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Verifying Software via Hardware Model Checking

Po-Chun Chien

BTOR2 circuit [24]
(HWMCC [7])

CPV and Pono

C program
(SV-COMP [1])
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Verifying Software via Hardware Model Checking

BTOR2 circuit [24] Translate C program

(HWMCC [7]) (SV-COMP [1])

AVR [17], Poxo [21] ... CPAcHECKER [5], CBmc [14], ...

Could circuits serve as IR for program verification?
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Outline

= CPV: A Circuit-Based Program Verifier
https://gitlab.com/sosy-lab/software/cpv
= Translation pipeline: from C programs to sequential circuits
= Verification backends and supported analyses
= Experimental and competition results

= Pono: A Versatile SMT-Based Model Checker for Safety and Liveness
https://github.com/stanford-centaur/pono

= Architecture and solver-agnostic design
= Recent developments in Pono 2.0
= Comparison with other model checkers

Po-Chun Chien CPV and Pono 4/37
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Hardware Model: Sequential Circuit

Input / Property P
, O — = State transition:
; Logic 5" Thunc(S,1)
= Property:
P(S) or P(S,1)
Memory I
Element S i
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Formats to Describe Circuits

Example BTOR2 circuit:

. . 1 sort bitvec 3
Bit-level: Aiger 2 gero 1
= Sorts: bool < sate 1
4 init 1 3 2
= Ops: and, not 5 input 1
6 add 1 3 5
Word-level: Btor2 7 ome 1
8 sub 1 6 7

9 next 1 3 8

10 ones 1

= Ops: and, not, eq, add, 1 gome brigvee 1
12 eqg 11 3 10

13 bad 12

= Sorts: bitvec, array

mul, ite, read, write, ...
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Hardware Model Checking

Safety Property

Something bad never happens

Po-Chun Chien

¢:GP

M ¢?

Liveness Property
Something good eventually happens

¢:FP

CPV and Pono
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Hardware Model Checking

Safety Property
Something bad never happens

¢:GP

=  Counterexample:

Po-Chun Chien

M ¢?

Liveness Property
Something good eventually happens

¢:FP
-P =P -P

Y
L

-P

P
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Model-Checking Algorithms

For checking safety properties:

= Bounded model checking (BMC) [9]

= k-induction (KI) [25]

= Interpolation-based model checking (IMC) [23]

= Property-directed reachability (IC3/PDR) [10, 15]

= Combined with CEGAR [13] using different abstraction techniques

= Syntax-guided abstraction [16]
= Predicate abstraction [19]
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Software Model: Control-Flow Graph

1 while (i > 0) {
2 if (x == 1) {
3 y = 0;

4 } else {

5 y = 1;

6 }

7 i=1i-1;
8 }

Po-Chun Chien CPV and Pono 9/37



Software Verification

ME ¢?

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
¢ : G —error ¢:Fend

Po-Chun Chien CPV and Pono
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Y Circuit-Based Program Verification

Joint work with Dirk Beyer (LMU Munich),
Armin Biere (University of Freiburg), and
Nian-Ze Lee (National Taiwan University)


https://gitlab.com/sosy-lab/software/cpv

System Architecure: Frontend

TR-based
system (VMT)

Word-level
circuit (BTOR2)

Trans.-rel.

Trans.-func.
encoder (KraTos2)

Instrumentor

encoder
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System Architecure: Backend

bit-blaster
(BTORQAIGER)

Word-level checker | | BTOR2 Witness
——> .
(AVR, Pono, RIC3) witness translator

Bit-level checker
(ABC, RICS)

>——Verdic

Managed by CoVErITEAM
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Q? Frontend: C Program — Transition Relation


https://gitlab.com/sosy-lab/software/cpv

Single-Block Encoding

C Program — Transition Relation

Each statement as a block:

TR=(pc=hApc'=hni>0ni"=i...)
V(pc=hAapcd =hAax=1Ai"=i...)
V(pc=hAapc =lni"=iny =0...)

WV ooc
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Large-Block Encoding

C Program — Transition Relation

Po-Chun Chien

Each loop-free section as a block:

TR=(pc=hApc'=hni>0
Ai'=i-1ny =ite(x=1,0,1)...)
V(pc=hnapc' =lgni<s0ni'=i...)

WV ooc
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Encoding Details

C Program — Transition Relation

Kratos2 [18] is employed

Large-block encoding [2] is used by default

Function calls are inlined or treated as blocks

C program uses __VERIFIER nondet X() to model nondeterministic values
— Primary inputs in TR(S,1,S")

Po-Chun Chien CPV and Pono 15/37



Encoding Details

C Program — Transition Relation

= Kraros2 [18] is employed
= Large-block encoding [2] is used by default
= Function calls are inlined or treated as blocks

s C program uses __VERIFIER nondet X() to model nondeterministic values
— Primary inputs in TR(S,1,S")

= CPV vs. other software verifiers:
Monolithic transition relation vs. ARG-based exploration [3]
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Q? Frontend: Transition Relation — Btor2 Circuit


https://gitlab.com/sosy-lab/software/cpv

Relational Encoding

Transition Relation — Btor2 Circuit

= Given TR(S,/1,S') and P(S)
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Relational Encoding

Transition Relation — Btor2 Circuit

= Given TR(S,/1,S') and P(S)
» Auxiliary variables:

= New state var valid
= For each state var s€ S, introduce an input var sj,
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Relational Encoding

Transition Relation — Btor2 Circuit

= Given TR(S,/1,S') and P(S)
» Auxiliary variables:

= New state var valid
= For each state var s€ S, introduce an input var sj,

» Transition functions and property in BTOR2:
» valid' — valid A TR(S,1,Sin)
s s’ —s;, for each se S
» Ppiorp i valid = P(S)
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Functional Encoding
Transition Relation — Btor2 Circuit

» |dentify control and data flows in a block formula:

pc=hApc'=hAi>0ni"=i-1Ay =ite(x=1,0,1)...
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Functional Encoding
Transition Relation — Btor2 Circuit

» |dentify control and data flows in a block formula:
pc=hApc'=hAi>0ni"=i-1Ay =ite(x=1,0,1)...
= Derive next-state functions directly:

i-1 ,ifpc=hAi>0

i'—1i yifpc=hAi<0
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Functional Encoding
Transition Relation — Btor2 Circuit

» |dentify control and data flows in a block formula:
pc=hApc'=hAi>0ni"=i-1Ay =ite(x=1,0,1)...
= Derive next-state functions directly:

i-1 ,ifpc=hAi>0

i'—=<3i yifpc=hAi<0

= TR is not right-total (e.g., pc = leng has no successor)
— add an auxiliary sink state gk
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Relational vs. Functional Encoding

Transition Relation — Btor2 Circuit

Relational Functional
= More general (works for any = Fewer input variables
transition relation) = Allow optimization when circuits
= Usually result in smaller circuits are unrolled [20]

Po-Chun Chien CPV and Pono 18/37



Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
int main() { // 1_init // instrumented by CPV
. int main() { // 1_init
if (error_cond) { // execute the original main
reach_error () ; // 1 _err original_main () ;
} // add termination marker
reach_end(); // 1_end
return 0; return 0;

Po-Chun Chien CPV and Pono 19/37



Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
(P :G (pC # /err) (P : F(pC = /end)
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Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)
Is an error location reachable? Can the program always terminate?
(P :G (pC # /err) (Pi F(pC = /end)

= In BTOR2: Dbad
=  Counterexample:

pc= /init pc = /err
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Encoding Verification Property

Reachability Analysis (Safety) Termination Analysis (Liveness)

Is an error location reachable? Can the program always terminate?
(P :G (pC # /err) (Pi F(pC = /end)

» In BTOR2: bad justice (4 constraint)

=  Counterexample:
pc=linit  PC#lend  PC# lend

()

pc# /end s ® pc# /end
pc = linit pC = lopr k (/

pC # lend
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J Backend: Model Checking


https://gitlab.com/sosy-lab/software/cpv

Integrated Hardware Model Checkers

Tool  Input formats Engines
) ABC AIGER BMC, IMC, PDR
Bit-level
rRIC3 AIGER, BTOrR2 BMC, KI, IC3
Word-level AVR  BTOR2 BMC, KI, IC3sa
r -
OreeVe ] poxo  BTOR2 BMC, IMC, K, IC3sa, IC3ia

Po-Chun Chien CPV and Pono 21/37



Implementation Details

= CoVERITEAM [4] is used to coordinate backend model checkers

= Containerized execution with resource limits
= Assemble command lines and extract tool outputs (logs and files)
= Easy to combine multiple tools

Po-Chun Chien CPV and Pono 22/37



Implementation Details

= CoVERITEAM [4] is used to coordinate backend model checkers
= Containerized execution with resource limits
= Assemble command lines and extract tool outputs (logs and files)
= Easy to combine multiple tools
= Most tools do not support justice in BTOR2
— CPV does liveness-to-safety transformation

Po-Chun Chien CPV and Pono 22/37



Current Limitations

= Lack support for many library functions (e.g., <math.h>)

= Limited support for recursion (finite unrolling)

Does not handle concurrency
= Unsupported properties in SV-COMP:

= Memory safety
= QOverflow detection

Po-Chun Chien CPV and Pono 23/37



J Experimental Evaluation


https://gitlab.com/sosy-lab/software/cpv

Experimental Results: Relational vs. Functional Encoding

Reachability analysis using Pono

T T
—o— Kl.func o
o Kl.rel '
—— |MC.func
—a- IMC.rel
—m— |C3ia.func
- 1C3ia.rel

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
n-th fastest correct result
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Experimental Results: Relational vs. Functional Encoding

Reachability analysis using AVR

T
—e— Kl.func
o Kl.rel
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Experimental Results: Relational vs. Functional Encoding

Reachability analysis using ABC

T
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Preliminary Results in SV-COMP 2026: Reachability
Part of TACAS 2026 (April 11-16) @ Turin, Italy

Safe (unsat) Unsafe (sat)

1000

100

- - CPACHECKER

CPU time (s)
>

1 i } - ESBMC |
E _’_.A"J wripe SYMBIOTIC | ]
] —a— UAUTOMIZER ||
1 | | | | | | | |
0 2000 4000 6000 8000 0 500 1000 1500 2000
n-th fastest correct result n-th fastest correct result
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Preliminary Results in SV-COMP 2026: Termination

Termination (unsat) Nonterminating (sat)
T T T

—e— CPV

- & - CPACHECKER

--A--- ESBMC

- SYMBIOTIC

—e— UAHTOMIZER

| | | | | | |
0 200 400 600 800 1000 0 200 400 600
n-th fastest correct result n-th fastest correct result
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Pono:
A Versatile SMT-Based Model Checker
Joint work with Aron Ricardo Perez-Lopezl, Florian Lonsing,

Samantha Archer!, Ahmed Irfan?, and Clark Barrett!
(1Stanford University - 2SRI International)



System Architecure

Po-Chun Chien

builds

Front-end encoder

Transition system

T takes

CEGAR wrapper

\

[ None ] { Arith. Op. ] {ArrayProphecy]

Safety-checking engine

v

takes

7 pronerte )
Property

Safety

A

BMC Interpolation-based IC3-based
[ MC } { IC3SA }
[ ISMC ] [ IC31A* ]

Z

\

uses

Liveness-checking engine

Liveness <€

i

[ L2s ] [ k-Liveness ]

CPV and Pono

Result

*: IC3IA is also
interpolation-based
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SMT Solver Integration
SmtSwtich: A Solver-Agnostic C++ API for SMT Solving

Po-Chun Chien

- class / struct
: function/member

group of files

smart pointer

Frontends
_ | Python API I'&| pysmt_frontend.py |
l uses
Interface
SmtSolver Sort Term

Abstract Interface

implements

olver Backends

(Taken from [22])
CPV and Pono

New:
= |ncremental
interpolation

= BITWUZLA
interpolation

= CVC)H integration
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Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~
Task Abstract-Model
Exploration
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(initial abstraction)

Verif. ~

Task Abstract-Model unsat
Exploration
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Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~ t
Task Abstract-Model unsa
Exploration

potential CEX

Feasibility

Check

Po-Chun Chien CPV and Pono 31/37



Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~ t
Task Abstract-Model unsa
Exploration

potential CEX

Feasibility sat

Check
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Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Verif. ~ t
Task Abstract-Model unsa
Exploration

potential CEX

Abstraction
Refinement

Feasibility
Check

sat

infeasible CEX
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Counterexample-Guided Abstraction Refinement (CEGAR)

(initial abstraction)

Abstract-Model
Exploration

unsat

precision potential CEX

increment

Feasibility
Check

Abstraction sat

Refinement

infeasible CEX
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Arithmetic-Operation Abstraction

= SMT queries with complex arithmetic ops (e.g., +, x) are hard to solve

= Abstract these ops as uninterpreted functions (UFs) or free variables

Po-Chun Chien CPV and Pono 32/37



Arithmetic-Operation Abstraction

= SMT queries with complex arithmetic ops (e.g., +, x) are hard to solve
= Abstract these ops as uninterpreted functions (UFs) or free variables

= Abstraction refinement (given a spurious CEX):

= Check feasibility of the CEX with on concrete system
= If unsat, identify ops to concretize from the unsat core
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Arithmetic-Operation Abstraction

= SMT queries with complex arithmetic ops (e.g., +, x) are hard to solve
= Abstract these ops as uninterpreted functions (UFs) or free variables
= Abstraction refinement (given a spurious CEX):

= Check feasibility of the CEX with on concrete system
= If unsat, identify ops to concretize from the unsat core

= Can be combined with any safety-checking engine in Pono

(In version 1.0, only IC3IA and IC3SA)

Po-Chun Chien CPV and Pono 32/37



Liveness Checking

Two approaches that reduce liveness to safety:

= Liveness-to-Safety (L2S) [8]
= k-liveness [12]

Can be combined with any safety-checking engine in Pono

Currently only works for finite-state systems (e.g., BTOR2)

If sat, BTOR2 witness (lasso) can be exported

Po-Chun Chien CPV and Pono 33/37



Evaluation: QF_BV Safety Checking

Solving time (s)

Po-Chun Chien
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CPV and Pono
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Evaluation: QF_ABYV Safety Checking

I I 1 i FT T T T 1
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Evaluation: Liveness Checking

F T T T ] T T T
10? £|—o—Pono 2 (L2S) | ’ 10® | —e— Pono 2 (L2S) | $
F|—e— Pono 2 (KL) i F|—e— Pono 2 (KL) |
102 h '..‘j ] 102 || % Poxo1l | ¢
&) § S — Fl-+- AVR J
KO [ 1 © [ 1
1 Es E|
I I
g ot g2 ok 4
2 r &= r 1
107" g 107
10 1072 |
L1 I I I I I i B I I I I ]
0 100 200 300 400 500 0 50 100 150
# Solved benchmark instances # Solved benchmark instances
SV-COMP QF_BYV Termination tasks SV-COMP QF_ABV Termination tasks

(Pono 1, AVR, and RrIC3 ran on pre-L2S-transformed tasks)
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CPV [11]

= Encodes SV tasks as circuits

= Leverages hardware model
checkers as backend

Pono [21]

= Supports safety and liveness

= Interfaces multiple SMT solvers

= Strong results in competitions

_ & gitlab.com/
= Both projects are open-source sosy-lab/software/cpv

Po-Chun Chien CPV and Pono 37/37
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