From Programs to Circuits:

Bridging Software and Hardware Model Checking
with CPV and Pono

2025-12-22 Invited Talk @ NTU GIEE

v

Po-Chun Chien
sosy-lab.org/people/chien

LMU Munich, Germany

https://www.lmu.de/en/index.html
https://www.sosy-lab.org/people/chien/

About Me

Doctoral researcher at LMU Munich, Germany (since 2021)
= Advised by Dirk Beyer and mentored by Nian-Ze Lee

M.S. at NTU GIEE (2020)
= Advised by Jie-Hong Roland Jiang

B.S. at NTU EE (2018)

= Research interests: formal methods, hardware/software verification

Po-Chun Chien CPV and Pono 1/37

Bridging Hardware & Software Verification
DFG project 536040111 — Pls: Dirk Beyer & Nian-Ze Lee

Hardware Gfp Software

State-Transition LLVM-IR
Syst:]
)’s: em e,)coo'e i

Sequential
Circuit

Imperative

Program

Hardware Software

CPACHECKER

Verification Verification

underpin underpin

CBMC

SAT/SMT, Craig Interpolation,
Abstraction Refinement, Symbolic Representation, ...

KLEE

analyze analyze

Po-Chun Chien CPV and Pono 2/37

https://gepris.dfg.de/gepris/projekt/536040111?language=en

Bridging Hardware & Software Verification
DFG project 536040111 — Pls: Dirk Beyer & Nian-Ze Lee

Hardware Gfp Software

-4 LLVM-IR

&
<o,
%

Circuit Program

[mom | Tk Frogam.

Hardware - : h Software
Verification Verification
) : underpin
J SAT/SMT, Craig Interpolation, ;
: Abstraction Refinement, Symbolic Representation, ...

Po-Chun Chien CPV and Pono 2/37

https://gepris.dfg.de/gepris/projekt/536040111?language=en

Verifying Software via Hardware Model Checking

Po-Chun Chien

BTOR2 circuit [24]
(HWMCC [7])

CPV and Pono

C program
(SV-COMP [1])

3/37

Verifying Software via Hardware Model Checking

BTOR2 circuit [24] C program
(HWMCC [7]) (SV-COMP [1])

AVR [17], Poxo [21] ... CPAcHECKER [5], CBmc [14], ...

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

BTOR2 circuit [24] Translate C program

(HWMCC [7]) (SV-COMP [1])

AVR [17], Poxo [21] ... CPAcHECKER [5], CBmc [14], ...

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

BTOR2 circuit [24] Translate C program

(HWMCC [7]) (SV-COMP [1])

AVR [17], Poxo [21] ... CPAcHECKER [5], CBmc [14], ...

Po-Chun Chien CPV and Pono 3/37

Verifying Software via Hardware Model Checking

BTOR2 circuit [24] Translate C program

(HWMCC [7]) (SV-COMP [1])

AVR [17], Poxo [21] ... CPAcHECKER [5], CBmc [14], ...

Could circuits serve as IR for program verification?

Po-Chun Chien CPV and Pono 3/37

Outline

= CPV: A Circuit-Based Program Verifier
https://gitlab.com/sosy-lab/software/cpv
= Translation pipeline: from C programs to sequential circuits
= Verification backends and supported analyses
= Experimental and competition results

= Pono: A Versatile SMT-Based Model Checker for Safety and Liveness
https://github.com/stanford-centaur/pono

= Architecture and solver-agnostic design
= Recent developments in Pono 2.0
= Comparison with other model checkers

Po-Chun Chien CPV and Pono 4/37

https://gitlab.com/sosy-lab/software/cpv
https://github.com/stanford-centaur/pono

Background

Hardware Model: Sequential Circuit

Input / Property P
, O — = State transition:
; Logic 5" Thunc(S,1)
= Property:
P(S) or P(S,1)
Memory I
Element S i

Po-Chun Chien CPV and Pono 5/37

Formats to Describe Circuits

Example BTOR2 circuit:

. . 1 sort bitvec 3
Bit-level: Aiger 2 gero 1
= Sorts: bool < sate 1
4 init 1 3 2
= Ops: and, not 5 input 1
6 add 1 3 5
Word-level: Btor2 7 ome 1
8 sub 1 6 7

9 next 1 3 8

10 ones 1

= Ops: and, not, eq, add, 1 gome brigvee 1
12 eqg 11 3 10

13 bad 12

= Sorts: bitvec, array

mul, ite, read, write, ...

Po-Chun Chien CPV and Pono 6/37

Hardware Model Checking

Safety Property

Something bad never happens

Po-Chun Chien

¢:GP

M ¢?

Liveness Property
Something good eventually happens

¢:FP

CPV and Pono

7/37

Hardware Model Checking

Safety Property
Something bad never happens

¢:GP

= Counterexample:

Po-Chun Chien

M ¢?

Liveness Property
Something good eventually happens

¢:FP
-P =P -P

Y
L

-P

P

CPV and Pono 7/37

Model-Checking Algorithms

For checking safety properties:

= Bounded model checking (BMC) [9]

= k-induction (KI) [25]

= Interpolation-based model checking (IMC) [23]

= Property-directed reachability (IC3/PDR) [10, 15]

= Combined with CEGAR [13] using different abstraction techniques

= Syntax-guided abstraction [16]
= Predicate abstraction [19]

Po-Chun Chien CPV and Pono 8/37

Software Model: Control-Flow Graph

1 while (i > 0) {
2 if (x == 1) {
3 y = 0;

4 } else {

5 y = 1;

6 }

7 i=1i-1;
8 }

Po-Chun Chien CPV and Pono 9/37

Software Verification

ME ¢?

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
¢ : G —error ¢:Fend

Po-Chun Chien CPV and Pono

10/37

Y Circuit-Based Program Verification

Joint work with Dirk Beyer (LMU Munich),
Armin Biere (University of Freiburg), and
Nian-Ze Lee (National Taiwan University)

https://gitlab.com/sosy-lab/software/cpv

System Architecure: Frontend

TR-based
system (VMT)

Word-level
circuit (BTOR2)

Trans.-rel.

Trans.-func.
encoder (KraTos2)

Instrumentor

encoder

Po-Chun Chien CPV and Pono 11/37

System Architecure: Backend

bit-blaster
(BTORQAIGER)

Word-level checker | | BTOR2 Witness
——> .
(AVR, Pono, RIC3) witness translator

Bit-level checker
(ABC, RICS)

>——Verdic

Managed by CoVErITEAM

Po-Chun Chien CPV and Pono 12/37

Q? Frontend: C Program — Transition Relation

https://gitlab.com/sosy-lab/software/cpv

Single-Block Encoding

C Program — Transition Relation

Each statement as a block:

TR=(pc=hApc'=hni>0ni"=i...)
V(pc=hAapcd =hAax=1Ai"=i...)
V(pc=hAapc =lni"=iny =0...)

WV ooc

Po-Chun Chien CPV and Pono 13/37

Large-Block Encoding

C Program — Transition Relation

Po-Chun Chien

Each loop-free section as a block:

TR=(pc=hApc'=hni>0
Ai'=i-1ny =ite(x=1,0,1)...)
V(pc=hnapc' =lgni<s0ni'=i...)

WV ooc

CPV and Pono 14/37

Encoding Details

C Program — Transition Relation

Kratos2 [18] is employed

Large-block encoding [2] is used by default

Function calls are inlined or treated as blocks

C program uses __VERIFIER nondet X() to model nondeterministic values
— Primary inputs in TR(S,1,S")

Po-Chun Chien CPV and Pono 15/37

Encoding Details

C Program — Transition Relation

= Kraros2 [18] is employed
= Large-block encoding [2] is used by default
= Function calls are inlined or treated as blocks

s C program uses __VERIFIER nondet X() to model nondeterministic values
— Primary inputs in TR(S,1,S")

= CPV vs. other software verifiers:
Monolithic transition relation vs. ARG-based exploration [3]

Po-Chun Chien CPV and Pono 15/37

Q? Frontend: Transition Relation — Btor2 Circuit

https://gitlab.com/sosy-lab/software/cpv

Relational Encoding

Transition Relation — Btor2 Circuit

= Given TR(S,/1,S') and P(S)

Po-Chun Chien CPV and Pono 16/37

Relational Encoding

Transition Relation — Btor2 Circuit

= Given TR(S,/1,S') and P(S)
» Auxiliary variables:

= New state var valid
= For each state var s€ S, introduce an input var sj,

Po-Chun Chien CPV and Pono 16/37

Relational Encoding

Transition Relation — Btor2 Circuit

= Given TR(S,/1,S') and P(S)
» Auxiliary variables:

= New state var valid
= For each state var s€ S, introduce an input var sj,

» Transition functions and property in BTOR2:
» valid' — valid A TR(S,1,Sin)
s s’ —s;, for each se S
» Ppiorp i valid = P(S)

Po-Chun Chien CPV and Pono 16/37

Functional Encoding
Transition Relation — Btor2 Circuit

» |dentify control and data flows in a block formula:

pc=hApc'=hAi>0ni"=i-1Ay =ite(x=1,0,1)...

Po-Chun Chien CPV and Pono 17/37

Functional Encoding
Transition Relation — Btor2 Circuit

» |dentify control and data flows in a block formula:
pc=hApc'=hAi>0ni"=i-1Ay =ite(x=1,0,1)...
= Derive next-state functions directly:

i-1 ,ifpc=hAi>0

i'—1i yifpc=hAi<0

Po-Chun Chien CPV and Pono 17/37

Functional Encoding
Transition Relation — Btor2 Circuit

» |dentify control and data flows in a block formula:
pc=hApc'=hAi>0ni"=i-1Ay =ite(x=1,0,1)...
= Derive next-state functions directly:

i-1 ,ifpc=hAi>0

i'—=<3i yifpc=hAi<0

= TR is not right-total (e.g., pc = leng has no successor)
— add an auxiliary sink state gk

Po-Chun Chien CPV and Pono 17/37

Relational vs. Functional Encoding

Transition Relation — Btor2 Circuit

Relational Functional
= More general (works for any = Fewer input variables
transition relation) = Allow optimization when circuits
= Usually result in smaller circuits are unrolled [20]

Po-Chun Chien CPV and Pono 18/37

Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
int main() { // 1_init // instrumented by CPV
. int main() { // 1_init
if (error_cond) { // execute the original main
reach_error () ; // 1 _err original_main () ;
} // add termination marker
reach_end(); // 1_end
return 0; return 0;

Po-Chun Chien CPV and Pono 19/37

Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
(P :G (pC # /err) (P : F(pC = /end)

Po-Chun Chien CPV and Pono 20/37

Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
(P :G (pC # /err) (Pi F(pC = /end)

= In BTOR2: Dbad
= Counterexample:

pc= /init pc = /err

Po-Chun Chien CPV and Pono 20/37

Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)

Is an error location reachable? Can the program always terminate?
(P :G (pC # /err) (Pi F(pC = /end)

» In BTOR2: bad justice (4 constraint)

= Counterexample:
pc=linit PC#lend PC# lend

()

pc# /end s ® pc# /end
pc = linit pC = lopr k (/

pC # lend

Po-Chun Chien CPV and Pono 20/37

J Backend: Model Checking

https://gitlab.com/sosy-lab/software/cpv

Integrated Hardware Model Checkers

Tool Input formats Engines
) ABC AIGER BMC, IMC, PDR
Bit-level
rRIC3 AIGER, BTOrR2 BMC, KI, IC3
Word-level AVR BTOR2 BMC, KI, IC3sa
r -
OreeVe] poxo BTOR2 BMC, IMC, K, IC3sa, IC3ia

Po-Chun Chien CPV and Pono 21/37

Implementation Details

= CoVERITEAM [4] is used to coordinate backend model checkers

= Containerized execution with resource limits
= Assemble command lines and extract tool outputs (logs and files)
= Easy to combine multiple tools

Po-Chun Chien CPV and Pono 22/37

Implementation Details

= CoVERITEAM [4] is used to coordinate backend model checkers
= Containerized execution with resource limits
= Assemble command lines and extract tool outputs (logs and files)
= Easy to combine multiple tools
= Most tools do not support justice in BTOR2
— CPV does liveness-to-safety transformation

Po-Chun Chien CPV and Pono 22/37

Current Limitations

= Lack support for many library functions (e.g., <math.h>)

= Limited support for recursion (finite unrolling)

Does not handle concurrency
= Unsupported properties in SV-COMP:

= Memory safety
= QOverflow detection

Po-Chun Chien CPV and Pono 23/37

J Experimental Evaluation

https://gitlab.com/sosy-lab/software/cpv

Experimental Results: Relational vs. Functional Encoding

Reachability analysis using Pono

T T
—o— Kl.func o
o Kl.rel '
—— |MC.func
—a- IMC.rel
—m— |C3ia.func
- 1C3ia.rel

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
n-th fastest correct result

Po-Chun Chien CPV and Pono 24/37

Experimental Results: Relational vs. Functional Encoding

Reachability analysis using AVR

T
—e— Kl.func
o Kl.rel
—m— |C3sa.func
- |C3sa.rel

1000

—_
o
o

CPU time (s)

—_
o

| | | | | | |
400 600 800 1000 1200 1400 1600
n-th fastest correct result

|
0 200

Po-Chun Chien CPV and Pono 25/37

Experimental Results: Relational vs. Functional Encoding

Reachability analysis using ABC

T
1000 £ —e— IMC.func
o IMC.rel }
—=— PDR func e
@ PDR.rel

—_
o
o

CPU time (s)

—_
o

| | | | | | | |
0] 200 400 600 800 1000 1200 1400 1600
n-th fastest correct result

Po-Chun Chien CPV and Pono 26/37

Preliminary Results in SV-COMP 2026: Reachability
Part of TACAS 2026 (April 11-16) @ Turin, Italy

Safe (unsat) Unsafe (sat)

1000

100

- - CPACHECKER

CPU time (s)
>

1 i } - ESBMC |
E _’_.A"J wripe SYMBIOTIC |]
] —a— UAUTOMIZER ||
1 | | | | | | | |
0 2000 4000 6000 8000 0 500 1000 1500 2000
n-th fastest correct result n-th fastest correct result

Po-Chun Chien CPV and Pono 27/37

Preliminary Results in SV-COMP 2026: Termination

Termination (unsat) Nonterminating (sat)
T T T

—e— CPV

- & - CPACHECKER

--A--- ESBMC

- SYMBIOTIC

—e— UAHTOMIZER

| | | | | | |
0 200 400 600 800 1000 0 200 400 600
n-th fastest correct result n-th fastest correct result

Po-Chun Chien CPV and Pono 28/37

Pono:
A Versatile SMT-Based Model Checker
Joint work with Aron Ricardo Perez-Lopezl, Florian Lonsing,

Samantha Archer!, Ahmed Irfan?, and Clark Barrett!
(1Stanford University - 2SRI International)

System Architecure

Po-Chun Chien

builds

Front-end encoder

Transition system

T takes

CEGAR wrapper

\

[None] { Arith. Op.] {ArrayProphecy]

Safety-checking engine

v

takes

7 pronerte)
Property

Safety

A

BMC Interpolation-based IC3-based
[MC } { IC3SA }
[ISMC] [IC31A*]

Z

\

uses

Liveness-checking engine

Liveness <€

i

[L2s] [k-Liveness]

CPV and Pono

Result

*: IC3IA is also
interpolation-based

20/37

SMT Solver Integration
SmtSwtich: A Solver-Agnostic C++ API for SMT Solving

Po-Chun Chien

- class / struct
: function/member

group of files

smart pointer

Frontends
_ | Python API I'&| pysmt_frontend.py |
l uses
Interface
SmtSolver Sort Term

Abstract Interface

implements

olver Backends

(Taken from [22])
CPV and Pono

New:
= |ncremental
interpolation

= BITWUZLA
interpolation

= CVC)H integration

30/37

Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~
Task Abstract-Model
Exploration

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~

Task Abstract-Model unsat
Exploration

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~ t
Task Abstract-Model unsa
Exploration

potential CEX

Feasibility

Check

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~ t
Task Abstract-Model unsa
Exploration

potential CEX

Feasibility sat

Check

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~ t
Task Abstract-Model unsa
Exploration

potential CEX

Abstraction
Refinement

Feasibility
Check

sat

infeasible CEX

Po-Chun Chien CPV and Pono 31/37

Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Abstract-Model
Exploration

unsat

precision potential CEX

increment

Feasibility
Check

Abstraction sat

Refinement

infeasible CEX

Po-Chun Chien CPV and Pono 31/37

Arithmetic-Operation Abstraction

= SMT queries with complex arithmetic ops (e.g., +, x) are hard to solve

= Abstract these ops as uninterpreted functions (UFs) or free variables

Po-Chun Chien CPV and Pono 32/37

Arithmetic-Operation Abstraction

= SMT queries with complex arithmetic ops (e.g., +, x) are hard to solve
= Abstract these ops as uninterpreted functions (UFs) or free variables

= Abstraction refinement (given a spurious CEX):

= Check feasibility of the CEX with on concrete system
= If unsat, identify ops to concretize from the unsat core

Po-Chun Chien CPV and Pono 32/37

Arithmetic-Operation Abstraction

= SMT queries with complex arithmetic ops (e.g., +, x) are hard to solve
= Abstract these ops as uninterpreted functions (UFs) or free variables
= Abstraction refinement (given a spurious CEX):

= Check feasibility of the CEX with on concrete system
= If unsat, identify ops to concretize from the unsat core

= Can be combined with any safety-checking engine in Pono

(In version 1.0, only IC3IA and IC3SA)

Po-Chun Chien CPV and Pono 32/37

Liveness Checking

Two approaches that reduce liveness to safety:

= Liveness-to-Safety (L2S) [8]
= k-liveness [12]

Can be combined with any safety-checking engine in Pono

Currently only works for finite-state systems (e.g., BTOR2)

If sat, BTOR2 witness (lasso) can be exported

Po-Chun Chien CPV and Pono 33/37

Evaluation: QF_BV Safety Checking

Solving time (s)

Po-Chun Chien

10°

10?

10!

10°

107*

1072

Solved benchmark instances

HWMCC tasks

F T T T T m| F T T
| | —e—Pono 2 x S] 103 || —e— Pono 2
[|- PoNO 1 L] F|-x-PoNO 1 .
[[-+- AVR 2] 2 L[-+- AVR 5
F|-e- RrIC3 S g 1 -8~ rIC3
r " L 1 = r
BT 1 9 s
| %
B] g 100k
E E| = S
r 1 3 r
L | 1071 E
4] 102 F
R g
E | | | 1 [| | | !
0 200 400 600 0 100 200 300 400

Solved benchmark instances

SV-COMP Reachability tasks

CPV and Pono

!
500

34/37

Evaluation: QF_ABYV Safety Checking

I I 1 i FT T T T 1
103 | —o— PonNo 2 X 4 10° | 4
||~ PoNO 1 ¢ p] F E
o L AVR] 10%]
=z 1z g]
g [1 g 10t 4
£ 10tk 1 £ ;]
0 r 1 o0 F 1
I] <] (L o
£ 10° | 1 £ 7
A B E I r]
N i 107" E
10 z |
= 1 10-2 s |
1072 ! | | | g E ! I I | I I d
0 200 400 600 0 20 40 60 80 100 120 140

Solved benchmark instances # Solved benchmark instances

HWMCC tasks SV-COMP Reachability tasks

Po-Chun Chien CPV and Pono 35/37

Evaluation: Liveness Checking

F T T T] T T T
10? £|—o—Pono 2 (L2S) | ’ 10® | —e— Pono 2 (L2S) | $
F|—e— Pono 2 (KL) i F|—e— Pono 2 (KL) |
102 h '..‘j] 102 || % Poxo1l | ¢
&) § S — Fl-+- AVR J
KO [1 © [1
1 Es E|
I I
g ot g2 ok 4
2 r &= r 1
107" g 107
10 1072 |
L1 I I I I I i B I I I I]
0 100 200 300 400 500 0 50 100 150
Solved benchmark instances # Solved benchmark instances
SV-COMP QF_BYV Termination tasks SV-COMP QF_ABV Termination tasks

(Pono 1, AVR, and RrIC3 ran on pre-L2S-transformed tasks)

Po-Chun Chien CPV and Pono 36/37

CPV [11]

= Encodes SV tasks as circuits

= Leverages hardware model
checkers as backend

Pono [21]

= Supports safety and liveness

= Interfaces multiple SMT solvers

= Strong results in competitions

_ & gitlab.com/
= Both projects are open-source sosy-lab/software/cpv

Po-Chun Chien CPV and Pono 37/37

https://gitlab.com/sosy-lab/software/cpv
https://gitlab.com/sosy-lab/software/cpv
https://gitlab.com/sosy-lab/software/cpv

References i

[1]

(3]

[4]

Beyer, D.: State of the art in software verification and witness validation: SV-COMP 2024. In: Proc.
TACAS (3). pp. 299-329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via
large-block encoding. In: Proc. FMCAD. pp. 25-32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification. J. Autom.
Reasoning 60(3), 299-335 (2018). https://doi.org/10.1007/s10817-017-9432-6

Beyer, D., Kanav, S.: COVERITEAM: On-demand composition of cooperative verification systems. In:
Proc. TACAS. pp. 561-579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-030-99524-9_31

References ii

(5]

[6]

[7]

[9]

Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software verification. In: Proc. CAV.
pp. 184-190. LNCS 6806, Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_16

Beyer, D., Lowe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions. Int. J. Softw. Tools
Technol. Transfer 21(1), 1-29 (2019). https://doi.org/10.1007/s10009-017-0469-y

Biere, A., Froleyks, N., Preiner, M.: Hardware model checking competition 2024. In: Proc. FMCAD.
pp. 7-7. TU Wien Academic Press (2024).
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6

Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr. Notes Theor. Comput.
Sci. 66(2), 160-177 (2002). https://doi.org/10.1016/S1571-0661(04)80410-9

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in
Computers 58, 117-148 (2003). https://doi.org/10.1016/S0065-2458(03)58003-2

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S0065-2458(03)58003-2

References iii

[10]

[11]

Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VMCAI. pp. 70-87. LNCS 6538,
Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_7

Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition contribution). In: Proc.
TACAS (3). pp. 365—370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

Claessen, K., Sérensson, N.: A liveness checking algorithm that counts. In: Proc. FMCAD. pp. 52-59.
IEEE (2012). https://ieeexplore.ieee.org/document/6462555/

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM 50(5), 752-794 (2003). https://doi.org/10.1145/876638.876643

Clarke, E.M., Kroéning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc. TACAS. pp.
168-176. LNCS 2988, Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_15

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-031-57256-2_22
https://ieeexplore.ieee.org/document/6462555/
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-540-24730-2_15

References iv

[15]

[16]

Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed reachability. In:
Proc. FMCAD. pp. 125-134. FMCAD Inc. (2011). https://dl.acm.org/doi/10.5555/2157664.2157675

Goel, A., Sakallah, K.: Model checking of Verilog RTL using IC3 with syntax-guided abstraction. In: Proc.
NFM. pp. 166-185. Springer (2019). https://doi.org/10.1007/978-3-030-20652-9_11

Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc. TACAS. pp. 413-422. LNCS 12078,
Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_23

Griggio, A., Jonas, M.: KrATOs2: An SMT-based model checker for imperative programs. In: Proc. CAV.
pp. 423-436. Springer (2023). https://doi.org/10.1007/978-3-031-37709-9_20

Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Proc. POPL. pp.
232-244. ACM (2004). https://doi.org/10.1145/964001.964021

Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoretical Computer
Science 174(3), 45-56 (2007). https://doi.org/10.1016/j.entcs.2006.12.022

https://dl.acm.org/doi/10.5555/2157654.2157675
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1145/964001.964021
https://doi.org/10.1016/j.entcs.2006.12.022

References v

[21] Mann, M., Irfan, A, Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A., Barrett, CW.: PoNo: A
flexible and extensible SMT-based model checker. In: Proc. CAV. pp. 461-474. LNCS 12760, Springer
(2021). https://doi.org/10.1007/978-3-030-81688-9_22

[22] Mann, M., Wilson, A., Zohar, Y., Stuntz, L., Irfan, A., Brown, K., Donovick, C., Guman, A., Tinelli, C.,
Barrett, C.W.: Smt-switch: A solver-agnostic C++ API for SMT solving. In: Proc. SAT. pp. 377-386.
LNCS 12831, Springer (2021). https://doi.org/10.1007/978-3-030-80223-3_26

[23] McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1-13. LNCS 2725,
Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

[24] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: BTor2, BTORMC, and BOOLECTOR 3.0. In: Proc. CAV. pp.
587-595. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_32

[25] Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induction and a SAT-solver. In:
Proc. FMCAD, pp. 127-144. LNCS 1954, Springer (2000). https://doi.org/10.1007/3-540-40922-X_8

https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/3-540-40922-X_8

