A Unifying View

 on SMT-Based Software Verification

 on SMT-Based Software Verification}

Dirk Beyer
Joint work with Matthias Dangl and Philipp Wendler
LMU Munich, Germany

Based on [1]:

Dirk Beyer, Matthias Dangl, Philipp Wendler:

A Unifying View on SMT-Based Software Verification
Journal of Automated Reasoning, Volume 60, Issue 3, 2018. https://doi.org/10.1007/s10817-017-9432-6

SMT-based Software Model Checking

- Predicate Abstraction
(Blast, CPAchecker, Slam, ...)
- Impact
(CPAchecker, Impact, Wolverine, ...)
- Bounded Model Checking (Cbmc, CPAchecker, Esbmc, ...)
- k-Induction (CPAchecker, Esbmc, 2Ls, ...)
- New: Interpolation-based model checking (CPACHECKER)

Motivation

- Theoretical comparison difficult:
- different conceptual optimizations
(e.g., large-block encoding)
- different presentation
\rightarrow What are their core concepts and key differences?

Motivation

- Theoretical comparison difficult:
- different conceptual optimizations (e.g., large-block encoding)
- different presentation
\rightarrow What are their core concepts and key differences?
- Experimental comparison difficult:
- implemented in different tools
different technical optimizations (e.g., data structures)
- different front-end and utility code
- different SMT solver
\rightarrow Where do performance differences actually come from?

Goals

- Provide a unifying framework for SMT-based algorithms
- Understand differences and key concepts of algorithms
- Determine potential of extensions and combinations
- Provide solid platform for experimental research

Approach

- Understand, and, if necessary, re-formulate the algorithms
- Design a configurable framework for SMT-based algorithms (based upon the CPA framework)
- Use flexibility of adjustable-block encoding (ABE)
- Express existing algorithms using the common framework
- Implement framework (in CPAchecker)

Base: Adjustable-Block Encoding

Originally for predicate abstraction:

- Abstraction computation is expensive
- Abstraction is not necessary after every transition
- Track precise path formula between abstraction states
- Reset path formula and compute abstraction formula at abstraction states
- Large-Block Encoding: abstraction only at loop heads (hard-coded)
- Adjustable-Block Encoding: introduce block operator "blk" to make it configurable

Base: Configurable Program Analysis

Configurable Program Analysis (CPA):

- Beyer, Henzinger, Théoduloz: [2, CAV '07]
- One single unifying algorithm for all algorithms based on state-space exploration
- Configurable components: abstract domain, abstract-successor computation, path sensitivity, ...

Using the CPA Framework

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains

Using the CPA Framework

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain

Using the CPA Framework

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain
- Reuse other CPAs

Using the CPA Framework

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain
- Reuse other CPAs
- Build further algorithms on top that make use of reachability analysis

Predicate CPA

Predicate CPA

Predicate CPA: Abstract Domain

- Abstract state: (ψ, φ)
- tuple of abstraction formula ψ and path formula φ (for ABE)
- conjunction represents state space
- abstraction formula can be a BDD or an SMT formula
- path formula is always SMT formula and concrete

Predicate CPA: Abstract Domain

- Abstract state: (ψ, φ)
- tuple of abstraction formula ψ and path formula φ (for ABE)
- conjunction represents state space
- abstraction formula can be a BDD or an SMT formula
- path formula is always SMT formula and concrete
- Precision: set of predicates (per program location)

Predicate CPA

Predicate CPA: CPA Operators

- Transfer relation:
- computes strongest post
- changes only path formula, new abstract state is $\left(\psi, \varphi^{\prime}\right)$
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)

Predicate CPA: CPA Operators

- Transfer relation:
- computes strongest post
- changes only path formula, new abstract state is $\left(\psi, \varphi^{\prime}\right)$
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
- standard for ABE: create disjunctions inside block

Predicate CPA: CPA Operators

- Transfer relation:
- computes strongest post
- changes only path formula, new abstract state is $\left(\psi, \varphi^{\prime}\right)$
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
$>$ standard for ABE : create disjunctions inside block
- Stop operator:
- standard for ABE: check coverage only at block ends

Predicate CPA: CPA Operators

- Transfer relation:
- computes strongest post
$>$ changes only path formula, new abstract state is $\left(\psi, \varphi^{\prime}\right)$
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
\rightarrow standard for ABE : create disjunctions inside block
- Stop operator:
- standard for ABE: check coverage only at block ends
- Precision-adjustment operator:
- only active at block ends (as determined by blk)
- computes abstraction of current abstract state
- new abstract state is $\left(\psi^{\prime}\right.$, true $)$

Predicate CPA

Predicate CPA: Refinement

Four steps:

1. Reconstruct ARG path to abstract error state
2. Check feasibility of path
3. Discover abstract facts, e.g.,

- interpolants
- weakest precondition
- heuristics

4. Refine abstract model

- add predicates to precision, cut ARG or
- conjoin interpolants to abstract states, recheck coverage relation

Predicate CPA

Predicate Abstraction

- Predicate Abstraction
- [5, CAV '97], [7, POPL'02], [6, POPL'04]
- Abstract-interpretation technique
- Abstract domain constructed from a set of predicates π
- Use CEGAR to add predicates to π (refinement) [4, J. ACM '03]
- Derive new predicates using Craig interpolation
- Abstraction formula as BDD

Expressing Predicate Abstraction

- Abstraction Formulas: BDDs
- Block Size (blk): e.g. $\mathrm{blk}^{S B E}$ or blk^{l} or $\mathrm{blk}^{l f}$
- Refinement Strategy: add predicates to precision, cut ARG

Use CEGAR Algorithm:
1: while true do
2: run CPA Algorithm
3: if target state found then
4: call refine
5: if target state reachable then return false
7: else
8: return true

Predicate CPA

Example Program

1 int main() \{
${ }^{2}$ unsigned int $x=0$;
unsigned int $y=0$; while $(x<2)$ \{
$x++$;
$y++$;
if (x ! = y) \{
ERROR: return 1;

$$
\}
$$

return 0;
$12\}$

Predicate CPA

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l} \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

Predicate Abstraction: Example

 with blk ${ }^{l}, \pi\left(l_{4}\right)=\{x=y\}$ and $\pi\left(l_{8}\right)=\{$ false $\}$

IMPACT

- IMPACT
> "Lazy Abstraction with Interpolants" [10, CAV '06]
- Abstraction is derived dynamically/lazily
- Solution to avoiding expensive abstraction computations
- Compute fixed point over three operations
- Expand
- Refine
- Cover
- Abstraction formula as SMT formula
- Optimization: forced covering

Expressing Impact

- Abstraction Formulas: SMT-based
- Block Size (blk): blk ${ }^{S B E}$ or other (new!)
- Refinement Strategy:
conjoin interpolants to abstract states, recheck coverage relation
Furthermore:
- Use CEGAR Algorithm
- Precision stays empty
\rightarrow predicate abstraction never computed

Predicate CPA

Predicate CPA

Impact: Example

with blk ${ }^{l}$

Impact: Example

with blk ${ }^{l}$

Impact: Example

with blk ${ }^{l}$

Impact: Example

with blk ${ }^{l}$

Impact: Example

Impact: Example

Impact: Example

 with bik ${ }^{l}$

Impact: Example

Impact: Example

Impact: Example

 with blk ${ }^{l}$

Bounded Model Checking

- Bounded Model Checking:
- Biere, Cimatti, Clarke, Zhu: [3, TACAS '99]
- No abstraction
- Unroll loops up to a loop bound k
- Check that P holds in the first k iterations:

$$
\bigwedge_{i=1}^{k} P(i)
$$

Expressing BMC

- Block Size (blk): blk ${ }^{\text {never }}$

Furthermore:

- Add CPA for bounding state space (e.g., loop bounds)
- Choices for abstraction formulas and refinement irrelevant because block end never encountered
- Use Algorithm for iterative BMC:

1: $k=1$
2: while !finished do
3: run CPA Algorithm
4: check feasibility of each abstract error state
5: $\quad k++$

Predicate CPA

Bounded Model Checking: Example with $k=1$

1-Induction

- 1-Induction:
- Base case: Check that the safety property holds in the first loop iteration:

$$
P(1)
$$

\rightarrow Equivalent to BMC with loop bound 1

- Step case: Check that the safety property is 1-inductive:

$$
\forall n:(P(n) \Rightarrow P(n+1))
$$

k-Induction

- k-Induction generalizes the induction principle:
- No abstraction
- Base case: Check that P holds in the first k iterations:
\rightarrow Equivalent to BMC with loop bound k
- Step case: Check that the safety property is k-inductive:

$$
\forall n:\left(\left(\bigwedge_{i=1}^{k} P(n+i-1)\right) \Rightarrow P(n+k)\right)
$$

- Stronger hypothesis is more likely to succeed
- Add auxiliary invariants
- Kahsai, Tinelli: [8, PDMC '11]

k-Induction with Auxiliary Invariants

Induction:

1: $k=1$
2: while !finished do
3: $\quad \mathrm{BMC}(\mathrm{k})$
4: Induction(k, invariants) 4: invariants $=$ Genlnv(prec)
5: $\quad k++$

Invariant generation:
1: prec $=<$ weak $>$
2: invariants $=\emptyset$
3: while !finished do

5: \quad prec $=$ RefinePrec $($ prec $)$

k-Induction: Example with $k=1$ (and loop bound $k+1=2$)

$e_{2}:\left(l_{12},\left(\right.\right.$ true,$\left.\left.\neg\left(x_{0}<2\right)\right),\left\{l_{4} \mapsto 0\right\}\right)$
$\longrightarrow e_{3}:\left(l_{5},\left(\right.\right.$ true,$\left.\left.x_{0}<2\right),\left\{l_{4} \mapsto 0\right\}\right)$
$\frac{\left.e_{4}:\left(l_{6}, \text { true }, x_{0}<2 \wedge x_{1}=x_{0}+1\right),\left\{l_{4} \mapsto 0\right\}\right)}{\downarrow}$
$\frac{e_{5}:\left(l_{7},\left(\text { true }, \wedge x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1\right),\left\{l_{4} \mapsto 0\right\}\right)}{\downarrow}$

$$
e_{6}:\left(l_{8},\left(\text { true }, x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(x_{1}=y_{1}\right)\right),\left\{l_{4} \mapsto 0\right\}\right)
$$

$$
e_{7}:\left(l_{12},\left(\text { true }, x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(x_{1}=y_{1}\right)\right),\left\{l_{4} \mapsto 0\right\}\right)
$$

$e_{99}:\left(l_{11},\left(\right.\right.$ true,$\left.\left.x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge \neg\left(x_{1}<2\right)\right),\left\{l_{4} \mapsto 1\right\}\right)$ 市

$$
e_{11}:\left(l_{5},\left(\text { true }, x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge x_{1}<2\right),\left\{l_{4} \mapsto 1\right\}\right)
$$

$$
e_{12}:\left(l_{6},\left(\text { true }, x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge x_{1}<2 \wedge x_{2}=x_{1}+1\right),\left\{l_{4} \mapsto 1\right\}\right)
$$

$e_{13}:\left(l_{7},\left(\right.\right.$ true, $\left.\left.x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge x_{1}<2 \wedge x_{2}=x_{1}+1 \wedge y_{2}=y_{1}+1\right),\left\{l_{4} \mapsto 1\right\}\right)$
$e_{14}:\left(l_{8,}\right.$, true,$\left.\left.x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge x<2 \wedge x_{2}=x_{1}+1 \wedge y_{2}=y_{1}+1 \wedge \neg\left(x_{2}=y_{2}\right)\right),\left\{l_{4} \mapsto 1\right\}\right)$
$e_{15}:\left(l_{12},\left(\right.\right.$ true,$\left.\left.x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge x<2 \wedge x_{2}=x_{1}+1 \wedge y_{2}=y_{1}+1 \wedge \neg\left(x_{2}=y_{2}\right)\right),\left\{l_{4} \mapsto 1\right\}\right)$

16: $\left(l_{4},\left(\right.\right.$ true,$\left.\left.x_{0}<2 \wedge x_{1}=x_{0}+1 \wedge y_{1}=y_{0}+1 \wedge \neg\left(\neg\left(x_{1}=y_{1}\right)\right) \wedge x<2 \wedge x_{2}=x_{1}+1 \wedge y_{2}=y_{1}+1 \wedge \neg\left(\neg\left(x_{2}=y_{2}\right)\right)\right),\left\{l_{4} \mapsto 2\right\}\right)$

Interpolation and SAT-Based Model Checking

- McMillan: [9, CAV '03]
- Interpolation-based model checking (IMC)
- Construct fixed points by interpolants derived from unsatisfiable BMC queries
- Originally designed for finite-state systems (circuit); recently adopted for programs

Expressing IMC

- Block Size (blk): blk ${ }^{l}$

Furthermore:

- Use block formulas to partition BMC queries
- Already recorded in predicate abstract state: (ψ, φ, σ)
- IMC algorithm (on top of CPA Algorithm):

1: $k=1$
2: while !finished do
3: run CPA Algorithm
4: check feasibility of each abstract error state
5: partition unsatisfiable BMC queries
6: construct fixed points by interpolants
7: $\quad k++$

IMC: Example (error path to l_{8} with one loop unrolling)

IMC: Example (error path to l_{8} with one loop unrolling)

IMC: Example (error path to l_{8} with one loop unrolling)

Insights

- BMC naturally follows by increasing block size to whole (bounded) program

Insights

- BMC naturally follows by increasing block size to whole (bounded) program
- Difference between predicate abstraction and Impact:
- BDDs vs. SMT-based formulas: costly abstractions vs. costly coverage checks
- Recompute ARG vs. rechecking coverage
- We know that only these differences are relevant!
- Predicate abstraction pays for creating more general abstract model
- Impact is lazier but this can lead to many refinements \rightarrow forced covering or large blocks help

Evaluation: Usefulness of Framework

- 5 existing approaches successfully integrated
- Ongoing projects for integration of further approaches
- Interesting insights learned about these approaches
- High configurability allows new combinations and hybrid approaches
- Already used as base for other successful research projects

Evaluation: Usefulness of Implementation

- Used in other research projects
- Used as part of many SV-COMP submissions, 27 gold medals

- Also competitive stand-alone
- Awarded Gödel medal by Kurt Gödel Society

Comparison with SV-COMP'17 Verifiers

- 5594 verification tasks from SV-COMP'17
(only reachability, without recursion and concurrency)
- 15 min time limit per task (CPU time)
- 15 GB memory limit
- Measured with BenchExec
- Comparison of
- 4 configurations of CPAchecker with Predicate CPA: BMC, k-induction, Impact, predicate abstraction
- 16 participants of SV-COMP'17

Comparison with SV-COMP'17 Verifiers: Results

Number of correctly solved tasks:

- Each configuration of Predicate CPA beats other tools with same approach
- Only 3 tools beat Predicate CPA with k-induction:
- Smack: guesses results
- CPA-BAM-BnB, CPA-SEq: based on Predicate CPA as well

Comparison with SV-COMP'17 Verifiers: Results

Number of correctly solved tasks:

- Each configuration of Predicate CPA beats other tools with same approach
- Only 3 tools beat Predicate CPA with k-induction:
- Smack: guesses results
- CPA-BAM-BnB, CPA-SEQ: based on Predicate CPA as well

Number of wrong results:

- Comparable with other tools
- No wrong proofs (sound)

Comparison with SV-COMP'17 Verifiers

SV-COMP'17

- CPA-BAM-BnB
- CPA-KInd
- . CPA-SEQ
- Cbmс
- DepthK
- Esbmc
- Esbmc-KInd
-- Smack
- \square - Ultimate Automizer

Predicate CPA

(MathSAT5 QF_UFBVFP)
$\rightarrow-\mathrm{BMC}$

- \square - k-Induction
$\triangle \cdots$ Impact
$-\infty-$ Predicate Abstraction

Evaluation: Enabling Experimental Studies

- Comparison of algorithms across different program categories [VSTTE'16, JAR]
- SMT solvers for various theories and algorithms

Experimental Comparison of Algorithms

- 5287 verification tasks from SV-COMP'17
- 15 min time limit per task (CPU time)
- 15 GB memory limit
- Measured with BenchExec

All 3913 bug-free tasks

All 1374 tasks with known bugs

Category Device Drivers

- Several thousands LOC per task
- Complex structures
- Pointer arithmetics

Category Device Drivers: 2440 bug-free tasks

Category Device Drivers: 355 tasks with known bugs

Category Event Condition Action Systems (ECA)

- Several thousand LOC per task
- Auto-generated
- Only integer variables
- Linear and non-linear arithmetics
- Complex and dense control structure

Category Event Condition Action Systems (ECA)

- Several thousand LOC per task
- Auto-generated
- Only integer variables
- Linear and non-linear arithmetics
- Complex and dense control structure

$$
\begin{aligned}
& \text { if }(((\text { a24==3) \&\& }(((\text { a18 }==10) \& \&((\text { input }==6) \\
& \quad \& \&((115<a 3) \& \&(306>=\mathrm{a} 3)))) \\
& \quad \& \&(\text { a15==4)))) }\{ \\
& \text { a3 }=(((\mathrm{a} 3 * 5)+-583604) * 1) ; \\
& \text { a24 }=0 ; \\
& \text { a18 }=8 ; \\
& \text { return }-1 ; \\
& \text { \} }
\end{aligned}
$$

Category ECA: 738 bug-free tasks

Category ECA: 411 tasks with known bugs

- Only BMC and k-Induction solve 1 task (the same one for both)
- Impact and Predicate Abstraction solve none

Category Product Lines

- Several hundred LOC
- Mostly integer variables, some structs
- Mostly simple linear arithmetics
- Lots of property-independent code

Category Product Lines: 332 bug-free tasks

Category Product Lines: 265 tasks with known bugs

Recent Evaluation including IMC

- CPACHECKER revision 40806
- Interpolants provided by MathSAT5
- Compared algorithms
- IMC
- PDR
- BMC
- k-Induction
- Predicate abstraction
- Impact
- Subset of ReachSafety from SV-COMP '22
- Safe: 4234 tasks
- Unsafe: 1793 tasks

Quantile Plot: Safe Tasks

Quantile Plot: Unsafe Tasks

Experimental Comparison of Algorithms: Summary

We reconfirm that

- BMC is a good bug hunter
- k-Induction is a heavy-weight proof technique: effective, but costly
- CEGAR makes abstraction techniques (Predicate Abstraction, Impact) scalable
- Impact is lazy:
explores the state space and finds bugs quicker
- Predicate Abstraction is eager: prunes irrelevant parts and finds proofs quicker
- IMC is competitive among polished SV approaches

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

k-Induction

Predicate Abstraction

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?
(A)
k-Induction
solves 29% more tasks (B)

Predicate Abstraction solves 3% more tasks

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?
(A)
k-Induction
solves 29% more tasks
Z3
with bitprecise arithmetic
(B)

Predicate Abstraction solves 3% more tasks

MathSAT5
with linear arithmetic

Depending on configuration, either (A) or (B) can be true!
Technical details (e.g., choice of SMT theory) influence evaluation of algorithms

Comparison of SMT Solvers and Theories

- Which SMT solver should we use in a verifier?
- Which formula encoding?
- Which of these should we use for benchmarks in papers?

Comparison of SMT Solvers and Theories

- Which SMT solver should we use in a verifier?
- Which formula encoding?
- Which of these should we use for benchmarks in papers?
- Large study made possible by our framework
- Produced some interesting insights
- Resulted in change of default configuration of CPACHECKER

Comparison of SMT Solvers and Theories

- Which SMT solver should we use in a verifier?
- Which formula encoding?
- Which of these should we use for benchmarks in papers?
- Large study made possible by our framework
- Produced some interesting insights
- Resulted in change of default configuration of CPACHECKER
- Comparison using CPAchecker and Predicate CPA
- 5594 verification tasks from SV-COMP'17
- 15 min time limit (CPU time), 15 GB memory limit
- Measured with BenchExec

SMT Study: 120 Configurations

BMC |k-Induction \mid Impact \mid Pred. Abs

MathSAT5 \quad Princess \mid SMTInterpol $\mid \quad$ Z3

Bitprecise Linear \mid Linear unsound χ
with Quantifiers \mid Quantifier-free

Arrays \mid UFs

Point of View: SMT Solvers

- Princess is never competitive
- Interpolation in Z3 is unmaintained since 2015
- Bitvector interpolation in Z3 produces up to 24% crashes
- MathSAT5 has known interpolation problem for bitvectors, but problem occurs rarely

Point of View: Theories and Encodings

- Unsound linear encoding always the easiest (as expected)

Point of View: Theories and Encodings

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected: BV > sound LIRA > unsound LIRA

Point of View: Theories and Encodings

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected: BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA

Point of View: Theories and Encodings

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected: BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA
- Effectivity for MathSAT5: sound LIRA $<B V \approx$ unsound LIRA (but BV needs more CPU time)
\Rightarrow MATHSAT5 is really good with bitvectors.

Point of View: Theories and Encodings

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected: BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA
- Effectivity for MathSAT5:
sound LIRA $<B V \approx$ unsound LIRA
(but BV needs more CPU time)
- Effectivity for SMTInterpol: sound LIRA < unsound LIRA
\Rightarrow MATHSAT5 is really good with bitvectors.

Point of View: Theories and Encodings

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected: BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA
- Effectivity for MathSAT5:
sound LIRA $<B V \approx$ unsound LIRA
(but BV needs more CPU time)
- Effectivity for SMTInterpol: sound LIRA < unsound LIRA
\Rightarrow MATHSAT5 is really good with bitvectors.
\Rightarrow Sound LIRA encoding rarely makes sense.

Point of View: Algorithms

- Mostly, the best configurations of MathSAT5, SMTInterpol, and Z3 are close for each algorithm
- Gives confidence for valid comparison of algorithm
- But outlier exists:

Z3 is worse than others for predicate abstraction

Point of View: Algorithms

- Mostly, the best configurations of MathSAT5, SMTInterpol, and Z3 are close for each algorithm
- Gives confidence for valid comparison of algorithm
- But outlier exists:

Z3 is worse than others for predicate abstraction

- Predicate abstraction and Impact suffer most from disjunctions of sound LIRA encoding.

Point of View: Arrays and Quantifiers

- Little difference with/without arrays/quantifiers
\Rightarrow Arrays don't hurt
(though this might change once more complex array predicates are used)

Point of View: Arrays and Quantifiers

- Little difference with/without arrays/quantifiers
\Rightarrow Arrays don't hurt
(though this might change
once more complex array predicates are used)
- But quantifiers restrict solver choice (Princess and Z3)

SMT Study: Final Conclusions

- Choice of theories, solver, and encoding details affects comparisons of algorithms!
- For now:
use MathSAT5 with bitvectors and arrays if possible
- Possible problems for users: license, native binary
- Next-best choice:

SMTInterpol with unsound linear arithmetic

- No improvement of situation in sight

References I

[1] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification. J. Autom. Reasoning 60(3), 299-335 (2018).
https://doi.org/10.1007/s10817-017-9432-6
[2] Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing the convergence of model checking and program analysis. In: Proc. CAV. pp. 504-518. LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_51
[3] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Proc. TACAS. pp. 193-207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14
[4] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003). https://doi.org/10.1145/876638.876643
[5] Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV. pp. 72-83. LNCS 1254, Springer (1997).
https://doi.org/10.1007/3-540-63166-6_10
[6] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Proc. POPL. pp. 232-244. ACM (2004).
https://doi.org/10.1145/964001.964021

References II

[7] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc. POPL. pp. 58-70. ACM (2002). https://doi.org/10.1145/503272.503279
[8] Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In: Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp. 55-62. EPTCS 72, EPTCS (2011). https://doi.org/10.4204/EPTCS. 72.6
[9] McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1-13. LNCS 2725, Springer (2003).
https://doi.org/10.1007/978-3-540-45069-6_1
[10] McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123-136. LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

