LemmaCalc:

Quick Theory Exploration for Algebraic Data Types via Program Transformations

Gidon Ernst, Augsburg University, LMU Munich Grigory Fedyukovich, Florida State University https://doi.org/10.5281/zenodo.16932462

iFM 2025, Paris November 20

LemmaCalc:

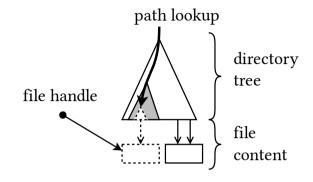
Quick Theory Exploration for Algebraic Data Types via Program Transformations

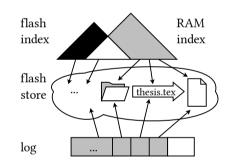
Gidon Ernst, Augsburg University, LMU Munich Grigory Fedyukovich, Florida State University https://doi.org/10.5281/zenodo.16932462

Motivation: Automated, Interactive Proofs

A typical verification case-study

- custom data types & function definitions
- expressivene logic (recursion, quantifiers)
- incremental development





partial/corrupt group (no end node)

start

partial/corrupt node (no trailer)

Flashix [Ernst+]

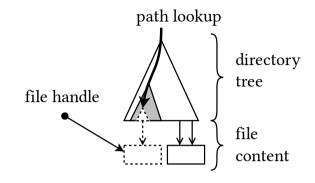
Motivation: Automated, Interactive Proofs

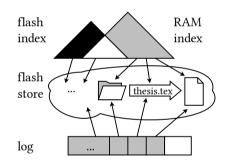
A typical verification case-study

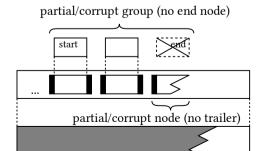
- custom data types & function definitions
- expressivene logic (recursion, quantifiers)
- incremental development

Bottleneck: formulating & proving lemmas

- break down proof obligations
- automate recurring proof steps







Goal: Theory Exploration

```
Input
data Nat := 0 | 1+ Nat
                                           inductive
data List<a> := [] | a :: List<a>
                                             types
length([]) := 0
                                           recursive
length(x::xs) := 1 + length(xs)
                                           functions
    [] ++ ys := ys
(x::xs) ++ ys := x::(xs ++ ys)
```

Goal: Theory Exploration

```
Input
data Nat := 0 | 1+ Nat
                                           inductive
data List<a> := [] | a :: List<a>
                                             types
length([]) := 0
                                            recursive
length(x::xs) := 1 + length(xs)
                                           functions
     [] ++ ys := ys
(x::xs) + ys := x::(xs + ys)
                                               Output
lemma length(xs ++ ys)
                                            "useful/
         = length(xs) + length(ys)
                                           intersting"
                                            lemmas
```

Classic Approach: Term Enumeration

[Claessen, Hughes, Johansson+, Singher & Itzhaky, ...]

Algorithm

```
repeat
    sample phi: Bool with |phi| < N
    if theory U lemmas proves phi
        lemmas := lemmas U {phi}</pre>
```

"complete" relative to search space and prover

In practice

- further restrictions: shape, few duplicate vars, ...
- relevance filter: requires induction, ...
- testing (QuickCheck) vs. inductive proofs (HipSpec, TheSy)

Combinatorial Search Spaces (Table 1)

		baseline enumerator statistics						S_{Y}	
benchmark	F	candidates	true	$ \Lambda $?	time	last	killed	
nat	8	1 131 799	501	32	1759	6:50:00	26:38:14	>26h	long
list	18	319019	408	32	522	1:48:22	10:55:14	>21h	runtimes
tree	11	123178	130	20	38	11:25	16:47		runtines
append	5	15 058	133	$\overline{22}$	5	02:03	04:32		
filter	6	398	2	5	16	02:11	00:02		
length	5	7066	558	12	1	01:59	00:00		
map	8	34726	103	13	35	07:18	37:33	>11h	
remove	7	32302	117	14	13	22:11	13:01	>11h	
reverse	4	127926	427	22	1	03:29	00:02		
rotate	6	12784	124	20	43	08:50	6:54:22	>11h	
runlength	7	68311	182	23	847	†1:12:12	00:40	>11h	

exponential in |definitions|

"interesting" lemmas are rare

productivity is very sporadic

Example Lemmas over Lists and Trees

```
length(filter(p, xs)) = countif(p, xs)
take(n, map(f, xs)) = map(f, take(n, xs))
rev(rev(xs)) = xs
sum(ys ++ zs) = sum(ys) + sum(zs)
length(elems(t)) = size(t)
...
```

Example Lemmas over Lists and Trees

```
length(filter(p, xs)) = countif(p, xs)
take(n, map(f, xs)) = map(f, take(n, xs))
rev(rev(xs))
                      = xs
sum(ys + zs)
                      = sum(ys) + sum(zs)
length(elems(t))
                      = size(t)
                                 lemmas from term
                                enumeration are not
                                necessarily "useful"
rev(rev(xs))
  = take(length(xs), snoc(xs, zero))
```

Contribution

LemmaCalc: an approach for theory exploration

- quickly explores a structured search space
- lemmas are intuitive for humans
- lemmas tend to be useful for automation

10.5281/zenodo.16932462

Focus: **equations** (associative/distributive laws)

Main method: integrate **program transformations** and **deduction**

Evaluation against enumerative theory exploration

- RQ1: relative explanatory strength of the sets of lemmas generated?
- RQ2: impact of the search space on lemma synthesis time?

one way to present a computation

What's a Lemma?

$$(x - y)^{2}$$

$$= (x - y)(x - y)$$

$$= x^{2} - xy - yx + y^{2}$$

$$= x^{2} - xy - xy + y^{2}$$

$$= x^{2} - 2xy + y^{2}$$

another way to present a computation with the same result

What's a Lemma?

```
(x - y)^{2}
= (x - y)(x - y) definition of (-)^{2}
= x^{2} - xy - yx + y^{2}
= x^{2} - xy - xy + y^{2}
= x^{2} - 2xy + y^{2} use lemma xy = yx
```

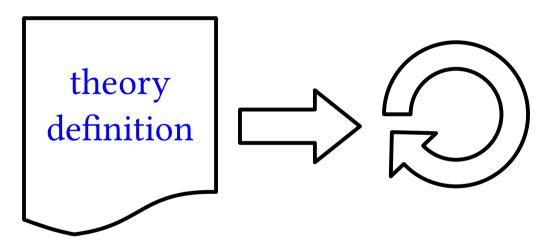
one way to present a computation

What's a Lemma?

$$rev(xs_1 + xs_2)$$

$$= rev(xs_2) + rev(xs_1)$$

another way to present a computation with the same result

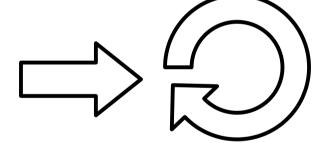


exploration by program transformations

fusion: f(x, g(y)) = fg(x, y)

accumulator removal: $h(x,y) = h'(x) \oplus e(y)$

theory definition



generates

synthetic functions

to represent intermediate results

exploration by program transformations

fusion: f(x, g(y)) = fg(x, y)

accumulator removal: $h(x,y) = h'(x) \oplus e(y)$

theory definition

extracted lemmas

recognition principles

constant functions: f(x) = c

identity functions: f(x) = x

structural equivalence: $f(x) = g(\pi(x))$

```
rev(xs_1 + xs_2)

= rev++(xs_1, xs_2)

= rev++'(xs_1) \oplus^? e^?(xs_2)

= rev(xs_2) + rev++'(xs_1)

= rev(xs_2) + rev(xs_1)
```

```
rev(xs_1 + xs_2)
     = \text{rev} + (xs_1, xs_2)
     = rev++'(xs<sub>1</sub>) \oplus? e?(xs<sub>2</sub>)
     = rev(xs_2) + rev + '(xs_1)
     = rev(xs_2) + rev(xs_1)
rev(rev(xs))
     = \dots = id(xs) = xs
```

$$rev(xs_1 + xs_2)$$

$$= rev++(xs_1, xs_2)$$
[Wadler, SPJ, Turchin, ...]

[Bird, Burstall & Darlington, Meijer, ...]

```
fusion
rev(xs_1 + xs_2)
      = rev++(xs_1, xs_2)
      = rev+'(xs<sub>1</sub>) \oplus? e?(xs<sub>2</sub>)
        template for accumulator removal
        e^{?}() := ???
        z_1 \oplus^? z_2 := ???
```

[Giesl]

```
fusion
rev(xs_1 + xs_2)
     = rev + (xs_1, xs_2)
     = rev++'(xs<sub>1</sub>) \oplus? e?(xs<sub>2</sub>)
     = rev(xs_2) + rev + '(xs_1)
       solution for accumulator removal
       e^{?}() := rev()
       Z_1 \oplus^? Z_2 := Z_2 ++ Z_1
```

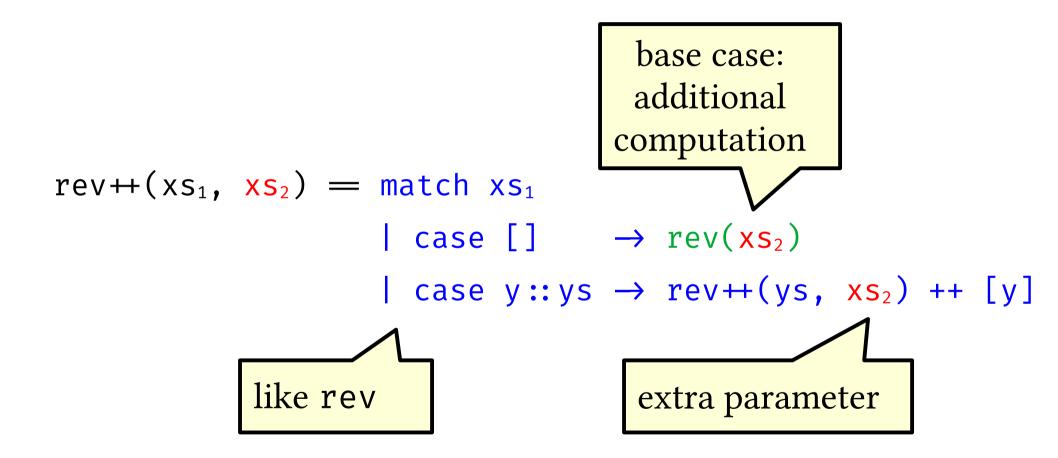
```
rev(xs_1 + xs_2)
     = rev + (xs_1, xs_2)
     = rev++'(xs<sub>1</sub>) \oplus? e?(xs<sub>2</sub>)
     = rev(xs_2) + rev + '(xs_1)
     = rev(xs_2) + rev(xs_1)
                     recognize that
```

Why it works

Fusion regularizes computations

- optimize away intermediate results (original goal)
- fg like f but extra parameters and more complex base case
- fg represents a "canned" (amortized) inductive proof

Fused function rev+(xs₁, xs₂)



Why it works: A.R. picks up what is left by fusion

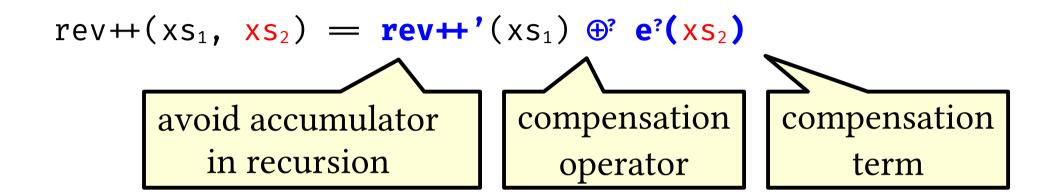
Fusion **regularizes** computations

- optimize away intermediate results (original goal)
- fg like f but extra parameters and more complex base case
- fg represents a "canned" (amortized) inductive proof

Accumulator removal **factors** computations

- push computation fragments out of functions
- template _ ⊕? e?(_) represents inductive generalizations
- requires choice, but strictly more powerful than fusion! [Zhu]

Accumulator Removal for rev++(xs₁, xs₂)



Accumulator Removal for $rev+(xs_1, xs_2)$

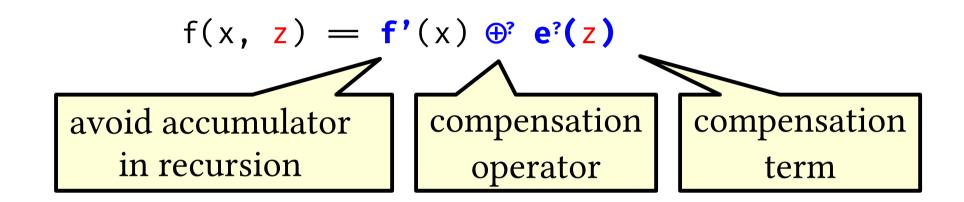
```
rev + (xs_1, xs_2) = rev + '(xs_1) \oplus ''(xs_2)
(match xs₁
 | case [] \rightarrow rev(xs_2)
 | case y::ys \rightarrow rev+(ys, xs_2) ++ [y])
(match xs<sub>1</sub>
  | case [] \rightarrow base^?
  | case y::ys \rightarrow rec?(rev+'(ys), y)) \oplus? e?(xs<sub>2</sub>)
```

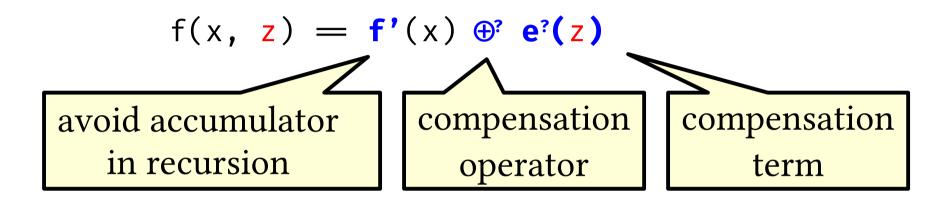
Accumulator Removal for rev++(xs₁, xs₂)

```
rev+(xs_1, xs_2) = rev+'(xs_1) \oplus e'(xs_2)
(match xs<sub>1</sub>
 | case [] \rightarrow rev(xs_2)
 | case y::ys \rightarrow rev+(ys, xs_2) + [y])
(match xs<sub>1</sub>
   | case [] \rightarrow base^?
   | case y::ys \rightarrow rec?(rev+'(ys), y)) \oplus? e?(xs<sub>2</sub>)
```

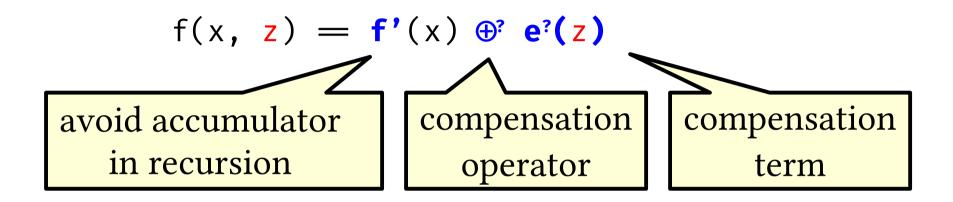
Accumulator Removal for rev++(xs₁, xs₂)

```
rev+(xs_1, xs_2) = rev+'(xs_1) \oplus e'(xs_2)
 %match xs1
| case [] \rightarrow rev(xs2)
| case y::ys \rightarrow rev++(ys, = e?(_) := rev(_)
| case y::ys \rightarrow rev++(ys, rec := (original body)
(match xs₁
rev(xs_2) + (match xs_1)
   | case [] \rightarrow []
   | case y::ys \rightarrow rev+'(ys) + p[y])
```



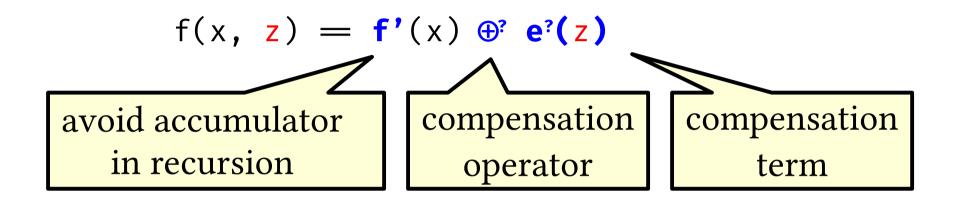


• Choose new base case of **f**' and compensation operator from functions with neutral elements (e.g. **++** with [] left/right)

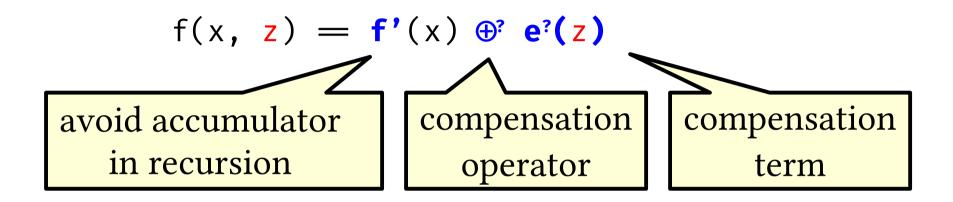


• Choose new base case of **f'** and compensation operator from functions with neutral elements (e.g. **++** with [] left/right)

```
(...(rev(xs_2) ++ [y_1]) ... ++ [y_{n-1}]) ++ [y_n]
= rev(xs_2) ++ (...([] ++ [y_1]) ... ++ [y_{n-1}]) ++ [y_n]
```



- Choose new base case of **f'** and compensation operator from functions with neutral elements (e.g. **++** with [] left/right)
- Choose compensation term as original base case (side conditions apply)
- Choose new recursive case(s) of f' unchanged (strong limitation: misses some results)



- Choose new base case of **f**' and compensation operator from functions with neutral elements (e.g. **++** with [] left/right)
- Choose compensation term as original base case (side conditions apply)
- Choose new recursive case(s) of f' unchanged (strong limitation: misses some results)

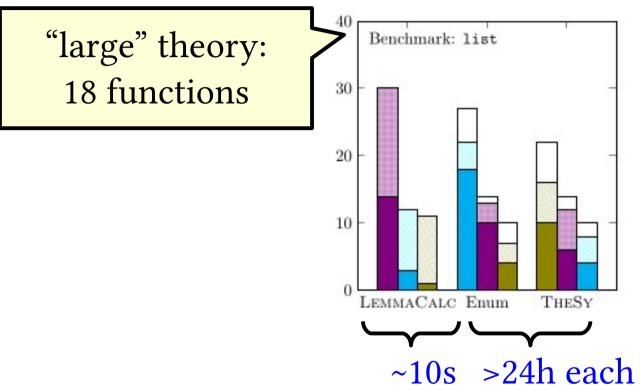
Evaluation

RQ1: What is the **relative explanatory strength** of the sets of lemmas generated by the different methods?

RQ2: What is the impact of the search space on lemma **synthesis time**?

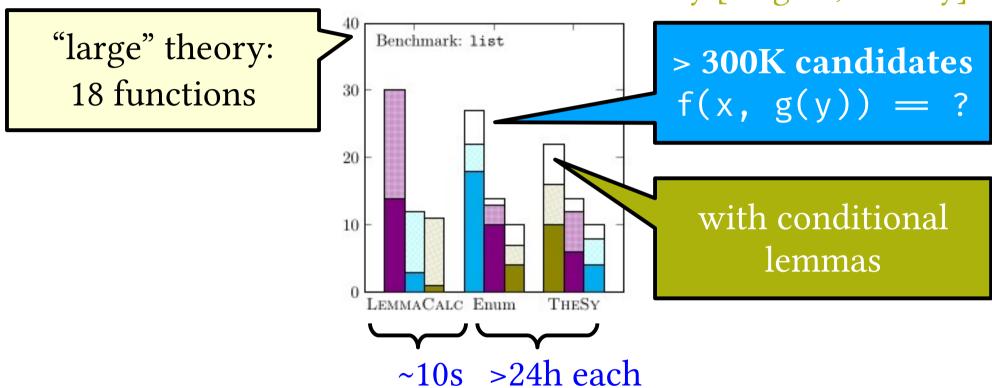
Results: Number of Lemmas

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]



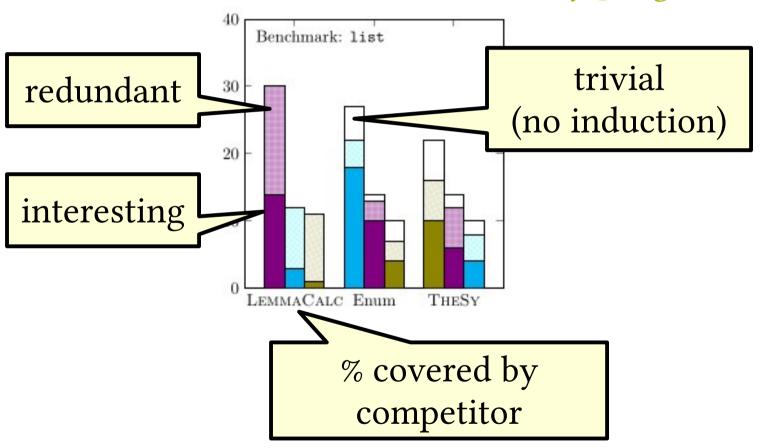
Results: Number of Lemmas

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

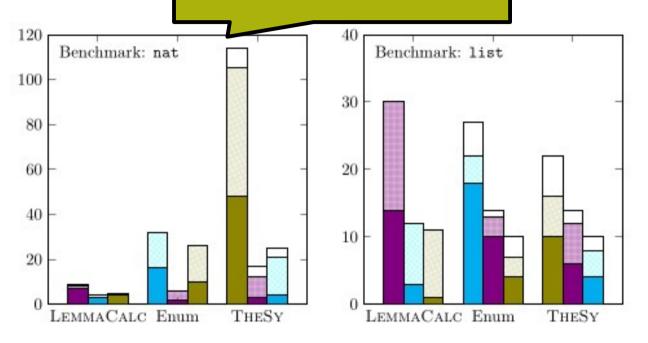


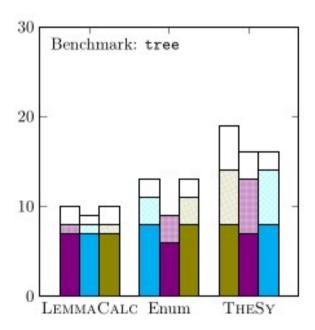
Results: Number of Lemmas

LemmaCalc
Baseline Enumerator
TheSy [Singher, Itzhaky]

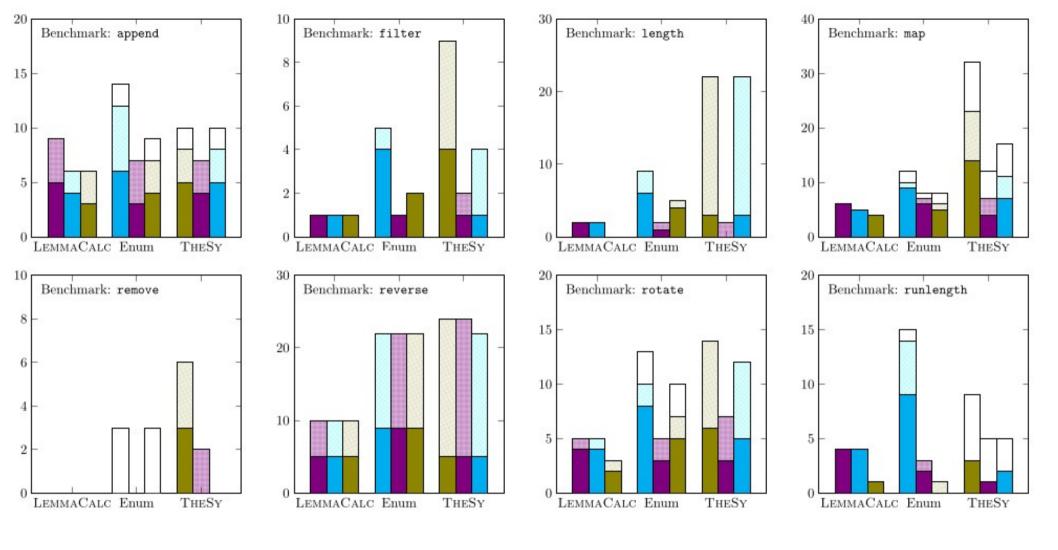


many conditional lemmas





(almost) identical non-redundant sets



Remark: it is expected that baseline Enum always dominates LemmaCalc (modulo prover)

Results and Discussion

- RQ1: methods have comparable explanatory power but complementary strengths and weaknesses
- RQ2: LemmaCalc is much faster but misses some results

- Key advantage of LemmaCalc over (naive) enumeration
 - structured search space
 - potential to amortize parts of proofs
 - **short-cuts** via intermittend deduction
- Main current limitation: accumulator-transformations are uninformed and independent of recognition algorithms

Related Work

- Buchberger, Claessen, Hughes, Johansson pioneered theory exploration (tools & larger case studies)
- <u>Sonnex</u>, deAngelis program transformations make effective <u>proof</u> methods
- <u>Hamilton & Poitin</u>, Klyuchnikov & Romanenko suggest fusion for lemma inference (= low hanging fruits)
- Giesl: deaccumulation schemes (not implemented)
- lots of work in the PL community (see paper)

Contribution: LemmaCalc

- quickly explores a productive search space
- lemmas tend to be intuitive and useful
- integrate transformations and deduction

10.5281/zenodo.16932462

Contribution: LemmaCalc

- quickly explores a productive search space
- lemmas tend to be intuitive and useful
- integrate transformations and deduction
- this implementation: proof of concept; current limitations hit "hard ceiling"

10.5281/zenodo.16932462

 outlook: exploit further short-cuts accumulator transformations online integration with enumeration

Appendix

Fusing rev($xs_1 + xs_2$)

```
rev++(xs_1, xs_2) := rev(xs_1 ++ xs_2)
          = rev(match xs<sub>1</sub>
                    | case [] \rightarrow xs_2
                    | case y::ys \rightarrow y::(ys ++ xs_2))
          = match xs₁
              \mid case [] \rightarrow rev(xs_2)
              | case y::ys \rightarrow rev(y :: (ys ++ xs_2))
          = match xs<sub>1</sub>
              \mid case [] \rightarrow rev(xs_2)
              | case y::ys \rightarrow rev(ys ++ xs<sub>2</sub>) ++ [y]
          = match xs<sub>1</sub>
              | case [] \rightarrow rev(xs_2)
              | case y::ys \rightarrow rev++(ys, xs<sub>2</sub>) ++ [y]
```

Define and Unfold

[Bird, Burstall & Darlington]

```
rev++(xs_1, xs_2) := rev(xs_1 ++ xs_2)
          = rev(match xs<sub>1</sub>
                     | case [] \rightarrow xs_2
                     | case y::ys \rightarrow y :: (ys + xs_2))
          = match xs<sub>1</sub>
               \mid case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev(y :: (ys ++ xs<sub>2</sub>))
          = match xs₁
               | case [] \rightarrow rev(xs<sub>2</sub>)
               | case y::ys \rightarrow rev(ys ++ xs<sub>2</sub>) ++ [y]
          = match xs<sub>1</sub>
               | case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev++(ys, xs<sub>2</sub>) ++ [y]
```

Shift Function Application

[Turchin, ...]

```
rev++(xs_1, xs_2) := rev(xs_1 ++ xs_2)
          = rev(match xs<sub>1</sub>
                      | case [] \rightarrow xs_2
                     | case y::ys \rightarrow y::(ys + xs_2))
          = match xs<sub>1</sub>
               | case [] \rightarrow rev(xs<sub>2</sub>)
               | case y::ys \rightarrow rev(y :: (ys ++ xs<sub>2</sub>))
          = match xs₁
               | case [] \rightarrow rev(xs<sub>2</sub>)
               | case y::ys \rightarrow rev(ys ++ xs<sub>2</sub>) ++ [y]
          = match xs<sub>1</sub>
               | case [] \rightarrow rev(xs<sub>2</sub>)
               | case y::ys \rightarrow rev++(ys, xs<sub>2</sub>) ++ [y]
```

Apply Definitions and known Lemmas

[Gill, Launchbury, SPJ]

```
rev++(xs_1, xs_2) := rev(xs_1 ++ xs_2)
          = rev(match xs<sub>1</sub>
                     | case [] \rightarrow xs_2
                     | case y::ys \rightarrow y::(ys ++ xs_2))
          = match xs<sub>1</sub>
               \mid case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev(y :: (ys ++ xs<sub>2</sub>))
          = match xs<sub>1</sub>
               | case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev(ys ++ xs<sub>2</sub>) ++ [y]
          = match xs₁
               | case [] \rightarrow rev(xs<sub>2</sub>)
               | case y::ys \rightarrow rev++(ys, xs<sub>2</sub>) ++ [y]
```

Simplify and Fold

[Bird, Burstall & Darlington]

```
rev++(xs_1, xs_2) := rev(xs_1 ++ xs_2)
          = rev(match xs<sub>1</sub>
                     | case [] \rightarrow xs_2
                     | case y::ys \rightarrow y::(ys ++ xs_2))
          = match xs<sub>1</sub>
               \mid case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev(y :: (ys ++ xs<sub>2</sub>))
          = match xs<sub>1</sub>
               | case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev(ys ++ xs<sub>2</sub>) ++ [y]
          = match xs<sub>1</sub>
               \mid case [] \rightarrow rev(xs_2)
               | case y::ys \rightarrow rev+(ys, xs<sub>2</sub>) ++ [y]
```

Fusing rev(rev(xs))

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                 \mid case \lceil \rceil \rightarrow \lceil \rceil
                 | case v::vs \rightarrow rev(vs) + [v])
         = match xs
             | case [] \rightarrow rev([])
             | case y::ys \rightarrow rev(rev(ys) ++ [y])
         = match xs
             | case [] \rightarrow rev([])
             | case y::ys \rightarrow rev([y]) ++ rev(rev(ys))
         = match xs
             | case [] \rightarrow []
             | case y::ys \rightarrow y :: rev2(ys)
         = id(xs) = xs
```

Final Lemma

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                | case [] \rightarrow []
                | case v::vs \rightarrow rev(vs) + [v])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev(rev(ys) + [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev([y]) + rev(rev(ys))
        = match xs
            | case [] \rightarrow []
            | case y::ys \rightarrow y :: rev2(ys)
        = id(xs) = xs
```

Define and Unfold

[Bird, Burstall & Darlington]

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                 | case [] \rightarrow []
                 | case y::ys \rightarrow rev(ys) + [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev(rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev([y]) + rev(rev(ys))
        = match xs
            | case [] \rightarrow []
            | case y::ys \rightarrow y :: rev2(ys)
        = id(xs) = xs
```

Shift Function Application

[Turchin, ...]

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                 \mid case [] \rightarrow []
                 | case y::ys \rightarrow rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev(rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev([y]) + rev(rev(ys))
        = match xs
            | case [] \rightarrow []
            | case y::ys \rightarrow y :: rev2(ys)
        = id(xs) = xs
```

Intermittent Deduction using Prior Lemmas

[Gill, Launchbury, SPJ]

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                | case [] \rightarrow []
                | case v::vs \rightarrow rev(vs) + [v])
        = match xs
            \mid case [] \rightarrow rev([])
            | case y::ys \rightarrow rev(rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev([y]) + rev(rev(ys))
        = match xs
            | case [] \rightarrow []
            | case y::ys \rightarrow y :: rev2(ys)
        = id(xs) = xs
```

Intermittent Deduction using Prior Lemmas

[Gill, Launchbury, SPJ]

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                 | case [] \rightarrow []
                 | case y::ys \rightarrow rev(ys) + [y])
        = match xs
            \mid case [] \rightarrow rev([])
             | case y::ys \rightarrow rev(rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
             | case y::ys \rightarrow rev([y]) + rev(rev(ys))
```

most difficult step, requires to know already $rev(xs_1 + xs_2) = rev(xs_2) + rev(xs_1)$

Simplify and Fold

[Bird, Burstall & Darlington]

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                | case [] \rightarrow []
                | case v::vs \rightarrow rev(vs) + [v]
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev(rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev([y]) + rev(rev(ys))
        = match xs
            \mid case [] \rightarrow []
            | case y::ys \rightarrow y :: rev2(ys)
        = id(xs) = xs
```

Recognize identity, constant, existing Functions

```
rev2(xs) := rev(rev(xs))
        = rev(match xs
                | case [] \rightarrow []
                | case v::vs \rightarrow rev(vs) + [v])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev(rev(ys) ++ [y])
        = match xs
            | case [] \rightarrow rev([])
            | case y::ys \rightarrow rev([y]) + rev(rev(ys))
        = match xs
            | case [] \rightarrow []
            | case y::ys \rightarrow y :: rev2(ys)
        = id(xs) = xs
```