
A Unifying View
on SMT-Based Software Verification

Dirk Beyer
Joint work with Matthias Dangl and Philipp Wendler

LMU Munich, Germany

Dirk Beyer 1 / 71

Based on [1]:
Dirk Beyer, Matthias Dangl, Philipp Wendler:
A Unifying View on SMT-Based Software Verification

Journal of Automated Reasoning, Volume 60, Issue 3, 2018.
https://doi.org/10.1007/s10817-017-9432-6

Dirk Beyer 2 / 71

https://doi.org/10.1007/s10817-017-9432-6

SMT-based Software Model Checking

▶ Predicate Abstraction
(Blast, CPAchecker, Slam, ...)

▶ Impact
(CPAchecker, Impact, Wolverine, ...)

▶ Bounded Model Checking
(Cbmc, CPAchecker, Esbmc, ...)

▶ k-Induction
(CPAchecker, Esbmc, 2ls, ...)

▶ New: Interpolation-based model checking
(CPAchecker)

Dirk Beyer 3 / 71

Motivation

▶ Theoretical comparison difficult:
▶ different conceptual optimizations

(e.g., large-block encoding)
▶ different presentation

→ What are their core concepts and key differences?

▶ Experimental comparison difficult:
▶ implemented in different tools
▶ different technical optimizations (e.g., data structures)
▶ different front-end and utility code
▶ different SMT solver

→ Where do performance differences actually come from?

Dirk Beyer 4 / 71

Motivation

▶ Theoretical comparison difficult:
▶ different conceptual optimizations

(e.g., large-block encoding)
▶ different presentation

→ What are their core concepts and key differences?
▶ Experimental comparison difficult:

▶ implemented in different tools
▶ different technical optimizations (e.g., data structures)
▶ different front-end and utility code
▶ different SMT solver

→ Where do performance differences actually come from?

Dirk Beyer 4 / 71

Goals

▶ Provide a unifying framework for SMT-based algorithms
▶ Understand differences and key concepts of algorithms
▶ Determine potential of extensions and combinations
▶ Provide solid platform for experimental research

Dirk Beyer 5 / 71

Approach

▶ Understand, and, if necessary, re-formulate the algorithms
▶ Design a configurable framework for SMT-based algorithms

(based upon the CPA framework)
▶ Use flexibility of adjustable-block encoding (ABE)
▶ Express existing algorithms using the common framework
▶ Implement framework (in CPAchecker)

Dirk Beyer 6 / 71

Base: Adjustable-Block Encoding

Originally for predicate abstraction:
▶ Abstraction computation is expensive
▶ Abstraction is not necessary after every transition
▶ Track precise path formula between abstraction states
▶ Reset path formula and compute abstraction formula at

abstraction states
▶ Large-Block Encoding:

abstraction only at loop heads (hard-coded)
▶ Adjustable-Block Encoding:

introduce block operator "blk" to make it configurable

Dirk Beyer 7 / 71

Base: Configurable Program Analysis

Configurable Program Analysis (CPA):
▶ Beyer, Henzinger, Théoduloz: [2, CAV ’07]
▶ One single unifying algorithm for all algorithms based on

state-space exploration
▶ Configurable components: abstract domain,

abstract-successor computation, path sensitivity, ...

Dirk Beyer 8 / 71

Using the CPA Framework
▶ CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains

▶ Provide Predicate CPA for our predicate-based abstract domain
▶ Reuse other CPAs
▶ Build further algorithms on top

that make use of reachability analysis

Source
Code

Spec

ResultsParser &
CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Loop-Bound
CPA

Predicate
CPA

Dirk Beyer 9 / 71

Using the CPA Framework
▶ CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains
▶ Provide Predicate CPA for our predicate-based abstract domain

▶ Reuse other CPAs
▶ Build further algorithms on top

that make use of reachability analysis

Source
Code

Spec

ResultsParser &
CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Loop-Bound
CPA

Predicate
CPA

Dirk Beyer 9 / 71

Using the CPA Framework
▶ CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains
▶ Provide Predicate CPA for our predicate-based abstract domain
▶ Reuse other CPAs

▶ Build further algorithms on top
that make use of reachability analysis

Source
Code

Spec

ResultsParser &
CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Loop-Bound
CPA

Predicate
CPA

Dirk Beyer 9 / 71

Using the CPA Framework
▶ CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains
▶ Provide Predicate CPA for our predicate-based abstract domain
▶ Reuse other CPAs
▶ Build further algorithms on top

that make use of reachability analysis

Source
Code

Spec

ResultsParser &
CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Loop-Bound
CPA

Predicate
CPA

Dirk Beyer 9 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 10 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 10 / 71

Predicate CPA: Abstract Domain

▶ Abstract state: (ψ, φ)
▶ tuple of abstraction formula ψ and path formula φ

(for ABE)
▶ conjunction represents state space
▶ abstraction formula can be a BDD or an SMT formula
▶ path formula is always SMT formula and concrete

▶ Precision: set of predicates (per program location)

Dirk Beyer 11 / 71

Predicate CPA: Abstract Domain

▶ Abstract state: (ψ, φ)
▶ tuple of abstraction formula ψ and path formula φ

(for ABE)
▶ conjunction represents state space
▶ abstraction formula can be a BDD or an SMT formula
▶ path formula is always SMT formula and concrete

▶ Precision: set of predicates (per program location)

Dirk Beyer 11 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 12 / 71

Predicate CPA: CPA Operators
▶ Transfer relation:

▶ computes strongest post
▶ changes only path formula, new abstract state is (ψ,φ′)
▶ purely syntactic, cheap
▶ variety of encodings using different SMT theories possible

(different approximations
for arithmetic and heap operations)

▶ Merge operator:

▶ standard for ABE: create disjunctions inside block

▶ Stop operator:

▶ standard for ABE: check coverage only at block ends

▶ Precision-adjustment operator:

▶ only active at block ends (as determined by blk)
▶ computes abstraction of current abstract state
▶ new abstract state is (ψ′, true)

Dirk Beyer 13 / 71

Predicate CPA: CPA Operators
▶ Transfer relation:

▶ computes strongest post
▶ changes only path formula, new abstract state is (ψ,φ′)
▶ purely syntactic, cheap
▶ variety of encodings using different SMT theories possible

(different approximations
for arithmetic and heap operations)

▶ Merge operator:
▶ standard for ABE: create disjunctions inside block

▶ Stop operator:

▶ standard for ABE: check coverage only at block ends

▶ Precision-adjustment operator:

▶ only active at block ends (as determined by blk)
▶ computes abstraction of current abstract state
▶ new abstract state is (ψ′, true)

Dirk Beyer 13 / 71

Predicate CPA: CPA Operators
▶ Transfer relation:

▶ computes strongest post
▶ changes only path formula, new abstract state is (ψ,φ′)
▶ purely syntactic, cheap
▶ variety of encodings using different SMT theories possible

(different approximations
for arithmetic and heap operations)

▶ Merge operator:
▶ standard for ABE: create disjunctions inside block

▶ Stop operator:
▶ standard for ABE: check coverage only at block ends

▶ Precision-adjustment operator:

▶ only active at block ends (as determined by blk)
▶ computes abstraction of current abstract state
▶ new abstract state is (ψ′, true)

Dirk Beyer 13 / 71

Predicate CPA: CPA Operators
▶ Transfer relation:

▶ computes strongest post
▶ changes only path formula, new abstract state is (ψ,φ′)
▶ purely syntactic, cheap
▶ variety of encodings using different SMT theories possible

(different approximations
for arithmetic and heap operations)

▶ Merge operator:
▶ standard for ABE: create disjunctions inside block

▶ Stop operator:
▶ standard for ABE: check coverage only at block ends

▶ Precision-adjustment operator:
▶ only active at block ends (as determined by blk)
▶ computes abstraction of current abstract state
▶ new abstract state is (ψ′, true)

Dirk Beyer 13 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 14 / 71

Predicate CPA: Refinement

Four steps:
1. Reconstruct ARG path to abstract error state
2. Check feasibility of path
3. Discover abstract facts, e.g.,

▶ interpolants
▶ weakest precondition
▶ heuristics

4. Refine abstract model
▶ add predicates to precision, cut ARG

or
▶ conjoin interpolants to abstract states,

recheck coverage relation

Dirk Beyer 15 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 16 / 71

Predicate Abstraction

▶ Predicate Abstraction
▶ [5, CAV ’97], [7, POPL ’02], [6, POPL ’04]
▶ Abstract-interpretation technique
▶ Abstract domain constructed from a set of predicates π
▶ Use CEGAR to add predicates to π (refinement)

[4, J. ACM ’03]
▶ Derive new predicates using Craig interpolation
▶ Abstraction formula as BDD

Dirk Beyer 17 / 71

Expressing Predicate Abstraction

▶ Abstraction Formulas: BDDs
▶ Block Size (blk): e.g. blkSBE or blkl or blklf

▶ Refinement Strategy: add predicates to precision, cut ARG
Use CEGAR Algorithm:

1: while true do
2: run CPA Algorithm
3: if target state found then
4: call refine
5: if target state reachable then
6: return false
7: else
8: return true

Dirk Beyer 18 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 19 / 71

Example Program

1 i n t main () {
2 unsigned in t x = 0 ;
3 unsigned in t y = 0 ;
4 while (x < 2) {
5 x++;
6 y++;
7 i f (x != y) {
8 ERROR: return 1 ;
9 }

10 }
11 return 0 ;
12 }

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

Dirk Beyer 20 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 21 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, x0 = 0 ∧ y0 = 0))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬¬(x1 = y1)))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by

Dirk Beyer 22 / 71

Impact

▶ Impact
▶ "Lazy Abstraction with Interpolants" [10, CAV ’06]
▶ Abstraction is derived dynamically/lazily
▶ Solution to avoiding expensive abstraction computations
▶ Compute fixed point over three operations

▶ Expand
▶ Refine
▶ Cover

▶ Abstraction formula as SMT formula
▶ Optimization: forced covering

Dirk Beyer 23 / 71

Expressing Impact

▶ Abstraction Formulas: SMT-based
▶ Block Size (blk): blkSBE or other (new!)
▶ Refinement Strategy:

conjoin interpolants to abstract states,
recheck coverage relation

Furthermore:
▶ Use CEGAR Algorithm
▶ Precision stays empty

→ predicate abstraction never computed

Dirk Beyer 24 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 25 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 26 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, x0 = 0 ∧ y0 = 0))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬¬(x1 = y1)))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (x = y, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (false, true))

covered by

Dirk Beyer 27 / 71

Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (x = y, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (false, true))

covered by

Dirk Beyer 27 / 71

Bounded Model Checking

▶ Bounded Model Checking:
▶ Biere, Cimatti, Clarke, Zhu: [3, TACAS ’99]
▶ No abstraction
▶ Unroll loops up to a loop bound k
▶ Check that P holds in the first k iterations:

k∧
i=1
P (i)

Dirk Beyer 28 / 71

Expressing BMC

▶ Block Size (blk): blknever

Furthermore:
▶ Add CPA for bounding state space (e.g., loop bounds)
▶ Choices for abstraction formulas and refinement irrelevant

because block end never encountered
▶ Use Algorithm for iterative BMC:

1: k = 1
2: while !finished do
3: run CPA Algorithm
4: check feasibility of each abstract error state
5: k++

Dirk Beyer 29 / 71

Predicate CPA
Predicate CPA P

DP =
(C, EP, [[·]]P) ΠP ⇝P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Abstraction-Formula
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Dirk Beyer 30 / 71

Bounded Model Checking: Example with k = 1
l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0), {l4 7→ −1})

e2: (l4, (true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l11, (true, x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2)), {l4 7→ 0})

e4: (l12, (true, x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2)), {l4 7→ 0})

e5: (l5, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2), {l4 7→ 0})

e6: (l6, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1), {l4 7→ 0})

e7: (l7, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1), {l4 7→ 0})

e8: (l8, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e9: (l12, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e10: (l4, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

Dirk Beyer 31 / 71

1-Induction

▶ 1-Induction:
▶ Base case: Check that the safety property holds in the

first loop iteration:
P (1)

→ Equivalent to BMC with loop bound 1
▶ Step case: Check that the safety property is 1-inductive:

∀n : (P (n) ⇒ P (n+ 1))

Dirk Beyer 32 / 71

k-Induction

▶ k-Induction generalizes the induction principle:
▶ No abstraction
▶ Base case: Check that P holds in the first k iterations:

→ Equivalent to BMC with loop bound k
▶ Step case: Check that the safety property is k-inductive:

∀n :
((

k∧
i=1
P (n+ i− 1)

)
⇒ P (n+ k)

)

▶ Stronger hypothesis is more likely to succeed
▶ Add auxiliary invariants
▶ Kahsai, Tinelli: [8, PDMC ’11]

Dirk Beyer 33 / 71

k-Induction with Auxiliary Invariants

Induction:
1: k = 1
2: while !finished do
3: BMC(k)
4: Induction(k, invariants)
5: k++

Invariant generation:
1: prec = <weak>
2: invariants = ∅
3: while !finished do
4: invariants = GenInv(prec)
5: prec = RefinePrec(prec)

Dirk Beyer 34 / 71

k-Induction: Example with k = 1 (and loop bound k + 1 = 2)
e0: (l4, (true, true), {l4 7→ 0})

e1: (l11, (true,¬(x0 < 2)), {l4 7→ 0})

e2: (l12, (true,¬(x0 < 2)), {l4 7→ 0})

e3: (l5, (true, x0 < 2), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1), {l4 7→ 0})

e5: (l7, (true,∧x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1), {l4 7→ 0})

e6: (l8, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e7: (l12, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e8: (l4, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l11, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 7→ 1})

e10: (l12, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 7→ 1})

e11: (l5, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2), {l4 7→ 1})

e12: (l6, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1), {l4 7→ 1})

e13: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1), {l4 7→ 1})

e14: (l8, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

e15: (l12, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

e16: (l4, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2))), {l4 7→ 2})

Dirk Beyer 35 / 71

Interpolation and SAT-Based Model Checking

▶ McMillan: [9, CAV ’03]
▶ Interpolation-based model checking (IMC)

▶ Construct fixed points by interpolants derived from
unsatisfiable BMC queries

▶ Originally designed for finite-state systems (circuit);
recently adopted for programs

Dirk Beyer 36 / 71

Expressing IMC

▶ Block Size (blk): blkl

Furthermore:
▶ Use block formulas to partition BMC queries

▶ Already recorded in predicate abstract state: (ψ,φ, σ)
▶ IMC algorithm (on top of CPA Algorithm):

1: k = 1
2: while !finished do
3: run CPA Algorithm
4: check feasibility of each abstract error state
5: partition unsatisfiable BMC queries
6: construct fixed points by interpolants
7: k++

Dirk Beyer 37 / 71

IMC: Example (error path to l8 with one loop unrolling)
l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]
e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l5, (true, x0 < 2, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l5, (true, x0 < 2, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

Dirk Beyer 38 / 71

IMC: Example (error path to l8 with one loop unrolling)
e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l5, (true, x0 < 2, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))︸ ︷︷ ︸
Formula A

∧

x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)︸ ︷︷ ︸
Formula B

interpolant: x1 = y1

Dirk Beyer 38 / 71

IMC: Example (error path to l8 with one loop unrolling)
e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l5, (true, x0 < 2, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

x0 = y0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))︸ ︷︷ ︸
Formula A

∧

x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)︸ ︷︷ ︸
Formula B

fixed point x = y reached

Dirk Beyer 38 / 71

Insights

▶ BMC naturally follows by increasing block size
to whole (bounded) program

▶ Difference between predicate abstraction and Impact:

▶ BDDs vs. SMT-based formulas:
costly abstractions vs. costly coverage checks

▶ Recompute ARG vs. rechecking coverage
▶ We know that only these differences are relevant!
▶ Predicate abstraction pays for creating more general

abstract model
▶ Impact is lazier but this can lead to many refinements

→ forced covering or large blocks help

Dirk Beyer 39 / 71

Insights

▶ BMC naturally follows by increasing block size
to whole (bounded) program

▶ Difference between predicate abstraction and Impact:
▶ BDDs vs. SMT-based formulas:

costly abstractions vs. costly coverage checks
▶ Recompute ARG vs. rechecking coverage
▶ We know that only these differences are relevant!
▶ Predicate abstraction pays for creating more general

abstract model
▶ Impact is lazier but this can lead to many refinements

→ forced covering or large blocks help

Dirk Beyer 39 / 71

Evaluation: Usefulness of Framework

▶ 5 existing approaches successfully integrated
▶ Ongoing projects for integration of further approaches
▶ Interesting insights learned about these approaches
▶ High configurability allows new combinations and hybrid

approaches
▶ Already used as base for other successful research projects

Dirk Beyer 40 / 71

Evaluation: Usefulness of Implementation

▶ Used in other research projects

▶ Used as part of many
SV-COMP submissions,
27 gold medals

▶ Also competitive stand-alone

▶ Awarded Gödel medal
by Kurt Gödel Society

Dirk Beyer 41 / 71

Comparison with SV-COMP’17 Verifiers

▶ 5 594 verification tasks from SV-COMP’17
(only reachability, without recursion and concurrency)

▶ 15 min time limit per task (CPU time)
▶ 15 GB memory limit
▶ Measured with BenchExec
▶ Comparison of

▶ 4 configurations of CPAchecker with Predicate CPA:
BMC, k-induction, Impact, predicate abstraction

▶ 16 participants of SV-COMP’17

Dirk Beyer 42 / 71

Comparison with SV-COMP’17 Verifiers: Results

Number of correctly solved tasks:
▶ Each configuration of Predicate CPA

beats other tools with same approach
▶ Only 3 tools beat Predicate CPA with k-induction:

▶ Smack: guesses results
▶ CPA-BAM-BnB, CPA-Seq:

based on Predicate CPA as well

Number of wrong results:
▶ Comparable with other tools
▶ No wrong proofs (sound)

Dirk Beyer 43 / 71

Comparison with SV-COMP’17 Verifiers: Results

Number of correctly solved tasks:
▶ Each configuration of Predicate CPA

beats other tools with same approach
▶ Only 3 tools beat Predicate CPA with k-induction:

▶ Smack: guesses results
▶ CPA-BAM-BnB, CPA-Seq:

based on Predicate CPA as well

Number of wrong results:
▶ Comparable with other tools
▶ No wrong proofs (sound)

Dirk Beyer 43 / 71

Comparison with SV-COMP’17 Verifiers

1

10

100

1 000

C
P

U
ti

m
e

(s
)

SV-COMP’17
CPA-BAM-BnB
CPA-KInd
CPA-Seq
Cbmc
DepthK
Esbmc
Esbmc-KInd
Smack
Ultimate Automizer

Predicate CPA
(MathSAT5 QF_UFBVFP)
BMC
k -Induction
Impact

Predicate Abstraction

0 500 1 000 1 500 2 000 2 500 3 000 3 500
0

n-th fastest correct result

Dirk Beyer 44 / 71

Evaluation: Enabling Experimental Studies

▶ Comparison of algorithms
across different program categories
[VSTTE’16, JAR]

▶ SMT solvers for various theories and algorithms

Dirk Beyer 45 / 71

Experimental Comparison of Algorithms

▶ 5 287 verification tasks from SV-COMP’17
▶ 15 min time limit per task (CPU time)
▶ 15 GB memory limit
▶ Measured with BenchExec

Dirk Beyer 46 / 71

All 3 913 bug-free tasks

0 500 1 000 1 500 2 000
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 47 / 71

All 1 374 tasks with known bugs

0 100 200 300 400
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 48 / 71

Category Device Drivers

▶ Several thousands LOC per task
▶ Complex structures
▶ Pointer arithmetics

Dirk Beyer 49 / 71

Category Device Drivers: 2 440 bug-free tasks

0 200 400 600 800 1 000 1 200 1 400
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 50 / 71

Category Device Drivers: 355 tasks with known bugs

0 5 10 15 20 25 30 35
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 51 / 71

Category Event Condition Action Systems (ECA)
▶ Several thousand LOC per task
▶ Auto-generated
▶ Only integer variables
▶ Linear and non-linear arithmetics
▶ Complex and dense control structure

if (((a24==3) && (((a18==10) && ((input == 6)
&& ((115 < a3) && (306 >= a3))))
&& (a15==4)))) {

a3 = (((a3 ∗ 5) + −583604) ∗ 1);
a24 = 0;
a18 = 8;
return −1;

}

Dirk Beyer 52 / 71

Category Event Condition Action Systems (ECA)
▶ Several thousand LOC per task
▶ Auto-generated
▶ Only integer variables
▶ Linear and non-linear arithmetics
▶ Complex and dense control structure

if (((a24==3) && (((a18==10) && ((input == 6)
&& ((115 < a3) && (306 >= a3))))
&& (a15==4)))) {

a3 = (((a3 ∗ 5) + −583604) ∗ 1);
a24 = 0;
a18 = 8;
return −1;

}

Dirk Beyer 52 / 71

Category ECA: 738 bug-free tasks

0 100 200 300 400
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 53 / 71

Category ECA: 411 tasks with known bugs

▶ Only BMC and k-Induction solve 1 task
(the same one for both)

▶ Impact and Predicate Abstraction solve none

Dirk Beyer 54 / 71

Category Product Lines

▶ Several hundred LOC
▶ Mostly integer variables, some structs
▶ Mostly simple linear arithmetics
▶ Lots of property-independent code

Dirk Beyer 55 / 71

Category Product Lines: 332 bug-free tasks

0 50 100 150 200 250 300 350
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 56 / 71

Category Product Lines: 265 tasks with known bugs

0 20 40 60 80 100 120 140
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 57 / 71

Recent Evaluation including IMC

▶ CPAchecker revision 40806
▶ Interpolants provided by MathSAT5
▶ Compared algorithms

▶ IMC
▶ PDR
▶ BMC
▶ k-Induction
▶ Predicate abstraction
▶ Impact

▶ Subset of ReachSafety from SV-COMP ’22
▶ Safe: 4234 tasks
▶ Unsafe: 1793 tasks

Dirk Beyer 58 / 71

Quantile Plot: Safe Tasks

0 500 1 000 1 500 2 000
1

10

100

1 000

n-th fastest correct proofs

C
P
U

ti
m
e
(s
)

IMC PDR

BMC k-Induction

Predicate Abstraction Impact

Dirk Beyer 59 / 71

Quantile Plot: Unsafe Tasks

0 200 400 600 800 1 000 1 200
1

10

100

1 000

n-th fastest correct alarms

C
P
U

ti
m
e
(s
)

IMC PDR

BMC k-Induction

Predicate Abstraction Impact

Dirk Beyer 60 / 71

Experimental Comparison of Algorithms: Summary

We reconfirm that
▶ BMC is a good bug hunter
▶ k-Induction is a heavy-weight proof technique:

effective, but costly
▶ CEGAR makes abstraction techniques

(Predicate Abstraction, Impact) scalable
▶ Impact is lazy:

explores the state space and finds bugs quicker
▶ Predicate Abstraction is eager:

prunes irrelevant parts and finds proofs quicker
▶ IMC is competitive among polished SV approaches

Dirk Beyer 61 / 71

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

(A)

k-Induction

solves 29 % more tasks
Z3

with bitprecise arithmetic

(B)

Predicate Abstraction

solves 3 % more tasks
MathSAT5

with linear arithmetic

Depending on configuration, either (A) or (B) can be true!

Technical details (e.g., choice of SMT theory)
influence evaluation of algorithms

Dirk Beyer 62 / 71

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

(A)
k-Induction

solves 29 % more tasks

Z3
with bitprecise arithmetic

(B)
Predicate Abstraction
solves 3 % more tasks

MathSAT5
with linear arithmetic

Depending on configuration, either (A) or (B) can be true!

Technical details (e.g., choice of SMT theory)
influence evaluation of algorithms

Dirk Beyer 62 / 71

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

(A)
k-Induction

solves 29 % more tasks
Z3

with bitprecise arithmetic

(B)
Predicate Abstraction
solves 3 % more tasks

MathSAT5
with linear arithmetic

Depending on configuration, either (A) or (B) can be true!

Technical details (e.g., choice of SMT theory)
influence evaluation of algorithms

Dirk Beyer 62 / 71

Comparison of SMT Solvers and Theories

▶ Which SMT solver should we use in a verifier?
▶ Which formula encoding?
▶ Which of these should we use for benchmarks in papers?

▶ Large study made possible by our framework
▶ Produced some interesting insights
▶ Resulted in change of default configuration of CPAchecker

▶ Comparison using CPAchecker and Predicate CPA
▶ 5 594 verification tasks from SV-COMP’17
▶ 15 min time limit (CPU time), 15 GB memory limit
▶ Measured with BenchExec

Dirk Beyer 63 / 71

Comparison of SMT Solvers and Theories

▶ Which SMT solver should we use in a verifier?
▶ Which formula encoding?
▶ Which of these should we use for benchmarks in papers?
▶ Large study made possible by our framework
▶ Produced some interesting insights
▶ Resulted in change of default configuration of CPAchecker

▶ Comparison using CPAchecker and Predicate CPA
▶ 5 594 verification tasks from SV-COMP’17
▶ 15 min time limit (CPU time), 15 GB memory limit
▶ Measured with BenchExec

Dirk Beyer 63 / 71

Comparison of SMT Solvers and Theories

▶ Which SMT solver should we use in a verifier?
▶ Which formula encoding?
▶ Which of these should we use for benchmarks in papers?
▶ Large study made possible by our framework
▶ Produced some interesting insights
▶ Resulted in change of default configuration of CPAchecker

▶ Comparison using CPAchecker and Predicate CPA
▶ 5 594 verification tasks from SV-COMP’17
▶ 15 min time limit (CPU time), 15 GB memory limit
▶ Measured with BenchExec

Dirk Beyer 63 / 71

SMT Study: 120 Configurations

BMC k-Induction Impact Pred. Abs
Ś

MathSAT5 Princess SMTInterpol Z3
Ś

Bitprecise Linear Linear unsound
Ś

with Quantifiers Quantifier-free
Ś

Arrays UFs

Dirk Beyer 64 / 71

Point of View: SMT Solvers

▶ Princess is never competitive
▶ Interpolation in Z3 is unmaintained since 2015
▶ Bitvector interpolation in Z3 produces up to 24 % crashes
▶ MathSAT5 has known interpolation problem for bitvectors,

but problem occurs rarely

Dirk Beyer 65 / 71

Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)

▶ Correctness as expected:
BV > sound LIRA > unsound LIRA

▶ Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA

▶ Effectivity for MathSAT5:
sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.
⇒ Sound LIRA encoding rarely makes sense.

Dirk Beyer 66 / 71

Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)
▶ Correctness as expected:

BV > sound LIRA > unsound LIRA

▶ Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA

▶ Effectivity for MathSAT5:
sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.
⇒ Sound LIRA encoding rarely makes sense.

Dirk Beyer 66 / 71

Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)
▶ Correctness as expected:

BV > sound LIRA > unsound LIRA
▶ Effectivity for Z3 as expected:

BV < sound LIRA < unsound LIRA

▶ Effectivity for MathSAT5:
sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.
⇒ Sound LIRA encoding rarely makes sense.

Dirk Beyer 66 / 71

Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)
▶ Correctness as expected:

BV > sound LIRA > unsound LIRA
▶ Effectivity for Z3 as expected:

BV < sound LIRA < unsound LIRA
▶ Effectivity for MathSAT5:

sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.

⇒ Sound LIRA encoding rarely makes sense.

Dirk Beyer 66 / 71

Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)
▶ Correctness as expected:

BV > sound LIRA > unsound LIRA
▶ Effectivity for Z3 as expected:

BV < sound LIRA < unsound LIRA
▶ Effectivity for MathSAT5:

sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.

⇒ Sound LIRA encoding rarely makes sense.

Dirk Beyer 66 / 71

Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)
▶ Correctness as expected:

BV > sound LIRA > unsound LIRA
▶ Effectivity for Z3 as expected:

BV < sound LIRA < unsound LIRA
▶ Effectivity for MathSAT5:

sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.
⇒ Sound LIRA encoding rarely makes sense.

Dirk Beyer 66 / 71

Point of View: Algorithms

▶ Mostly, the best configurations of MathSAT5,
SMTInterpol, and Z3 are close for each algorithm
▶ Gives confidence for valid comparison of algorithm
▶ But outlier exists:

Z3 is worse than others for predicate abstraction

▶ Predicate abstraction and Impact suffer most from
disjunctions of sound LIRA encoding.

Dirk Beyer 67 / 71

Point of View: Algorithms

▶ Mostly, the best configurations of MathSAT5,
SMTInterpol, and Z3 are close for each algorithm
▶ Gives confidence for valid comparison of algorithm
▶ But outlier exists:

Z3 is worse than others for predicate abstraction
▶ Predicate abstraction and Impact suffer most from

disjunctions of sound LIRA encoding.

Dirk Beyer 67 / 71

Point of View: Arrays and Quantifiers

▶ Little difference with/without arrays/quantifiers
⇒ Arrays don’t hurt

(though this might change
once more complex array predicates are used)

▶ But quantifiers restrict solver choice
(Princess and Z3)

Dirk Beyer 68 / 71

Point of View: Arrays and Quantifiers

▶ Little difference with/without arrays/quantifiers
⇒ Arrays don’t hurt

(though this might change
once more complex array predicates are used)

▶ But quantifiers restrict solver choice
(Princess and Z3)

Dirk Beyer 68 / 71

SMT Study: Final Conclusions

▶ Choice of theories, solver, and encoding details affects
comparisons of algorithms!

▶ For now:
use MathSAT5 with bitvectors and arrays if possible
▶ Possible problems for users: license, native binary
▶ Next-best choice:

SMTInterpol with unsound linear arithmetic
▶ No improvement of situation in sight

Dirk Beyer 69 / 71

References I
[1] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software

verification. J. Autom. Reasoning 60(3), 299–335 (2018).
https://doi.org/10.1007/s10817-017-9432-6

[2] Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007).
https://doi.org/10.1007/978-3-540-73368-3_51

[3] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0_14

[4] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

[5] Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV.
pp. 72–83. LNCS 1254, Springer (1997).
https://doi.org/10.1007/3-540-63166-6_10

[6] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004).
https://doi.org/10.1145/964001.964021

Dirk Beyer 70 / 71

https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/964001.964021

References II

[7] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL. pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

[8] Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp.
55–62. EPTCS 72, EPTCS (2011). https://doi.org/10.4204/EPTCS.72.6

[9] McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp.
1–13. LNCS 2725, Springer (2003).
https://doi.org/10.1007/978-3-540-45069-6_1

[10] McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136.
LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

Dirk Beyer 71 / 71

https://doi.org/10.1145/503272.503279
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14

