
SV-LIB 1.0
A Standard Exchange Format for Software-Verification Tasks
Gidon Ernst Marian Lingsch-Rosenfeld

Dirk Beyer Martin Jonáš

2025-12-03
LMU Munich, Germany

SV-LIB

https://orcid.org/0000-0002-3289-5764
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-4703-0795

VerifyThis

On-site competitions (at ETAPS): hands on, personal exchange

Great experience! But what if we focus on collaboration? [Huisman+ 20]

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 1/30

VerifyThis

On-site competitions (at ETAPS): hands on, personal exchange

Great experience! But what if we focus on collaboration? [Huisman+ 20]

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 1/30

VerifyThis

On-site competitions (at ETAPS): hands on, personal exchange

Great experience! But what if we focus on collaboration? [Huisman+ 20]

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 1/30

Discussion over recent years

This event series

Challenge: Hagrid, Casino, Memcached
Presentations, discussions, and tutorials
. . .

Dagstuhl and Lorentz Seminar(s):

combine heterogeneous tools and theories
software contracts vs. system contracts

CAV award 2019: Intermediate Verification Languages (Leino, Filliâtre):

Why3, Boogie, Viper (procedural), MoXI, VMT (state-transition), K2 (hybrid)
Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 2/30

Contract-LIB: Interface Specifications [ISoLA 2024]

objects

data abstractions
(sequences, sets,
maps, trees, ...)

data structures
pointers etc, ...

data
refinement

 Contract-LIB👻innovation happens here

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 3/30

SV-COMP: Intl. Competition on Software Verification [Beyer+]

https://sv-comp.sosy-lab.org/2025/results/results-verified/

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 4/30

https://sv-comp.sosy-lab.org/2025/results/results-verified/

Taken from xkcd.com/927

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 5/30

https://xkcd.com/927/

Motivation for another IVL

(a) Challenge in SV-COMP and VerifyThis: Tools need to support C as well as
implement the verification methodology

(b) Challenge in SV-COMP: The complexities of C transfer into certification of
the correctness of tool output

(c) Challenge in SV-COMP: Exchange information between tools (e.g., witnesses,
specifications, . . .)

(d) Challenge in SV-COMP and VerifyThis: Bridge the gap between the
SV-COMP and VerifyThis communities

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 6/30

Taken from xkcd.com/927

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 7/30

https://xkcd.com/927/

Automatic Software Verification (SV-COMP)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 8/30

Autoactive Software Verification (VerifyThis)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 9/30

Inside a Verifier

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 10/30

SV-LIB

LLVM

Java

C

Dafny

SV-LIB

Transformations

CHC

TPTP

VMT-LIB

SMT-LIB

3
Model

Checking

3
Deductive
Verification

3
Test

Generation

3
Specification

Inference
K2

MoXI Why3

Viper

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 11/30

SV-LIB: Initial Design

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 12/30

SV-LIB: Initial Design

https://docs.google.com/document/d/
1HAcfPubY7oKVtuIDRUZZ44omsKPl0pxThkPGXEjuC3g/edit

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 13/30

https://docs.google.com/document/d/1HAcfPubY7oKVtuIDRUZZ44omsKPl0pxThkPGXEjuC3g/edit
https://docs.google.com/document/d/1HAcfPubY7oKVtuIDRUZZ44omsKPl0pxThkPGXEjuC3g/edit

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoiding semantic
complexity (procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation ≈ Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, . . .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 14/30

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoiding semantic
complexity (procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation ≈ Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, . . .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 15/30

Goal: Consolidation of Existing IVLs
1 (set-logic LIA)
2

3 (define-proc
4 add
5 ((x0 Int) (y0 Int))
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x0) (y y0))

10 (! (while
11 (< 0 y)
12 (assign
13 (x (+ x 1))
14 (y (- y 1))))
15 :tag while-loop))
16 :tag proc-add))

17 (annotate-tag
18 proc-add
19 :requires (<= 0 y0)
20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop :not-recurring)
23

24 (declare-const x1 Int)
25 (declare-const y1 Int)
26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
:invariant

(and
(<= 0 y)
(= (+ x y) (+ x0 y0)))

:decreases y))

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 16/30

Goal: Consolidation of Existing IVLs

1 (set-logic LIA)
2

3 (define-proc
4 add
5 ((x0 Int) (y0 Int))
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x0) (y y0))

10 (! (while
11 (<= 0 y)
12 (assign
13 (x (+ x 1))
14 (y (- y 1))))
15 :tag while-loop))
16 :tag proc-add))

((select-trace
(model

(define-fun x1 () Int 1)
(define-fun y1 () Int 1))

(init-global-vars)
(entry-proc add)
(steps

(init-proc-vars add
; initialization of x and y
; not necessary
))

(incorrect-annotation
proc-add
:ensures
(= x (+ x0 y0)))))

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 17/30

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoid semantic complexity
(procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation ≈ Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, . . .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 18/30

Goal: Keep Programs and Specifications Separate
1 (set-logic LIA)
2

3 (define-proc
4 add
5 ((x0 Int) (y0 Int))
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x0) (y y0))

10 (! (while
11 (< 0 y)
12 (assign
13 (x (+ x 1))
14 (y (- y 1))))
15 :tag while-loop))
16 :tag proc-add))

17 (annotate-tag
18 proc-add
19 :requires (<= 0 y0)
20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop :not-recurring)
23

24 (declare-const x1 Int)
25 (declare-const y1 Int)
26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
:invariant

(and
(<= 0 y)
(= (+ x y) (+ x0 y0)))

:decreases y))

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 19/30

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoid semantic complexity
(procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation ≈ Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, . . .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 20/30

Goal: Validation ≈ Verification

(a) adding a witness from a sound tool
can only make the specification
more precise

(b) adding wrong invariants leads to
additional ways to violate the spec

(c) adding a wrong CEX can be charac-
terized meaningfully and a witness
exported for such a task

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 21/30

Goal: Validation ≈ Verification
1 (set-logic LIA)
2

3 (define-proc
4 add
5 ((x0 Int) (y0 Int))
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x0) (y y0))

10 (! (while
11 (< 0 y)
12 (assign
13 (x (+ x 1))
14 (y (- y 1))))
15 :tag while-loop))
16 :tag proc-add))

17 (annotate-tag
18 proc-add
19 :requires (<= 0 y0)
20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop :not-recurring)
23

24 (declare-const x1 Int)
25 (declare-const y1 Int)
26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
:invariant

(and
(<= 0 y)
(= (+ x y) (+ x0 y0)))

:decreases y))

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 22/30

Goal: Validation ≈ Verification
1 (set-logic LIA)
2

3 (define-proc
4 add
5 ((x0 Int) (y0 Int))
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x0) (y y0))

10 (! (while
11 (< 0 y)
12 (assign
13 (x (+ x 1))
14 (y (- y 1))))
15 :tag while-loop))
16 :tag proc-add))

17 (annotate-tag
18 proc-add
19 :requires (<= 0 y0)
20 :ensures (= x (+ x0 y0))
21 :not-recurring)
22

23 (declare-const x1 Int)
24 (declare-const y1 Int)
25

26 ; Command taken from the witness
27 (annotate-tag
28 while-loop
29 :invariant
30 (and
31 (<= 0 y)
32 (= (+ x y) (+ x0 y0)))
33 :decreases y)
34

35 (verify-call add (x1 y1))

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 23/30

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoid semantic complexity
(procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation ≈ Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, . . .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 24/30

Goal: Software Ecosystem

Aim to provide building blocks to facilitate adoption:

(a) ANTLR Grammar for parsing SV-LIB

(b) PySvLib: Python library for working with SV-LIB programs

(c) Integration of SV-LIB into CPAchecker

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 25/30

Demo: PySvLib

git clone https://gitlab.com/sosy-lab/benchmarking/sv-lib.git
cd sv-lib/examples/core-verification
git checkout 48d4beedec0f86a004b8aaa29c8193d727a94d7a
pip install git+https://gitlab.com/sosy-lab/benchmarking/sv-lib.git\

@48d4beedec0f86a004b8aaa29c8193d727a94d7a#subdirectory=pysvlib
pysvlib lint loop-simple-safe.svlib # expected exit code 0
pysvlib lint loop-simple-unsafe.svlib # expected exit code 0

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 26/30

https://gitlab.com/sosy-lab/benchmarking/sv-lib.git
https://gitlab.com/sosy-lab/benchmarking/sv-lib.git

Demo: CPAchecker

git clone https://gitlab.com/sosy-lab/benchmarking/sv-lib.git
cd sv-lib/examples/core-verification
git checkout 48d4beedec0f86a004b8aaa29c8193d727a94d7a
apt install cpachecker # https://doi.org/10.48550/arXiv.2409.02094
cpachecker loop-simple-safe.svlib # expected ‘true‘ as output
cpachecker loop-simple-unsafe.svlib # expected ‘false‘ as output

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 27/30

https://gitlab.com/sosy-lab/benchmarking/sv-lib.git
https://doi.org/10.48550/arXiv.2409.02094

SV-LIB: Goals Recap

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoid semantic complexity
(procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation ≈ Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, . . .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 28/30

Lessons and Insights

(a) inductiveness: what does it really mean in practice? leap as part of CEX
(b) Verification = Validation (with the right problem formulation)
(c) surprisingly interesting: monotonicity of collecting witnesses when ground

truth is not available: how to accomodate multi-source, possibly conflicting
evidence on the properties of the program

(d) outlook: general liveness properties

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 29/30

Future Work

LLVM

Java

C

Dafny

SV-LIB

Transformations

CHC

TPTP

VMT-LIB

SMT-LIB

3
Model

Checking

3
Deductive
Verification

3
Test

Generation

3
Specification

Inference
K2

MoXI Why3

Viper

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 30/30

Conclusion

(a) SV-LIB 1.0 format available to read [1]
(b) Addresses multiple challenges in the SV-

COMP and VerifyThis communities
(c) Designed to cover both automated and

autoactive verification use-cases
(d) Tool support available

https://gitlab.com/sosy-lab/benchmarking/sv-lib

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 31/30

https://doi.org/10.48550/arXiv.2511.21509
https://gitlab.com/sosy-lab/benchmarking/sv-lib

References i

[1] Beyer, D., Ernst, G., Jonáš, M., Lingsch-Rosenfeld, M.: SV-LIB 1.0: A
standard exchange format for software-verification tasks. arXiv/CoRR
2511(21509) (December 2025).
https://doi.org/10.48550/arXiv.2511.21509

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 31/30

https://doi.org/10.48550/arXiv.2511.21509

