fruits)

* Giesl: deaccumulation schemes (not implemented)

* lots of work in the PL community (see paper)

Contribution: LemmmaCalc

* quickly explores a productive search space
* lemmas tend to be intuitive and useful

* integrate transformations and deduction

10.5281/zeno0do.16932462

Contribution: LemmmaCalc

* quickly explores a productive search space

 Jemmas tend to be intuitive and useful

* integrate transformations and deduction

* this implementation: proof of concept; 10.5281/zenodo.16932462
current limitations hit “hard ceiling”

* outlook: exploit further short-cuts accumulator transformations
online integration with enumeration

4—/\/\/;_>
1) T 1)

fully automatic unrealized human-guided
simpler properties potential expressive specs

Appendix

Fusing rev(xs, + Xs;)

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y:tys > y it (ys + XS3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(y :: (ys + XS3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(ys + xs;) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys — rev+(ys, xs;) + [y]

Define and Unfold [Bird, Burstall & Darlington]|

revH(xsi:, Xs;) := rev(xs; + Xs;)
= rev(match xs;
| case [] — XS,
| case y::ys = vy it (ys + XS3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(y :: (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(ys + xs;) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs;) + [y]

Shift Function Application [Turchin, ...]

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y::ys = vy i (ys ++ xs,))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(y :: (ys ++ xs,))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(ys + xs;) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs;) + [y]

Apply Definitions and known Lemmas
|Gill, Launchbury, SPJ]

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y::ys > y 1 (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(y :: (ys ++ xs,))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(ys ++ xs.,) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs;) + [y]

Simplify and Fold [Bird, Burstall & Darlington]|

rev+(xs;, XS,) := rev(xs: + XS,)
= rev(match xs;
| case [] — XS,
| case y::ys > y 1 (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys — rev(y :: (ys + xs3))
= match xs;
| case [] — rev(xs,)
| case y::ys = rev(ys + xs,) + [y]
= match xs;
| case [] — rev(xs,)

| case y::ys = rev+(ys, xs,) + [vy]

Fusing rev(rev(xs))

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] - []
| case y::ys — rev(ys) + [y])
= match xs
| case [] — rev([])
| case y::ys — rev(rev(ys) + [y])
= match xs
| case [] = rev([])
| case y::ys — rev([y]) + rev(rev(ys))

= match xs
| case [] - []
| case y::ys = y :: rev2(ys)

= id(xs) = xs

Final Lemmma

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] - []
| case y::ys — rev(ys) + [y])
= match Xxs
| case [] — rev([])
| case y::ys — rev(rev(ys) + [y])
= match xs
| case [] — rev([])
| case y::ys — rev([y]) + rev(rev(ys))

=— match xs
| case [] — []
| case y::ys = y :: rev2(ys)

= id(xs) = xs

Define and Unfold

rev2(xs) :

= rev(rev(xs))

rev(match xs
| case []1 = [1]
| case y::ys = rev(ys) + [y])

match Xxs

| case []
| case vy::
match xs

| case []
| case vy::
match Xxs

| case []
| case y::
id(xs) =

RN
VS

RN
)

VS
XS

rev([])

[Bird, Burstall & Darlington]

— rev(rev(ys) + [y])

rev([])

— rev([y]) + rev(rev(ys))

[]

-y

rev2(ys)

Shift Function Application [Turchin, ...]

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] — []
| case y::ys — rev(ys) + [v])
= match xs
| case [] = rev([])
| case y::ys — rev(rev(ys) + [v])
= match xs
| case [] = rev([])
| case y::ys = rev([y]) + rev(rev(ys))

= match xs
| case [] — []
| case y::ys = y :: rev2(ys)

= id(xs) = xs

Intermittent Deduction using Prior Lemmas

match xs
| case []
| case y::
match xs
| case []
| case y::

%
yS

-
VS

|Gill, Launchbury, SPJ]

rev([])
— rev(rev(ys) + [v])

rev([])

— rev([y]) + rev(rev(ys))

Intermittent Deduction using Prior Lemmas
|Gill, Launchbury, SPJ]

= match xs

| case [] — rev([])

| case y::ys — rev(rev(ys) + [v])
match Xs

| case [] = rev([])

| case y::ys = rev([y]) + rev(rev(ys))

gy

most difficult step, requires to know already
rev(xs: + xs,) = rev(xs,;) + rev(xs;)

Simplify and Fold [Bird, Burstall & Darlington]

rev2(xs) := rev(rev(xs))
= rev(match xs
| case [] — []
| case y::ys — rev(ys) + [y])
= match Xs
| case [] = rev([])
| case y::ys = rev(rev(ys) + [y])
= match xs
| case [] — rev([])
| case y::ys = rev([y]) + rev(rev(ys))
= match xs
| case []1 = [1
| case y::ys > y :: rev2(ys)
= id(xs) = xs

Recognize identity, constant, existing Functions

rev2(xs)

match xs

| case [] - []

| case y::ys = vy :: rev2(ys)
= id(xs)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

