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Bridging Hardware & Software Verification
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Verifying Software via Hardware Model Checking

Btor2 circuit [24]
(HWMCC [7])

C program
(SV-COMP [1])

Hardware model checkers

AVR [17], Pono [21] . . .

Software verifiers

CPAchecker [5], Cbmc [14], . . .

Translate

Applicable?

Could circuits serve as IR for program verification?
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Outline

• CPV: A Circuit-Based Program Verifier
https://gitlab.com/sosy-lab/software/cpv

• Translation pipeline: from C programs to sequential circuits
• Verification backends and supported analyses
• Experimental and competition results

• Pono: A Versatile SMT-Based Model Checker for Safety and Liveness
https://github.com/stanford-centaur/pono

• Architecture and solver-agnostic design
• Recent developments in Pono 2.0
• Comparison with other model checkers
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Hardware Model: Sequential Circuit

Combinational
Logic

Memory
Element S

Input I Property P

• State transition:
S ′ ←Tfunc(S , I)

• Property:
P(S) or P(S , I)
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Formats to Describe Circuits

Bit-level: Aiger
• Sorts: bool
• Ops: and, not

Word-level: Btor2

• Sorts: bitvec, array
• Ops: and, not, eq, add,

mul, ite, read, write, . . .

Example Btor2 circuit:
1 sort bitvec 3

2 zero 1

3 state 1

4 init 1 3 2

5 input 1

6 add 1 3 5

7 one 1

8 sub 1 6 7

9 next 1 3 8

10 ones 1

11 sort bitvec 1

12 eq 11 3 10

13 bad 12
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Hardware Model Checking

M Íφ?
Safety Property
Something bad never happens

φ : G P

• Counterexample:

Liveness Property
Something good eventually happens

φ : F P

P P P P ¬P

¬P ¬P ¬P

¬P

¬P

¬P
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Model-Checking Algorithms

For checking safety properties:

• Bounded model checking (BMC) [9]
• k-induction (KI) [25]
• Interpolation-based model checking (IMC) [23]
• Property-directed reachability (IC3/PDR) [10, 15]
• Combined with CEGAR [13] using different abstraction techniques

• Syntax-guided abstraction [16]
• Predicate abstraction [19]
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Software Model: Control-Flow Graph

1 while (i > 0) {

2 if (x == 1) {

3 y = 0;

4 } else {

5 y = 1;

6 }

7 i = i − 1;

8 }

l1

l2

l3 l5

l7

l8
[i>0]

[x==1] [x!=1]

y=0 y=1

i=i-1

[i<=0]
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Software Verification

M Íφ?

Reachability Analysis (Safety)
Is an error location reachable?

φ : G¬error

Termination Analysis (Liveness)
Can the program always terminate?

φ : F end
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Circuit-Based Program Verification

Joint work with Dirk Beyer (LMU Munich),
Armin Biere (University of Freiburg), and
Nian-Ze Lee (National Taiwan University)

https://gitlab.com/sosy-lab/software/cpv


System Architecure: Frontend

C prog. Instrumentor C’

Trans.-rel.
encoder (Kratos2)Spec.

TR-based
system (VMT)

Trans.-func.
encoder

Word-level
circuit (Btor2)
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System Architecure: Backend

Btor2

bit-blaster
(Btor2Aiger)

Aiger

Word-level checker
(AVR, Pono, rIC3)

Bit-level checker
(ABC, rIC3)

Managed by CoVeriTeam

Btor2
witness

Witness
translator SV witness

Verdict
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Frontend: C Program → Transition Relation

https://gitlab.com/sosy-lab/software/cpv


Single-Block Encoding
C Program → Transition Relation

l1

l2

l3 l5

l7

l8
[i>0]

[x==1] [x!=1]

y=0 y=1

i=i-1

[i<=0] Each statement as a block:

TR = (pc = l1∧pc ′ = l2∧ i> 0∧ i ′ = i . . .)
∨ (pc = l2∧pc ′ = l3∧x= 1∧ i ′ = i . . .)
∨ (pc = l3∧pc ′ = l7∧ i ′ = i ∧y′ = 0 . . .)
∨ . . .
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Large-Block Encoding
C Program → Transition Relation

l1

l2

l3 l5

l7

l8
[i>0]

[x==1] [x!=1]

y=0 y=1

i=i-1

[i<=0] Each loop-free section as a block:

TR = (pc = l1∧pc ′ = l1∧ i > 0
∧ i ′ = i −1∧y ′ = ite(x = 1,0,1) . . .)

∨ (pc = l1∧pc ′ = l8∧ i ≤ 0∧ i ′ = i . . .)
∨ . . .
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Encoding Details
C Program → Transition Relation

• Kratos2 [18] is employed
• Large-block encoding [2] is used by default
• Function calls are inlined or treated as blocks
• C program uses __VERIFIER_nondet_X() to model nondeterministic values

→ Primary inputs in TR(S , I ,S ′)

• CPV vs. other software verifiers:
Monolithic transition relation vs. ARG-based exploration [3]
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Frontend: Transition Relation → Btor2 Circuit

https://gitlab.com/sosy-lab/software/cpv


Relational Encoding
Transition Relation → Btor2 Circuit

• Given TR(S , I ,S ′) and P(S)

• Auxiliary variables:
• New state var valid
• For each state var s ∈ S, introduce an input var sin

• Transition functions and property in Btor2:
• valid ′ ← valid ∧TR(S , I ,Sin)
• s ′ ← sin for each s ∈ S
• PBtor2 : valid ⇒P(S)
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Functional Encoding
Transition Relation → Btor2 Circuit

• Identify control and data flows in a block formula:

pc = l1∧pc ′ = l1∧ i > 0∧ i ′ = i −1∧y ′ = ite(x = 1,0,1) . . .

• Derive next-state functions directly:

i ′ ←


i −1 , if pc = l1∧ i > 0
i , if pc = l1∧ i ≤ 0
. . .

• TR is not right-total (e.g., pc = lend has no successor)
→ add an auxiliary sink state lsink

Po-Chun Chien CPV and Pono 17/37
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Relational vs. Functional Encoding
Transition Relation → Btor2 Circuit

Relational
• More general (works for any

transition relation)
• Usually result in smaller circuits

Functional
• Fewer input variables
• Allow optimization when circuits

are unrolled [20]

Po-Chun Chien CPV and Pono 18/37



Encoding Verification Property

Reachability Analysis (Safety)
Is an error location reachable?

Termination Analysis (Liveness)
Can the program always terminate?

int main() { // l_init

...

if (error_cond) {

reach_error(); // l_err

}

...

return 0;

}

// instrumented by CPV

int main() { // l_init

// execute the original main

original_main();

// add termination marker

reach_end(); // l_end

return 0;

}

Po-Chun Chien CPV and Pono 19/37



Encoding Verification Property

Reachability Analysis (Safety)
Is an error location reachable?

φ : G (pc ̸= lerr )

• In Btor2: bad
• Counterexample:

Termination Analysis (Liveness)
Can the program always terminate?

φ : F(pc = lend)

justice (+ constraint)

pc = linit pc = lerr

pc = linit pc ̸= lend pc ̸= lend

pc ̸= lend

pc ̸= lend

pc ̸= lend
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Backend: Model Checking

https://gitlab.com/sosy-lab/software/cpv


Integrated Hardware Model Checkers

Tool Input formats Engines

Bit-level
ABC Aiger BMC, IMC, PDR
rIC3 Aiger, Btor2 BMC, KI, IC3

Word-level
AVR Btor2 BMC, KI, IC3sa
Pono Btor2 BMC, IMC, KI, IC3sa, IC3ia

Po-Chun Chien CPV and Pono 21/37



Implementation Details

• CoVeriTeam [4] is used to coordinate backend model checkers
• Containerized execution with resource limits
• Assemble command lines and extract tool outputs (logs and files)
• Easy to combine multiple tools

• Most tools do not support justice in Btor2
→ CPV does liveness-to-safety transformation

Po-Chun Chien CPV and Pono 22/37
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Current Limitations

• Lack support for many library functions (e.g., <math.h>)
• Limited support for recursion (finite unrolling)
• Does not handle concurrency
• Unsupported properties in SV-COMP:

• Memory safety
• Overflow detection
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Experimental Evaluation

https://gitlab.com/sosy-lab/software/cpv


Experimental Results: Relational vs. Functional Encoding
Reachability analysis using Pono
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Experimental Results: Relational vs. Functional Encoding
Reachability analysis using AVR

0 200 400 600 800 1000 1200 1400 1600
1

10

100

1000

n-th fastest correct result

CP
U

tim
e

(s
)

KI.func
KI.rel
IC3sa.func
IC3sa.rel

Po-Chun Chien CPV and Pono 25/37



Experimental Results: Relational vs. Functional Encoding
Reachability analysis using ABC
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Preliminary Results in SV-COMP 2026: Reachability
Part of TACAS 2026 (April 11–16) @ Turin, Italy
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Preliminary Results in SV-COMP 2026: Termination

Termination (unsat)
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Pono:
A Versatile SMT-Based Model Checker

Joint work with Áron Ricardo Perez-Lopez1, Florian Lonsing,
Samantha Archer1, Ahmed Irfan2, and Clark Barrett1

(1Stanford University · 2SRI International)



System Architecure

CEGAR wrapper

Safety-checking engine

Interpolation-based

Property

Transition system

Functional

Relational

Safety

Liveness

Front-end encoder

Btor2

VMT

-Induction

BMC

ISMC

IMC

DAR

IC3-based

IC3SA

IC3IA*

Liveness-checking engine

L2S -Liveness

None Arith. Op.

...

...

...Array Prophecy

Result
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New

Enhanced
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SMT Solver Integration
SmtSwtich: A Solver-Agnostic C++ API for SMT Solving

(Taken from [22])

New:
• Incremental

interpolation
• Bitwuzla

interpolation
• cvc5 integration

Po-Chun Chien CPV and Pono 30/37



Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

satAbstraction
Refinement

infeasible CEX

precision
increment
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Arithmetic-Operation Abstraction

• SMT queries with complex arithmetic ops (e.g., ÷, ×) are hard to solve
• Abstract these ops as uninterpreted functions (UFs) or free variables

• Abstraction refinement (given a spurious CEX):
• Check feasibility of the CEX with on concrete system
• If unsat, identify ops to concretize from the unsat core

• Can be combined with any safety-checking engine in Pono
(In version 1.0, only IC3IA and IC3SA)
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Liveness Checking

• Two approaches that reduce liveness to safety:
• Liveness-to-Safety (L2S) [8]
• k-liveness [12]

• Can be combined with any safety-checking engine in Pono

• Currently only works for finite-state systems (e.g., Btor2)
• If sat, Btor2 witness (lasso) can be exported
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Evaluation: QF_BV Safety Checking
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Evaluation: QF_ABV Safety Checking
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Evaluation: Liveness Checking
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(Pono 1, AVR, and rIC3 ran on pre-L2S-transformed tasks)
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Conclusion

• CPV [11]
• Encodes SV tasks as circuits
• Leverages hardware model

checkers as backend
• Pono [21]

• Supports safety and liveness
• Interfaces multiple SMT solvers

• Strong results in competitions
• Both projects are open-source

gitlab.com/
sosy-lab/software/cpv
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