
From Programs to Circuits:
Bridging Software and Hardware Model Checking
with CPV and Pono

2025-12-22 Invited Talk @ NTU GIEE

Po-Chun Chien
sosy-lab.org/people/chien

LMU Munich, Germany

https://www.lmu.de/en/index.html
https://www.sosy-lab.org/people/chien/

About Me

• Doctoral researcher at LMU Munich, Germany (since 2021)
• Advised by Dirk Beyer and mentored by Nian-Ze Lee

• M.S. at NTU GIEE (2020)
• Advised by Jie-Hong Roland Jiang

• B.S. at NTU EE (2018)
• Research interests: formal methods, hardware/software verification

Po-Chun Chien CPV and Pono 1/37

Bridging Hardware & Software Verification
DFG project 536040111 – PIs: Dirk Beyer & Nian-Ze Lee

State-Transition
System

Sequential
Circuit

Imperative
Program

Hardware
Verification

Software
Verification

SAT/SMT, Craig Interpolation,
Abstraction Refinement, Symbolic Representation, . . .

Aiger

Btor2

Verilog

C

Java

LLVM-IR

ABC

AVR

Pono

CPAchecker

Cbmc

Klee

Hardware Software

encode encode

analyze analyze

underpin underpin

Gap

Applicable?

Po-Chun Chien CPV and Pono 2/37

https://gepris.dfg.de/gepris/projekt/536040111?language=en

Bridging Hardware & Software Verification
DFG project 536040111 – PIs: Dirk Beyer & Nian-Ze Lee

State-Transition
System

Sequential
Circuit

Imperative
Program

Hardware
Verification

Software
Verification

SAT/SMT, Craig Interpolation,
Abstraction Refinement, Symbolic Representation, . . .

Aiger

Btor2

Verilog

C

Java

LLVM-IR

ABC

AVR

Pono

CPAchecker

Cbmc

Klee

Hardware Software

encode encode

analyze analyze

underpin underpin

Gap

Applicable?

Po-Chun Chien CPV and Pono 2/37

https://gepris.dfg.de/gepris/projekt/536040111?language=en

Verifying Software via Hardware Model Checking

Btor2 circuit [24]
(HWMCC [7])

C program
(SV-COMP [1])

Hardware model checkers

AVR [17], Pono [21] . . .

Software verifiers

CPAchecker [5], Cbmc [14], . . .

Translate

Applicable?

Could circuits serve as IR for program verification?

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

Btor2 circuit [24]
(HWMCC [7])

C program
(SV-COMP [1])

Hardware model checkers

AVR [17], Pono [21] . . .

Software verifiers

CPAchecker [5], Cbmc [14], . . .

Translate

Applicable?

Could circuits serve as IR for program verification?

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

Btor2 circuit [24]
(HWMCC [7])

C program
(SV-COMP [1])

Hardware model checkers

AVR [17], Pono [21] . . .

Software verifiers

CPAchecker [5], Cbmc [14], . . .

Translate

Applicable?

Could circuits serve as IR for program verification?

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

Btor2 circuit [24]
(HWMCC [7])

C program
(SV-COMP [1])

Hardware model checkers

AVR [17], Pono [21] . . .

Software verifiers

CPAchecker [5], Cbmc [14], . . .

Translate

Applicable?

Could circuits serve as IR for program verification?

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

Btor2 circuit [24]
(HWMCC [7])

C program
(SV-COMP [1])

Hardware model checkers

AVR [17], Pono [21] . . .

Software verifiers

CPAchecker [5], Cbmc [14], . . .

Translate

Applicable?

Could circuits serve as IR for program verification?

Po-Chun Chien CPV and Pono 3/37

Outline

• CPV: A Circuit-Based Program Verifier
https://gitlab.com/sosy-lab/software/cpv

• Translation pipeline: from C programs to sequential circuits
• Verification backends and supported analyses
• Experimental and competition results

• Pono: A Versatile SMT-Based Model Checker for Safety and Liveness
https://github.com/stanford-centaur/pono

• Architecture and solver-agnostic design
• Recent developments in Pono 2.0
• Comparison with other model checkers

Po-Chun Chien CPV and Pono 4/37

https://gitlab.com/sosy-lab/software/cpv
https://github.com/stanford-centaur/pono

Background

Hardware Model: Sequential Circuit

Combinational
Logic

Memory
Element S

Input I Property P

• State transition:
S ′ ←Tfunc(S , I)

• Property:
P(S) or P(S , I)

Po-Chun Chien CPV and Pono 5/37

Formats to Describe Circuits

Bit-level: Aiger
• Sorts: bool
• Ops: and, not

Word-level: Btor2

• Sorts: bitvec, array
• Ops: and, not, eq, add,

mul, ite, read, write, . . .

Example Btor2 circuit:
1 sort bitvec 3

2 zero 1

3 state 1

4 init 1 3 2

5 input 1

6 add 1 3 5

7 one 1

8 sub 1 6 7

9 next 1 3 8

10 ones 1

11 sort bitvec 1

12 eq 11 3 10

13 bad 12

Po-Chun Chien CPV and Pono 6/37

Hardware Model Checking

M Íφ?
Safety Property
Something bad never happens

φ : G P

• Counterexample:

Liveness Property
Something good eventually happens

φ : F P

P P P P ¬P

¬P ¬P ¬P

¬P

¬P

¬P

Po-Chun Chien CPV and Pono 7/37

Hardware Model Checking

M Íφ?
Safety Property
Something bad never happens

φ : G P

• Counterexample:

Liveness Property
Something good eventually happens

φ : F P

P P P P ¬P

¬P ¬P ¬P

¬P

¬P

¬P

Po-Chun Chien CPV and Pono 7/37

Model-Checking Algorithms

For checking safety properties:

• Bounded model checking (BMC) [9]
• k-induction (KI) [25]
• Interpolation-based model checking (IMC) [23]
• Property-directed reachability (IC3/PDR) [10, 15]
• Combined with CEGAR [13] using different abstraction techniques

• Syntax-guided abstraction [16]
• Predicate abstraction [19]

Po-Chun Chien CPV and Pono 8/37

Software Model: Control-Flow Graph

1 while (i > 0) {

2 if (x == 1) {

3 y = 0;

4 } else {

5 y = 1;

6 }

7 i = i − 1;

8 }

l1

l2

l3 l5

l7

l8
[i>0]

[x==1] [x!=1]

y=0 y=1

i=i-1

[i<=0]

Po-Chun Chien CPV and Pono 9/37

Software Verification

M Íφ?

Reachability Analysis (Safety)
Is an error location reachable?

φ : G¬error

Termination Analysis (Liveness)
Can the program always terminate?

φ : F end

Po-Chun Chien CPV and Pono 10/37

Circuit-Based Program Verification

Joint work with Dirk Beyer (LMU Munich),
Armin Biere (University of Freiburg), and
Nian-Ze Lee (National Taiwan University)

https://gitlab.com/sosy-lab/software/cpv

System Architecure: Frontend

C prog. Instrumentor C’

Trans.-rel.
encoder (Kratos2)Spec.

TR-based
system (VMT)

Trans.-func.
encoder

Word-level
circuit (Btor2)

Po-Chun Chien CPV and Pono 11/37

System Architecure: Backend

Btor2

bit-blaster
(Btor2Aiger)

Aiger

Word-level checker
(AVR, Pono, rIC3)

Bit-level checker
(ABC, rIC3)

Managed by CoVeriTeam

Btor2
witness

Witness
translator SV witness

Verdict

Po-Chun Chien CPV and Pono 12/37

Frontend: C Program → Transition Relation

https://gitlab.com/sosy-lab/software/cpv

Single-Block Encoding
C Program → Transition Relation

l1

l2

l3 l5

l7

l8
[i>0]

[x==1] [x!=1]

y=0 y=1

i=i-1

[i<=0] Each statement as a block:

TR = (pc = l1∧pc ′ = l2∧ i> 0∧ i ′ = i . . .)
∨ (pc = l2∧pc ′ = l3∧x= 1∧ i ′ = i . . .)
∨ (pc = l3∧pc ′ = l7∧ i ′ = i ∧y′ = 0 . . .)
∨ . . .

Po-Chun Chien CPV and Pono 13/37

Large-Block Encoding
C Program → Transition Relation

l1

l2

l3 l5

l7

l8
[i>0]

[x==1] [x!=1]

y=0 y=1

i=i-1

[i<=0] Each loop-free section as a block:

TR = (pc = l1∧pc ′ = l1∧ i > 0
∧ i ′ = i −1∧y ′ = ite(x = 1,0,1) . . .)

∨ (pc = l1∧pc ′ = l8∧ i ≤ 0∧ i ′ = i . . .)
∨ . . .

Po-Chun Chien CPV and Pono 14/37

Encoding Details
C Program → Transition Relation

• Kratos2 [18] is employed
• Large-block encoding [2] is used by default
• Function calls are inlined or treated as blocks
• C program uses __VERIFIER_nondet_X() to model nondeterministic values

→ Primary inputs in TR(S , I ,S ′)

• CPV vs. other software verifiers:
Monolithic transition relation vs. ARG-based exploration [3]

Po-Chun Chien CPV and Pono 15/37

Encoding Details
C Program → Transition Relation

• Kratos2 [18] is employed
• Large-block encoding [2] is used by default
• Function calls are inlined or treated as blocks
• C program uses __VERIFIER_nondet_X() to model nondeterministic values

→ Primary inputs in TR(S , I ,S ′)
• CPV vs. other software verifiers:

Monolithic transition relation vs. ARG-based exploration [3]

Po-Chun Chien CPV and Pono 15/37

Frontend: Transition Relation → Btor2 Circuit

https://gitlab.com/sosy-lab/software/cpv

Relational Encoding
Transition Relation → Btor2 Circuit

• Given TR(S , I ,S ′) and P(S)

• Auxiliary variables:
• New state var valid
• For each state var s ∈ S, introduce an input var sin

• Transition functions and property in Btor2:
• valid ′ ← valid ∧TR(S , I ,Sin)
• s ′ ← sin for each s ∈ S
• PBtor2 : valid ⇒P(S)

Po-Chun Chien CPV and Pono 16/37

Relational Encoding
Transition Relation → Btor2 Circuit

• Given TR(S , I ,S ′) and P(S)
• Auxiliary variables:

• New state var valid
• For each state var s ∈ S, introduce an input var sin

• Transition functions and property in Btor2:
• valid ′ ← valid ∧TR(S , I ,Sin)
• s ′ ← sin for each s ∈ S
• PBtor2 : valid ⇒P(S)

Po-Chun Chien CPV and Pono 16/37

Relational Encoding
Transition Relation → Btor2 Circuit

• Given TR(S , I ,S ′) and P(S)
• Auxiliary variables:

• New state var valid
• For each state var s ∈ S, introduce an input var sin

• Transition functions and property in Btor2:
• valid ′ ← valid ∧TR(S , I ,Sin)
• s ′ ← sin for each s ∈ S
• PBtor2 : valid ⇒P(S)

Po-Chun Chien CPV and Pono 16/37

Functional Encoding
Transition Relation → Btor2 Circuit

• Identify control and data flows in a block formula:

pc = l1∧pc ′ = l1∧ i > 0∧ i ′ = i −1∧y ′ = ite(x = 1,0,1) . . .

• Derive next-state functions directly:

i ′ ←


i −1 , if pc = l1∧ i > 0
i , if pc = l1∧ i ≤ 0
. . .

• TR is not right-total (e.g., pc = lend has no successor)
→ add an auxiliary sink state lsink

Po-Chun Chien CPV and Pono 17/37

Functional Encoding
Transition Relation → Btor2 Circuit

• Identify control and data flows in a block formula:

pc = l1∧pc ′ = l1∧ i > 0∧ i ′ = i −1∧y ′ = ite(x = 1,0,1) . . .

• Derive next-state functions directly:

i ′ ←


i −1 , if pc = l1∧ i > 0
i , if pc = l1∧ i ≤ 0
. . .

• TR is not right-total (e.g., pc = lend has no successor)
→ add an auxiliary sink state lsink

Po-Chun Chien CPV and Pono 17/37

Functional Encoding
Transition Relation → Btor2 Circuit

• Identify control and data flows in a block formula:

pc = l1∧pc ′ = l1∧ i > 0∧ i ′ = i −1∧y ′ = ite(x = 1,0,1) . . .

• Derive next-state functions directly:

i ′ ←


i −1 , if pc = l1∧ i > 0
i , if pc = l1∧ i ≤ 0
. . .

• TR is not right-total (e.g., pc = lend has no successor)
→ add an auxiliary sink state lsink

Po-Chun Chien CPV and Pono 17/37

Relational vs. Functional Encoding
Transition Relation → Btor2 Circuit

Relational
• More general (works for any

transition relation)
• Usually result in smaller circuits

Functional
• Fewer input variables
• Allow optimization when circuits

are unrolled [20]

Po-Chun Chien CPV and Pono 18/37

Encoding Verification Property

Reachability Analysis (Safety)
Is an error location reachable?

Termination Analysis (Liveness)
Can the program always terminate?

int main() { // l_init

...

if (error_cond) {

reach_error(); // l_err

}

...

return 0;

}

// instrumented by CPV

int main() { // l_init

// execute the original main

original_main();

// add termination marker

reach_end(); // l_end

return 0;

}

Po-Chun Chien CPV and Pono 19/37

Encoding Verification Property

Reachability Analysis (Safety)
Is an error location reachable?

φ : G (pc ̸= lerr)

• In Btor2: bad
• Counterexample:

Termination Analysis (Liveness)
Can the program always terminate?

φ : F(pc = lend)

justice (+ constraint)

pc = linit pc = lerr

pc = linit pc ̸= lend pc ̸= lend

pc ̸= lend

pc ̸= lend

pc ̸= lend

Po-Chun Chien CPV and Pono 20/37

Encoding Verification Property

Reachability Analysis (Safety)
Is an error location reachable?

φ : G (pc ̸= lerr)

• In Btor2: bad
• Counterexample:

Termination Analysis (Liveness)
Can the program always terminate?

φ : F(pc = lend)

justice (+ constraint)

pc = linit pc = lerr

pc = linit pc ̸= lend pc ̸= lend

pc ̸= lend

pc ̸= lend

pc ̸= lend

Po-Chun Chien CPV and Pono 20/37

Encoding Verification Property

Reachability Analysis (Safety)
Is an error location reachable?

φ : G (pc ̸= lerr)

• In Btor2: bad
• Counterexample:

Termination Analysis (Liveness)
Can the program always terminate?

φ : F(pc = lend)

justice (+ constraint)

pc = linit pc = lerr

pc = linit pc ̸= lend pc ̸= lend

pc ̸= lend

pc ̸= lend

pc ̸= lend

Po-Chun Chien CPV and Pono 20/37

Backend: Model Checking

https://gitlab.com/sosy-lab/software/cpv

Integrated Hardware Model Checkers

Tool Input formats Engines

Bit-level
ABC Aiger BMC, IMC, PDR
rIC3 Aiger, Btor2 BMC, KI, IC3

Word-level
AVR Btor2 BMC, KI, IC3sa
Pono Btor2 BMC, IMC, KI, IC3sa, IC3ia

Po-Chun Chien CPV and Pono 21/37

Implementation Details

• CoVeriTeam [4] is used to coordinate backend model checkers
• Containerized execution with resource limits
• Assemble command lines and extract tool outputs (logs and files)
• Easy to combine multiple tools

• Most tools do not support justice in Btor2
→ CPV does liveness-to-safety transformation

Po-Chun Chien CPV and Pono 22/37

Implementation Details

• CoVeriTeam [4] is used to coordinate backend model checkers
• Containerized execution with resource limits
• Assemble command lines and extract tool outputs (logs and files)
• Easy to combine multiple tools

• Most tools do not support justice in Btor2
→ CPV does liveness-to-safety transformation

Po-Chun Chien CPV and Pono 22/37

Current Limitations

• Lack support for many library functions (e.g., <math.h>)
• Limited support for recursion (finite unrolling)
• Does not handle concurrency
• Unsupported properties in SV-COMP:

• Memory safety
• Overflow detection

Po-Chun Chien CPV and Pono 23/37

Experimental Evaluation

https://gitlab.com/sosy-lab/software/cpv

Experimental Results: Relational vs. Functional Encoding
Reachability analysis using Pono

0 200 400 600 800 1000 1200 1400 1600 1800
1

10

100

1000

n-th fastest correct result

CP
U

tim
e

(s
)

KI.func
KI.rel
IMC.func
IMC.rel
IC3ia.func
IC3ia.rel

Po-Chun Chien CPV and Pono 24/37

Experimental Results: Relational vs. Functional Encoding
Reachability analysis using AVR

0 200 400 600 800 1000 1200 1400 1600
1

10

100

1000

n-th fastest correct result

CP
U

tim
e

(s
)

KI.func
KI.rel
IC3sa.func
IC3sa.rel

Po-Chun Chien CPV and Pono 25/37

Experimental Results: Relational vs. Functional Encoding
Reachability analysis using ABC

0 200 400 600 800 1000 1200 1400 1600
1

10

100

1000

n-th fastest correct result

CP
U

tim
e

(s
)

IMC.func
IMC.rel
PDR.func
PDR.rel

Po-Chun Chien CPV and Pono 26/37

Preliminary Results in SV-COMP 2026: Reachability
Part of TACAS 2026 (April 11–16) @ Turin, Italy

Safe (unsat)

0 2000 4000 6000 8000
.1

1

10

100

1000

n-th fastest correct result

CP
U
tim

e
(s
)

Unsafe (sat)

0 500 1000 1500 2000

n-th fastest correct result

CPV
CPAchecker
Esbmc
Symbiotic
UAutomizer

Po-Chun Chien CPV and Pono 27/37

Preliminary Results in SV-COMP 2026: Termination

Termination (unsat)

0 200 400 600 800 1000
.1

1

10

100

1000

n-th fastest correct result

CP
U

tim
e

(s
)

Nonterminating (sat)

0 200 400 600
n-th fastest correct result

CPV
CPAchecker
Esbmc
Symbiotic
UAutomizer

Po-Chun Chien CPV and Pono 28/37

Pono:
A Versatile SMT-Based Model Checker

Joint work with Áron Ricardo Perez-Lopez1, Florian Lonsing,
Samantha Archer1, Ahmed Irfan2, and Clark Barrett1

(1Stanford University · 2SRI International)

System Architecure

CEGAR wrapper

Safety-checking engine

Interpolation-based

Property

Transition system

Functional

Relational

Safety

Liveness

Front-end encoder

Btor2

VMT

-Induction

BMC

ISMC

IMC

DAR

IC3-based

IC3SA

IC3IA*

Liveness-checking engine

L2S -Liveness

None Arith. Op.

...

...

...Array Prophecy

Result

bu
ild

s

ta
ke

s
ta

ke
s

us
es

re
tu

rn
s

returns

New

Enhanced

*: IC3IA is also
interpolation-based

Po-Chun Chien CPV and Pono 29/37

SMT Solver Integration
SmtSwtich: A Solver-Agnostic C++ API for SMT Solving

(Taken from [22])

New:
• Incremental

interpolation
• Bitwuzla

interpolation
• cvc5 integration

Po-Chun Chien CPV and Pono 30/37

Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

satAbstraction
Refinement

infeasible CEX

precision
increment

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

satAbstraction
Refinement

infeasible CEX

precision
increment

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

satAbstraction
Refinement

infeasible CEX

precision
increment

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

sat

Abstraction
Refinement

infeasible CEX

precision
increment

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

satAbstraction
Refinement

infeasible CEX

precision
increment

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

Abstract-Model
Exploration

Verif.
Task

(initial abstraction)

unsat

Feasibility
Check

potential CEX

satAbstraction
Refinement

infeasible CEX

precision
increment

Po-Chun Chien CPV and Pono 31/37

Arithmetic-Operation Abstraction

• SMT queries with complex arithmetic ops (e.g., ÷, ×) are hard to solve
• Abstract these ops as uninterpreted functions (UFs) or free variables

• Abstraction refinement (given a spurious CEX):
• Check feasibility of the CEX with on concrete system
• If unsat, identify ops to concretize from the unsat core

• Can be combined with any safety-checking engine in Pono
(In version 1.0, only IC3IA and IC3SA)

Po-Chun Chien CPV and Pono 32/37

Arithmetic-Operation Abstraction

• SMT queries with complex arithmetic ops (e.g., ÷, ×) are hard to solve
• Abstract these ops as uninterpreted functions (UFs) or free variables
• Abstraction refinement (given a spurious CEX):

• Check feasibility of the CEX with on concrete system
• If unsat, identify ops to concretize from the unsat core

• Can be combined with any safety-checking engine in Pono
(In version 1.0, only IC3IA and IC3SA)

Po-Chun Chien CPV and Pono 32/37

Arithmetic-Operation Abstraction

• SMT queries with complex arithmetic ops (e.g., ÷, ×) are hard to solve
• Abstract these ops as uninterpreted functions (UFs) or free variables
• Abstraction refinement (given a spurious CEX):

• Check feasibility of the CEX with on concrete system
• If unsat, identify ops to concretize from the unsat core

• Can be combined with any safety-checking engine in Pono
(In version 1.0, only IC3IA and IC3SA)

Po-Chun Chien CPV and Pono 32/37

Liveness Checking

• Two approaches that reduce liveness to safety:
• Liveness-to-Safety (L2S) [8]
• k-liveness [12]

• Can be combined with any safety-checking engine in Pono

• Currently only works for finite-state systems (e.g., Btor2)
• If sat, Btor2 witness (lasso) can be exported

Po-Chun Chien CPV and Pono 33/37

Evaluation: QF_BV Safety Checking

0 200 400 600

10−2

10−1

100

101

102

103

Solved benchmark instances

S
o
lv
in
g
ti
m
e
(s
)

Pono 2

Pono 1

AVR

rIC3

HWMCC tasks

0 100 200 300 400 500

10−2

10−1

100

101

102

103

Solved benchmark instances

S
o
lv
in
g
ti
m
e
(s
)

Pono 2

Pono 1

AVR

rIC3

SV-COMP Reachability tasks

Po-Chun Chien CPV and Pono 34/37

Evaluation: QF_ABV Safety Checking

0 200 400 600
10−2

10−1

100

101

102

103

Solved benchmark instances

S
o
lv
in
g
ti
m
e
(s
)

Pono 2

Pono 1

AVR

HWMCC tasks

0 20 40 60 80 100 120 140

10−2

10−1

100

101

102

103

Solved benchmark instances

S
o
lv
in
g
ti
m
e
(s
)

Pono 2

Pono 1

AVR

SV-COMP Reachability tasks

Po-Chun Chien CPV and Pono 35/37

Evaluation: Liveness Checking

0 100 200 300 400 500

10−2

10−1

100

101

102

103

Solved benchmark instances

S
o
lv
in
g
ti
m
e
(s
)

Pono 2 (L2S)

Pono 2 (KL)

Pono 1

AVR

rIC3

SV-COMP QF_BV Termination tasks

0 50 100 150

10−2

10−1

100

101

102

103

Solved benchmark instances

S
o
lv
in
g
ti
m
e
(s
)

Pono 2 (L2S)

Pono 2 (KL)

Pono 1

AVR

SV-COMP QF_ABV Termination tasks

(Pono 1, AVR, and rIC3 ran on pre-L2S-transformed tasks)

Po-Chun Chien CPV and Pono 36/37

Conclusion

• CPV [11]
• Encodes SV tasks as circuits
• Leverages hardware model

checkers as backend
• Pono [21]

• Supports safety and liveness
• Interfaces multiple SMT solvers

• Strong results in competitions
• Both projects are open-source

gitlab.com/
sosy-lab/software/cpv

Po-Chun Chien CPV and Pono 37/37

https://gitlab.com/sosy-lab/software/cpv
https://gitlab.com/sosy-lab/software/cpv
https://gitlab.com/sosy-lab/software/cpv

References i

[1] Beyer, D.: State of the art in software verification and witness validation: SV-COMP 2024. In: Proc.
TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

[2] Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via
large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

[3] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification. J. Autom.
Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-017-9432-6

[4] Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative verification systems. In:
Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-030-99524-9_31

References ii

[5] Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verification. In: Proc. CAV.
pp. 184–190. LNCS 6806, Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_16

[6] Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions. Int. J. Softw. Tools
Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

[7] Biere, A., Froleyks, N., Preiner, M.: Hardware model checking competition 2024. In: Proc. FMCAD.
pp. 7–7. TU Wien Academic Press (2024).
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6

[8] Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr. Notes Theor. Comput.
Sci. 66(2), 160–177 (2002). https://doi.org/10.1016/S1571-0661(04)80410-9

[9] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in
Computers 58, 117–148 (2003). https://doi.org/10.1016/S0065-2458(03)58003-2

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S0065-2458(03)58003-2

References iii

[10] Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VMCAI. pp. 70–87. LNCS 6538,
Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_7

[11] Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition contribution). In: Proc.
TACAS (3). pp. 365–370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

[12] Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Proc. FMCAD. pp. 52–59.
IEEE (2012). https://ieeexplore.ieee.org/document/6462555/

[13] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643

[14] Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc. TACAS. pp.
168–176. LNCS 2988, Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_15

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-031-57256-2_22
https://ieeexplore.ieee.org/document/6462555/
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-540-24730-2_15

References iv

[15] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed reachability. In:
Proc. FMCAD. pp. 125–134. FMCAD Inc. (2011). https://dl.acm.org/doi/10.5555/2157654.2157675

[16] Goel, A., Sakallah, K.: Model checking of Verilog RTL using IC3 with syntax-guided abstraction. In: Proc.
NFM. pp. 166–185. Springer (2019). https://doi.org/10.1007/978-3-030-20652-9_11

[17] Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc. TACAS. pp. 413–422. LNCS 12078,
Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_23

[18] Griggio, A., Jonáš, M.: Kratos2: An SMT-based model checker for imperative programs. In: Proc. CAV.
pp. 423–436. Springer (2023). https://doi.org/10.1007/978-3-031-37709-9_20

[19] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Proc. POPL. pp.
232–244. ACM (2004). https://doi.org/10.1145/964001.964021

[20] Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoretical Computer
Science 174(3), 45–56 (2007). https://doi.org/10.1016/j.entcs.2006.12.022

https://dl.acm.org/doi/10.5555/2157654.2157675
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1145/964001.964021
https://doi.org/10.1016/j.entcs.2006.12.022

References v

[21] Mann, M., Irfan, A., Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A., Barrett, C.W.: Pono: A
flexible and extensible SMT-based model checker. In: Proc. CAV. pp. 461–474. LNCS 12760, Springer
(2021). https://doi.org/10.1007/978-3-030-81688-9_22

[22] Mann, M., Wilson, A., Zohar, Y., Stuntz, L., Irfan, A., Brown, K., Donovick, C., Guman, A., Tinelli, C.,
Barrett, C.W.: Smt-switch: A solver-agnostic C++ API for SMT solving. In: Proc. SAT. pp. 377–386.
LNCS 12831, Springer (2021). https://doi.org/10.1007/978-3-030-80223-3_26

[23] McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–13. LNCS 2725,
Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

[24] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector 3.0. In: Proc. CAV. pp.
587–595. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_32

[25] Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In:
Proc. FMCAD, pp. 127–144. LNCS 1954, Springer (2000). https://doi.org/10.1007/3-540-40922-X_8

https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/3-540-40922-X_8

