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VerifyThis

Gidon Ernst;

On-site competitions (at ETAPS): hands on, personal exchange

Great experience! But what if we focus on collaboration? [Huisman+ 20]

The goals of the long-term challenges are

1. to foster collaboration between researchers and their tools,
2. to demonstrate practical value of formal methods, and
3. to evaluate the capabilities of methods and tools.

The emphasis on collaboration comes with the need and at the same time the op-
portunity to make progress on long-standing open issues in formal methods [12]

4. to develop approaches that bridge between specification paradigms and
5. to work towards conceptual and technical integration of verification tools.
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Discussion over recent years

This event series

Challenge: Hagrid, Casino, Memcached

Presentations, discussions, and tutorials

Dagstuhl and Lorentz Seminar(s):

combine heterogeneous tools and theories

software contracts vs. system contracts
CAV award 2019: Intermediate Verification Languages (Leino, Filliatre):

Why3, Boogie, Viper (procedural), MoXI, VMT (state-transition), K2 (hybrid)
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Contract-LIB: Interface Specifications [ISoLA 2024]

innovation happens here

() Contract-LIB
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data
refinement
data structures
pointers etc, ...
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SV-COMP: Intl. Competition on Software Verification [Beyer+]

1000

100

Min. time in s

2Ls

Bubaak —&—
Bubaak-SpLit ——
CBMC =+ x= =
CPAchecker ——
CPV ——

Crux «+ye -

DIVINE = = =+
EmergenTheta ——
ESBMC-kind
Goblint
Graves-CPA = = x:
Infer

Mopsa
Nacpa =
PeSCo-CPA =

Cumulative score

https://sv-comp.sosy-lab.org/2025/results/results-verified/
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Motivation for another IVL

(a) Challenge in SV-COMP and VerifyThis: Tools need to support C as well as
implement the verification methodology

(b) Challenge in SV-COMP: The complexities of C transfer into certification of
the correctness of tool output

(c) Challenge in SV-COMP: Exchange information between tools (e.g., witnesses,

specifications, .. .)

(d) Challenge in SV-COMP and VerifyThis: Bridge the gap between the
SV-COMP and VerifyThis communities
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Automatic Software Verification (SV-COMP)
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Autoactive Software Verification (VerifyThis)

Gidon Ernst, Marian Lingsch-Rosenfeld

.

Program

-

Spec

User

Annotations

SV-LIB 1.0

Result

9/30



Inside a Verifier
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SV-LIB
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SV-LIB: Initial Design
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SV-LIB: Initial Design
Syntax of Imperative Commands
Expressions and Sorts: as in SMT-LIB

Commands include global mutable variables and procedure definitions
c ::= (declare-wvar symbol sort)
| (define-proc symbol ; name
( (symbol sort)*) ; inputs
{{symbol sort)*) ; outputs
((symbol sort)*)} ; local variables

Statements

s ::= skip ; (assume true)
{assign ((symbol expr)*)
(havoc  ((symbol)*)
{assume expr)
{event :kw (expr*))

|
|
|
|
| {call symbol (expr*) (symbol*})
|
|
|
|
|

{label :kw ) | ({goto :hkw )

(if expr sl s27) | {while expr s) | (star s)
{sequential sl ... sn)

{concurrent sl ... sn) | (atomic s1 ... sn)
{choice =1 ... =n)

https://docs.google.com/document/d/
1HAcfPubY70KVtuIDRUZZ440omsKP10pxThkPGXEjuC3g/edit
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SV-LIB: Goals

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoiding semantic
complexity (procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation = Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, .. .)
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Goal: Consolidation of Existing IVLs

1 (set-logic LIA) 17 (annotate-tag
2 18 proc-add
3 (define-proc 19 :requires (<= 0 yO0)
4 add 20 :ensures (= x (+ x0 y0)))
5 ((x0 Int) (yO Imnt)) 21
6 ((x Int)) 22 (annotate-tag while-loop :not-recurring)
7 ((y Int)) 23
8 (! (sequence 24 (declare-const x1 Int)
9 (assign (x x0) (y y0)) 25 (declare-const yl1 Int)
10 (! (while 26
11 (< 0 y) 27 (verify-call add (x1 y1))
12 (assign
13 (x (+ x 1)) ((annotate-tag
14 (y (= y 1)) while-loop
15 :tag while-loop)) .invariant
16 :tag proc-add)) (and
(<= 0 y)

(= (+ x y) (+ x0 y0)))
:decreases y))
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Goal: Consolidation of Existing IVLs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(set-logic LIA)

(define-proc

add
((x0 Int) (yO Imnt))
((x Int))
((y Int))
(! (sequence
(assign (x x0) (y y0))
(! (while
(<=0 y)
(assign
(x (+ x 1))
(y (- 3y 1IN
:tag while-loop))
:tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

((select-trace

(model
(define-fun x1 () Int 1)
(define-fun y1 () Int 1))
(init-global-vars)
(entry-proc add)
(steps
(init-proc-vars add

; initialization of x and y

; not necessary

(incorrect-annotation
proc-add
:ensures

(= x (+ x0 y0)))))

SV-LIB 1.0
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SV-LIB: Goals

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points
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Goal: Keep Programs and Specifications Separate

1 (set-logic LIA)

2

3 (define-proc

4

© 0o N o o

10
11
12
13
14
15
16

add
((x0 Int) (yO Int))
((x Int))
((y Int))
(! (sequence
(assign (x x0) (y y0))
(! (while
(<0 y)
(assign
(x (+ x 1))
(y (= y 1))
:tag while-loop))
:tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

17 (annotate-tag
18 proc-add

19 :requires (<= 0 yO0)
20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop :not-recurring)
23

24 (declare-const x1 Int)

25 (declare-const yl1 Int)

26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
rinvariant
(and
(<= 0 y)
(= (+ x y) (+ x0 y0)))
:decreases y))

SV-LIB 1.0
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SV-LIB: Goals

(c) Validation = Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases
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Goal: Validation =~ Verification

AN

Program
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Spec

(a)

Result

Withess

_ Linking .
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(b)

(c)

SV-LIB 1.0

adding a witness from a sound tool
can only make the specification
more precise

adding wrong invariants leads to
additional ways to violate the spec

adding a wrong CEX can be charac-
terized meaningfully and a witness
exported for such a task
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Goal: Validation
1 (set-logic LIA)
2
3 (define-proc
4 add
5 ((x0 Int) (yO Int
6 ((x Int))
7 ((y Int))
8 (! (sequence
9 (assign (x x
10 (! (while
11 (< 0 y)
12 (assign
13 (x (+
14 (y (-
15 :tag while-
16 :tag proc-add))

Gidon Ernst, Marian Lingsch-Rosenfeld

~

Verification

)

0) (y y0))

x 1))
y 1))
loop))

17 (annotate-tag

18 proc-add

19 :requires (<= 0 yO0)

20 :ensures (= x (+ x0 y0)))
21

22 (annotate-tag while-loop
23

24 (declare-const x1 Int)

25 (declare-const yl1 Int)

26

27 (verify-call add (x1 y1))

((annotate-tag
while-loop
rinvariant
(and
(<= 0 y)

:not-recurring)

(= (+ x y) (+ x0 y0)))

:decreases y))

SV-LIB 1.0
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Goal: Validation =~ Verification

1 (set-logic LIA)

2

3 (define-proc

4 add

5 ((x0 Int) (yO Imt))

6 ((x Int))

7 ((y Int))

8 (! (sequence

9 (assign (x x0) (y y0))
10 (! (while

11 (< 0 y)

12 (assign

13 (x (+ x 1))
14 (y (- y 1))
15 :tag while-loop))
16 :tag proc-add))
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17 (annotate-tag
18 proc-add

19 :requires (<= 0 yO0)

20 :ensures (= x (+ x0 y0))
21 :not-recurring)

22

23 (declare-const x1 Int)

24 (declare-const yl1 Int)

25

26 ; Command taken from the witness
27 (annotate-tag

28 while-loop

29 tinvariant

30 (and

31 (<= 0 y)

32 (= (+ x y) (+ x0 y0)))
33 :decreases y)

34

35 (verify-call add (x1 y1))
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SV-LIB: Goals

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, .. .)
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Goal: Software Ecosystem

Aim to provide building blocks to facilitate adoption:
(a) ANTLR Grammar for parsing SV-LIB
(b) PySvLis: Python library for working with SV-LIB programs

(c) Integration of SV-LIB into CPACHECKER

Gidon Ernst, Marian Lingsch-Rosenfeld SV-LIB 1.0
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Demo: PySvLib

git clone https://gitlab.com/sosy-lab/benchmarking/sv-1ib.git

cd sv-lib/examples/core-verification

git checkout 48d4beedec0f86a004b8aaa29c8193d727a9%4d7a

pip install git+https://gitlab.com/sosy-lab/benchmarking/sv-1ib.git\
048d4beedec0£86a004b8aaa29c8193d727a94d7a#subdirectory=pysvlib

pysvlib lint loop-simple-safe.svlib # expected exit code O

pysvlib lint loop-simple-unsafe.svlib # expected exit code O
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Demo: CPAchecker

git clone https://gitlab.com/sosy-lab/benchmarking/sv-1ib.git

cd sv-lib/examples/core-verification

git checkout 48d4beedec0f86a004b8aaa29c8193d727a%94d7a

apt install cpachecker # https://doi.org/10.48550/arXiv.2409.02094

cpachecker loop-simple-safe.svlib # expected ‘true‘ as output

cpachecker loop-simple-unsafe.svlib # expected ‘false‘ as output
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SV-LIB: Goals Recap

(a) Consolidate existing IVLs from an engineering perspective, with focus on tools
and interchange: take well-understood constructs, avoid semantic complexity
(procedural extension of SMT-LIB)

(b) Keep programs and specifications separable and the latter extensible:
achieved by a robust mechanism to refer to and annotate program points

(c) Validation = Verification: have full spectrum of potential witnesses
standardized to enable and foster interchange across tools and use-cases

(d) Strive for a nice software ecosystem by providing building blocks (parser,
linter, default validator, transformations, benchmarks, .. .)
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Lessons and Insights

(a) inductiveness: what does it really mean in practice? leap as part of CEX
(b) Verification = Validation (with the right problem formulation)

(c) surprisingly interesting: monotonicity of collecting witnesses when ground
truth is not available: how to accomodate multi-source, possibly conflicting
evidence on the properties of the program

(d) outlook: general liveness properties
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Future Work
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Conclusion

(a) SV-LIB 1.0 format available to read [1]

(b) Addresses multiple challenges in the SV-
COMP and VerifyThis communities .::3. .i" ?

(c) Designed to cover both automated and ngs.‘&-:’?
autoactive verification use-cases

(d) Tool support available

https://gitlab.com /sosy-lab/benchmarking/sv-lib
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