SV-LIB 1.0

A Standard Exchange Format for Software-Verification Tasks

Gidon Ernst ® Marian Lingsch—RosenfeIdG’

Dirk Beyer® Martin Jonag®

Software Systems

2025-12-03 .
LMU Munich, Germany LMu

(SV-LIB); EESmED

https://orcid.org/0000-0002-3289-5764
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-4703-0795

VerifyThis

On-site competitions (at ETAPS): hands on, personal exchange

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 1/30

VerifyThis

On-site competitions (at ETAPS): hands on, personal exchange

Great experience! But what if we focus on collaboration? [Huisman+ 20]

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 1/30

VerifyThis

Gidon Ernst;

On-site competitions (at ETAPS): hands on, personal exchange

Great experience! But what if we focus on collaboration? [Huisman+ 20]

The goals of the long-term challenges are

1. to foster collaboration between researchers and their tools,
2. to demonstrate practical value of formal methods, and
3. to evaluate the capabilities of methods and tools.

The emphasis on collaboration comes with the need and at the same time the op-
portunity to make progress on long-standing open issues in formal methods [12]

4. to develop approaches that bridge between specification paradigms and
5. to work towards conceptual and technical integration of verification tools.

e Lingseh-Rosenfeld SVHB1-6

artaR—HRg:

1/30

Discussion over recent years

This event series

Challenge: Hagrid, Casino, Memcached

Presentations, discussions, and tutorials

Dagstuhl and Lorentz Seminar(s):

combine heterogeneous tools and theories

software contracts vs. system contracts
CAV award 2019: Intermediate Verification Languages (Leino, Filliatre):

Why3, Boogie, Viper (procedural), MoXI, VMT (state-transition), K2 (hybrid)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 2/30

Contract-LIB: Interface Specifications [ISoLA 2024]

innovation happens here

() Contract-LIB

A

data
refinement
data structures
pointers etc, ...
Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0

N7

HE

data abstractions

(sequences, sets,
maps, trees, ...)

3/30

SV-COMP: Intl. Competition on Software Verification [Beyer+]

1000

100

Min. time in s

2Ls

Bubaak —&—
Bubaak-SpLit ——
CBMC =+ x= =
CPAchecker ——
CPV ——

Crux «+ye -

DIVINE = = =+
EmergenTheta ——
ESBMC-kind
Goblint
Graves-CPA = = x:
Infer

Mopsa
Nacpa =
PeSCo-CPA =

Cumulative score

https://sv-comp.sosy-lab.org/2025/results/results-verified/

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0

4/30

https://sv-comp.sosy-lab.org/2025/results/results-verified/

HOW STANDARDS PROLIFERATE:
(4652 AJC CHARGERS, CHARACIER ENCODINGS, INSTANT MESSAGING, ETC)

47! RIDICULOLS!

WE NEED To DEVELOP

SITUATON: || SEVIVERAL SR || giruATION:

THEREARE || USE CSES. THERE. ARE

|4 COMPETING \ O I |5 COMPETING
STANDPRDS.

STANDPRDS. K

Taken from xkcd.com /927

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 5/30

https://xkcd.com/927/

Motivation for another IVL

(a) Challenge in SV-COMP and VerifyThis: Tools need to support C as well as
implement the verification methodology

(b) Challenge in SV-COMP: The complexities of C transfer into certification of
the correctness of tool output

(c) Challenge in SV-COMP: Exchange information between tools (e.g., witnesses,

specifications, .. .)

(d) Challenge in SV-COMP and VerifyThis: Bridge the gap between the
SV-COMP and VerifyThis communities

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0

6/30

HOW STANDARDS PROLIFERATE:
(4652 AJC CHARGERS, CHARACIER ENCODINGS, INSTANT MESSAGING, ETC)

47! RiDICULOLS! —

WE NEED To DEVELOP 0
.|| ONE UNIVERSAL STANDARD
SITUATION: | | 1iar covers Evervones || <
THERE ARE USE CASES. ey !
|4 COMPETING \ ' I
O J

STANDPRDS. —
0

S

X <

Taken from xked.com/927

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 7/30

https://xkcd.com/927/

Automatic Software Verification (SV-COMP)

AN

Program

Result
/
‘B : Witness

Spec

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 8/30

Autoactive Software Verification (VerifyThis)

Gidon Ernst, Marian Lingsch-Rosenfeld

.

Program

-

Spec

User

Annotations

SV-LIB 1.0

Result

9/30

Inside a Verifier

R

_* ;.
S
CFA 2 . .
(Parser HBulder . r Algorithm Result Explainer

—I;/ (T Program J {To SMT NA To 1 (From SMTW (A From l

Spec ransformation Converter bstraction Converter bstraction

Output

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 10/30

SV-LIB

VMT LiB E]

Transformatlons TPTP

LLVM \ CHC
ST

R (SV—LIB)
3% Deductive

c b // \
Daifny Checking

Model Verification
™ 5 Lo 4

: 2
K2 B . Viper o* Specification
MoXI Why3 Test Inference
Generation

SMT LB

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 11/30

SV-LIB: Initial Design

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 12/30

SV-LIB: Initial Design
Syntax of Imperative Commands
Expressions and Sorts: as in SMT-LIB

Commands include global mutable variables and procedure definitions
c ::= (declare-wvar symbol sort)
| (define-proc symbol ; name
((symbol sort)*) ; inputs
{{symbol sort)*) ; outputs
((symbol sort)*)} ; local variables

Statements

s ::= skip ; (assume true)
{assign ((symbol expr)*)
(havoc ((symbol)*)
{assume expr)
{event :kw (expr*))

|
|
|
|
| {call symbol (expr*) (symbol*})
|
|
|
|
|

{label :kw) | ({goto :hkw)

(if expr sl s27) | {while expr s) | (star s)
{sequential sl ... sn)

{concurrent sl ... sn) | (atomic s1 ... sn)
{choice =1 ... =n)

https://docs.google.com/document/d/
1HAcfPubY70KVtuIDRUZZ440omsKP10pxThkPGXEjuC3g/edit

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 13/30

https://docs.google.com/document/d/1HAcfPubY7oKVtuIDRUZZ44omsKPl0pxThkPGXEjuC3g/edit
https://docs.google.com/document/d/1HAcfPubY7oKVtuIDRUZZ44omsKPl0pxThkPGXEjuC3g/edit

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoiding semantic
complexity (procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation = Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, .. .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 14/30

SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoiding semantic
complexity (procedural extension of SMT-LIB)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 15/30

Goal: Consolidation of Existing IVLs

1 (set-logic LIA) 17 (annotate-tag
2 18 proc-add
3 (define-proc 19 :requires (<= 0 yO0)
4 add 20 :ensures (= x (+ x0 y0)))
5 ((x0 Int) (yO Imnt)) 21
6 ((x Int)) 22 (annotate-tag while-loop :not-recurring)
7 ((y Int)) 23
8 (! (sequence 24 (declare-const x1 Int)
9 (assign (x x0) (y y0)) 25 (declare-const yl1 Int)
10 (! (while 26
11 (< 0 y) 27 (verify-call add (x1 y1))
12 (assign
13 (x (+ x 1)) ((annotate-tag
14 (y (= y 1)) while-loop
15 :tag while-loop)) .invariant
16 :tag proc-add)) (and
(<= 0 y)

(= (+ x y) (+ x0 y0)))
:decreases y))

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 16/30

Goal: Consolidation of Existing IVLs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(set-logic LIA)

(define-proc

add
((x0 Int) (yO Imnt))
((x Int))
((y Int))
(! (sequence
(assign (x x0) (y y0))
(! (while
(<=0 y)
(assign
(x (+ x 1))
(y (- 3y 1IN
:tag while-loop))
:tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

((select-trace

(model
(define-fun x1 () Int 1)
(define-fun y1 () Int 1))
(init-global-vars)
(entry-proc add)
(steps
(init-proc-vars add

; initialization of x and y

; not necessary

(incorrect-annotation
proc-add
:ensures

(= x (+ x0 y0)))))

SV-LIB 1.0

17/30

SV-LIB: Goals

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 18/30

Goal: Keep Programs and Specifications Separate

1 (set-logic LIA)

2

3 (define-proc

4

© 0o N o o

10
11
12
13
14
15
16

add
((x0 Int) (yO Int))
((x Int))
((y Int))
(! (sequence
(assign (x x0) (y y0))
(! (while
(<0 y)
(assign
(x (+ x 1))
(y (= y 1))
:tag while-loop))
:tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

17 (annotate-tag
18 proc-add

19 :requires (<= 0 yO0)
20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop :not-recurring)
23

24 (declare-const x1 Int)

25 (declare-const yl1 Int)

26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
rinvariant
(and
(<= 0 y)
(= (+ x y) (+ x0 y0)))
:decreases y))

SV-LIB 1.0

19/30

SV-LIB: Goals

(c) Validation = Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 20/30

Goal: Validation =~ Verification

AN

Program

LN

Spec

(a)

Result

Withess

_ Linking .

Gidon Ernst, Marian Lingsch-Rosenfeld

(b)

(c)

SV-LIB 1.0

adding a witness from a sound tool
can only make the specification
more precise

adding wrong invariants leads to
additional ways to violate the spec

adding a wrong CEX can be charac-
terized meaningfully and a witness
exported for such a task

21/30

Goal: Validation
1 (set-logic LIA)
2
3 (define-proc
4 add
5 ((x0 Int) (yO Int
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x
10 (! (while
11 (< 0 y)
12 (assign
13 (x (+
14 (y (-
15 :tag while-
16 :tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

~

Verification

)

0) (y y0))

x 1))
y 1))
loop))

17 (annotate-tag

18 proc-add

19 :requires (<= 0 yO0)

20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop
23

24 (declare-const x1 Int)

25 (declare-const yl1 Int)

26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
rinvariant
(and
(<= 0 y)

:not-recurring)

(= (+ x y) (+ x0 y0)))

:decreases y))

SV-LIB 1.0

22/30

Goal: Validation =~ Verification

1 (set-logic LIA)

2

3 (define-proc

4 add

5 ((x0 Int) (yO Imt))

6 ((x Int))

7 ((y Int))

8 (! (sequence

9 (assign (x x0) (y y0))
10 (! (while

11 (< 0 y)

12 (assign

13 (x (+ x 1))
14 (y (- y 1))
15 :tag while-loop))
16 :tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

17 (annotate-tag
18 proc-add

19 :requires (<= 0 yO0)

20 :ensures (= x (+ x0 y0))
21 :not-recurring)

22

23 (declare-const x1 Int)

24 (declare-const yl1 Int)

25

26 ; Command taken from the witness
27 (annotate-tag

28 while-loop

29 tinvariant

30 (and

31 (<= 0 y)

32 (= (+ x y) (+ x0 y0)))
33 :decreases y)

34

35 (verify-call add (x1 y1))

SV-LIB 1.0 23/30

SV-LIB: Goals

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, .. .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 24/30

Goal: Software Ecosystem

Aim to provide building blocks to facilitate adoption:
(a) ANTLR Grammar for parsing SV-LIB
(b) PySvLis: Python library for working with SV-LIB programs

(c) Integration of SV-LIB into CPACHECKER

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0

25/30

Demo: PySvLib

git clone https://gitlab.com/sosy-lab/benchmarking/sv-1ib.git

cd sv-lib/examples/core-verification

git checkout 48d4beedec0f86a004b8aaa29c8193d727a9%4d7a

pip install git+https://gitlab.com/sosy-lab/benchmarking/sv-1ib.git\
048d4beedec0£86a004b8aaa29c8193d727a94d7a#subdirectory=pysvlib

pysvlib lint loop-simple-safe.svlib # expected exit code O

pysvlib lint loop-simple-unsafe.svlib # expected exit code O

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 26/30

https://gitlab.com/sosy-lab/benchmarking/sv-lib.git
https://gitlab.com/sosy-lab/benchmarking/sv-lib.git

Demo: CPAchecker

git clone https://gitlab.com/sosy-lab/benchmarking/sv-1ib.git

cd sv-lib/examples/core-verification

git checkout 48d4beedec0f86a004b8aaa29c8193d727a%94d7a

apt install cpachecker # https://doi.org/10.48550/arXiv.2409.02094

cpachecker loop-simple-safe.svlib # expected ‘true‘ as output

cpachecker loop-simple-unsafe.svlib # expected ‘false‘ as output

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 27/30

https://gitlab.com/sosy-lab/benchmarking/sv-lib.git
https://doi.org/10.48550/arXiv.2409.02094

SV-LIB: Goals Recap

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoid semantic complexity
(procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation = Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, .. .)

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 28/30

Lessons and Insights

(a) inductiveness: what does it really mean in practice? leap as part of CEX
(b) Verification = Validation (with the right problem formulation)

(c) surprisingly interesting: monotonicity of collecting witnesses when ground
truth is not available: how to accomodate multi-source, possibly conflicting
evidence on the properties of the program

(d) outlook: general liveness properties

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 29/30

Future Work

VMT LiB B

Transformatlons TPTP

LLVM \ CHC

A (SV—LIB)

Verification
Dafny Model

5 Lo 54
@ B . Viper og Spemﬂ::tlon

MoXI Why3 Test Inference

SMT LIB

a
* Deductive

Checking

Generation

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 30/30

Conclusion

(a) SV-LIB 1.0 format available to read [1]

(b) Addresses multiple challenges in the SV-
COMP and VerifyThis communities .::3. .i" ?

(c) Designed to cover both automated and ngs.‘&-:’?
autoactive verification use-cases

(d) Tool support available

https://gitlab.com /sosy-lab/benchmarking/sv-lib

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 31/30

https://doi.org/10.48550/arXiv.2511.21509
https://gitlab.com/sosy-lab/benchmarking/sv-lib

References i

[1] Beyer, D., Ernst, G., Jonas, M., Lingsch-Rosenfeld, M.: SV-LIB 1.0: A
standard exchange format for software-verification tasks. arXiv/CoRR

2511(21509) (December 2025).
https://doi.org/10.48550/arXiv.2511.21509

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0 31/30

https://doi.org/10.48550/arXiv.2511.21509

