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SMT-based Software Model Checking

▶ Predicate Abstraction
(Blast, CPAchecker, Slam, ...)

▶ Impact
(CPAchecker, Impact, Wolverine, ...)

▶ Bounded Model Checking
(Cbmc, CPAchecker, Esbmc, ...)

▶ k-Induction
(CPAchecker, Esbmc, 2ls, ...)

▶ New: Interpolation-based model checking
(CPAchecker)
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Motivation

▶ Theoretical comparison difficult:
▶ different conceptual optimizations

(e.g., large-block encoding)
▶ different presentation

→ What are their core concepts and key differences?

▶ Experimental comparison difficult:
▶ implemented in different tools
▶ different technical optimizations (e.g., data structures)
▶ different front-end and utility code
▶ different SMT solver

→ Where do performance differences actually come from?
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Goals

▶ Provide a unifying framework for SMT-based algorithms
▶ Understand differences and key concepts of algorithms
▶ Determine potential of extensions and combinations
▶ Provide solid platform for experimental research
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Approach

▶ Understand, and, if necessary, re-formulate the algorithms
▶ Design a configurable framework for SMT-based algorithms

(based upon the CPA framework)
▶ Use flexibility of adjustable-block encoding (ABE)
▶ Express existing algorithms using the common framework
▶ Implement framework (in CPAchecker)
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Base: Adjustable-Block Encoding

Originally for predicate abstraction:
▶ Abstraction computation is expensive
▶ Abstraction is not necessary after every transition
▶ Track precise path formula between abstraction states
▶ Reset path formula and compute abstraction formula at

abstraction states
▶ Large-Block Encoding:

abstraction only at loop heads (hard-coded)
▶ Adjustable-Block Encoding:

introduce block operator "blk" to make it configurable
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Base: Configurable Program Analysis

Configurable Program Analysis (CPA):
▶ Beyer, Henzinger, Théoduloz: [2, CAV ’07]
▶ One single unifying algorithm for all algorithms based on

state-space exploration
▶ Configurable components: abstract domain,

abstract-successor computation, path sensitivity, ...
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Using the CPA Framework
▶ CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains

▶ Provide Predicate CPA for our predicate-based abstract domain
▶ Reuse other CPAs
▶ Build further algorithms on top

that make use of reachability analysis

Source
Code

Spec

ResultsParser &
CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Loop-Bound
CPA

Predicate
CPA
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Predicate CPA: Abstract Domain

▶ Abstract state: (ψ, φ)
▶ tuple of abstraction formula ψ and path formula φ

(for ABE)
▶ conjunction represents state space
▶ abstraction formula can be a BDD or an SMT formula
▶ path formula is always SMT formula and concrete

▶ Precision: set of predicates (per program location)
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Predicate CPA: CPA Operators
▶ Transfer relation:

▶ computes strongest post
▶ changes only path formula, new abstract state is (ψ,φ′)
▶ purely syntactic, cheap
▶ variety of encodings using different SMT theories possible

(different approximations
for arithmetic and heap operations)

▶ Merge operator:

▶ standard for ABE: create disjunctions inside block

▶ Stop operator:

▶ standard for ABE: check coverage only at block ends

▶ Precision-adjustment operator:

▶ only active at block ends (as determined by blk)
▶ computes abstraction of current abstract state
▶ new abstract state is (ψ′, true)
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Predicate CPA: Refinement

Four steps:
1. Reconstruct ARG path to abstract error state
2. Check feasibility of path
3. Discover abstract facts, e.g.,

▶ interpolants
▶ weakest precondition
▶ heuristics

4. Refine abstract model
▶ add predicates to precision, cut ARG

or
▶ conjoin interpolants to abstract states,

recheck coverage relation
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Predicate Abstraction

▶ Predicate Abstraction
▶ [5, CAV ’97], [7, POPL ’02], [6, POPL ’04]
▶ Abstract-interpretation technique
▶ Abstract domain constructed from a set of predicates π
▶ Use CEGAR to add predicates to π (refinement)

[4, J. ACM ’03]
▶ Derive new predicates using Craig interpolation
▶ Abstraction formula as BDD
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Expressing Predicate Abstraction

▶ Abstraction Formulas: BDDs
▶ Block Size (blk): e.g. blkSBE or blkl or blklf

▶ Refinement Strategy: add predicates to precision, cut ARG
Use CEGAR Algorithm:

1: while true do
2: run CPA Algorithm
3: if target state found then
4: call refine
5: if target state reachable then
6: return false
7: else
8: return true
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Example Program

1 i n t main ( ) {
2 unsigned in t x = 0 ;
3 unsigned in t y = 0 ;
4 while ( x < 2) {
5 x++;
6 y++;
7 i f ( x != y ) {
8 ERROR: return 1 ;
9 }

10 }
11 return 0 ;
12 }

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]
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Predicate Abstraction: Example
with blkl, π(l4) = {x = y} and π(l8) = {false}

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by
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unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (x = y,¬(x0 < 2)))

e4: (l12, (x = y,¬(x0 < 2)))

e5: (l5, (x = y, x0 < 2))

e6: (l6, (x = y, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (x = y, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l4, (x = y, true))

e9: (l8, (false, true))

covered by
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Impact

▶ Impact
▶ "Lazy Abstraction with Interpolants" [10, CAV ’06]
▶ Abstraction is derived dynamically/lazily
▶ Solution to avoiding expensive abstraction computations
▶ Compute fixed point over three operations

▶ Expand
▶ Refine
▶ Cover

▶ Abstraction formula as SMT formula
▶ Optimization: forced covering
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Expressing Impact

▶ Abstraction Formulas: SMT-based
▶ Block Size (blk): blkSBE or other (new!)
▶ Refinement Strategy:

conjoin interpolants to abstract states,
recheck coverage relation

Furthermore:
▶ Use CEGAR Algorithm
▶ Precision stays empty

→ predicate abstraction never computed
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Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, x0 = 0 ∧ y0 = 0))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by
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Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))

covered by
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Impact: Example
with blkl

l2start

l3
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l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl

l2start

l3
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l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl
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unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (true, true))

e3: (l11, (true,¬(x0 < 2)))
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e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))
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e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (true, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl
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unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl
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unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬¬(x1 = y1)))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl

l2start

l3
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l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)))
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Impact: Example
with blkl

l2start

l3
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unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;
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[x != y]

ERROR: return 1;
return 0;

[!(x != y)]
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e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (true, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (true, true))
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Impact: Example
with blkl
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unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]
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e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (x = y, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (false, true))
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Impact: Example
with blkl

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true))

e1: (l3, (true, x0 = 0))

e2: (l4, (x = y, true))

e3: (l11, (true,¬(x0 < 2)))

e4: (l12, (true,¬(x0 < 2)))

e5: (l5, (true, x0 < 2))

e6: (l6, (true, x0 < 2 ∧ x1 = x0 + 1))

e7: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1))

e8: (l8, (false, true))

e9: (l4, (x = y, true))

e10: (l5, (true, x1 < 2))

e11: (l6, (true, x1 < 2 ∧ x2 = x1 + 1))

e12: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1))

e13: (l8, (false, true))

covered by
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Bounded Model Checking

▶ Bounded Model Checking:
▶ Biere, Cimatti, Clarke, Zhu: [3, TACAS ’99]
▶ No abstraction
▶ Unroll loops up to a loop bound k
▶ Check that P holds in the first k iterations:

k∧
i=1
P (i)
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Expressing BMC

▶ Block Size (blk): blknever

Furthermore:
▶ Add CPA for bounding state space (e.g., loop bounds)
▶ Choices for abstraction formulas and refinement irrelevant

because block end never encountered
▶ Use Algorithm for iterative BMC:

1: k = 1
2: while !finished do
3: run CPA Algorithm
4: check feasibility of each abstract error state
5: k++
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Bounded Model Checking: Example with k = 1
l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]

e0: (l2, (true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0), {l4 7→ −1})

e2: (l4, (true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l11, (true, x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2)), {l4 7→ 0})

e4: (l12, (true, x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2)), {l4 7→ 0})

e5: (l5, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2), {l4 7→ 0})

e6: (l6, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1), {l4 7→ 0})

e7: (l7, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1), {l4 7→ 0})

e8: (l8, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e9: (l12, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e10: (l4, (true, x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})
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1-Induction

▶ 1-Induction:
▶ Base case: Check that the safety property holds in the

first loop iteration:
P (1)

→ Equivalent to BMC with loop bound 1
▶ Step case: Check that the safety property is 1-inductive:

∀n : (P (n) ⇒ P (n+ 1))
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k-Induction

▶ k-Induction generalizes the induction principle:
▶ No abstraction
▶ Base case: Check that P holds in the first k iterations:

→ Equivalent to BMC with loop bound k
▶ Step case: Check that the safety property is k-inductive:

∀n :
((

k∧
i=1
P (n+ i− 1)

)
⇒ P (n+ k)

)

▶ Stronger hypothesis is more likely to succeed
▶ Add auxiliary invariants
▶ Kahsai, Tinelli: [8, PDMC ’11]
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k-Induction with Auxiliary Invariants

Induction:
1: k = 1
2: while !finished do
3: BMC(k)
4: Induction(k, invariants)
5: k++

Invariant generation:
1: prec = <weak>
2: invariants = ∅
3: while !finished do
4: invariants = GenInv(prec)
5: prec = RefinePrec(prec)
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k-Induction: Example with k = 1 (and loop bound k + 1 = 2)
e0: (l4, (true, true), {l4 7→ 0})

e1: (l11, (true,¬(x0 < 2)), {l4 7→ 0})

e2: (l12, (true,¬(x0 < 2)), {l4 7→ 0})

e3: (l5, (true, x0 < 2), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1), {l4 7→ 0})

e5: (l7, (true,∧x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1), {l4 7→ 0})

e6: (l8, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e7: (l12, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 7→ 0})

e8: (l4, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l11, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 7→ 1})

e10: (l12, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 7→ 1})

e11: (l5, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2), {l4 7→ 1})

e12: (l6, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1), {l4 7→ 1})

e13: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1), {l4 7→ 1})

e14: (l8, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

e15: (l12, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

e16: (l4, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2))), {l4 7→ 2})
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Interpolation and SAT-Based Model Checking

▶ McMillan: [9, CAV ’03]
▶ Interpolation-based model checking (IMC)

▶ Construct fixed points by interpolants derived from
unsatisfiable BMC queries

▶ Originally designed for finite-state systems (circuit);
recently adopted for programs

Dirk Beyer 36 / 71



Expressing IMC

▶ Block Size (blk): blkl

Furthermore:
▶ Use block formulas to partition BMC queries

▶ Already recorded in predicate abstract state: (ψ,φ, σ)
▶ IMC algorithm (on top of CPA Algorithm):

1: k = 1
2: while !finished do
3: run CPA Algorithm
4: check feasibility of each abstract error state
5: partition unsatisfiable BMC queries
6: construct fixed points by interpolants
7: k++
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IMC: Example (error path to l8 with one loop unrolling)
l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;
return 0;

[!(x != y)]
e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l5, (true, x0 < 2, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e3: (l5, (true, x0 < 2, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e4: (l6, (true, x0 < 2 ∧ x1 = x0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})
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IMC: Example (error path to l8 with one loop unrolling)
e0: (l2, (true, true, true), {l4 7→ −1})

e1: (l3, (true, x0 = 0, true), {l4 7→ −1})

e2: (l4, (true, true, x0 = 0 ∧ y0 = 0), {l4 7→ 0})
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e5: (l7, (true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1, x0 = 0 ∧ y0 = 0), {l4 7→ 0})

e6: (l4, (true, true, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e7: (l5, (true, x1 < 2, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e8: (l6, (true, x1 < 2 ∧ x2 = x1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e9: (l7, (true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 7→ 1})

e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))︸ ︷︷ ︸
Formula A

∧

x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)︸ ︷︷ ︸
Formula B

interpolant: x1 = y1
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e10: (l8, (true, true, x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 7→ 1})

x0 = y0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))︸ ︷︷ ︸
Formula A

∧

x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)︸ ︷︷ ︸
Formula B

fixed point x = y reached
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Insights

▶ BMC naturally follows by increasing block size
to whole (bounded) program

▶ Difference between predicate abstraction and Impact:

▶ BDDs vs. SMT-based formulas:
costly abstractions vs. costly coverage checks

▶ Recompute ARG vs. rechecking coverage
▶ We know that only these differences are relevant!
▶ Predicate abstraction pays for creating more general

abstract model
▶ Impact is lazier but this can lead to many refinements

→ forced covering or large blocks help

Dirk Beyer 39 / 71



Insights

▶ BMC naturally follows by increasing block size
to whole (bounded) program

▶ Difference between predicate abstraction and Impact:
▶ BDDs vs. SMT-based formulas:

costly abstractions vs. costly coverage checks
▶ Recompute ARG vs. rechecking coverage
▶ We know that only these differences are relevant!
▶ Predicate abstraction pays for creating more general

abstract model
▶ Impact is lazier but this can lead to many refinements

→ forced covering or large blocks help

Dirk Beyer 39 / 71



Evaluation: Usefulness of Framework

▶ 5 existing approaches successfully integrated
▶ Ongoing projects for integration of further approaches
▶ Interesting insights learned about these approaches
▶ High configurability allows new combinations and hybrid

approaches
▶ Already used as base for other successful research projects
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Evaluation: Usefulness of Implementation

▶ Used in other research projects

▶ Used as part of many
SV-COMP submissions,
27 gold medals

▶ Also competitive stand-alone

▶ Awarded Gödel medal
by Kurt Gödel Society
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Comparison with SV-COMP’17 Verifiers

▶ 5 594 verification tasks from SV-COMP’17
(only reachability, without recursion and concurrency)

▶ 15 min time limit per task (CPU time)
▶ 15 GB memory limit
▶ Measured with BenchExec
▶ Comparison of

▶ 4 configurations of CPAchecker with Predicate CPA:
BMC, k-induction, Impact, predicate abstraction

▶ 16 participants of SV-COMP’17
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Comparison with SV-COMP’17 Verifiers: Results

Number of correctly solved tasks:
▶ Each configuration of Predicate CPA

beats other tools with same approach
▶ Only 3 tools beat Predicate CPA with k-induction:

▶ Smack: guesses results
▶ CPA-BAM-BnB, CPA-Seq:

based on Predicate CPA as well

Number of wrong results:
▶ Comparable with other tools
▶ No wrong proofs (sound)
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Comparison with SV-COMP’17 Verifiers
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Evaluation: Enabling Experimental Studies

▶ Comparison of algorithms
across different program categories
[VSTTE’16, JAR]

▶ SMT solvers for various theories and algorithms
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Experimental Comparison of Algorithms

▶ 5 287 verification tasks from SV-COMP’17
▶ 15 min time limit per task (CPU time)
▶ 15 GB memory limit
▶ Measured with BenchExec
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All 3 913 bug-free tasks
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All 1 374 tasks with known bugs

0 100 200 300 400
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 48 / 71



Category Device Drivers

▶ Several thousands LOC per task
▶ Complex structures
▶ Pointer arithmetics
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Category Device Drivers: 2 440 bug-free tasks

0 200 400 600 800 1 000 1 200 1 400
1

10

100

1 000

Number of correctly solved tasks

CP
U

tim
e

(s
)

BMC

k-Induction

Predicate
Abstraction

Impact

Dirk Beyer 50 / 71



Category Device Drivers: 355 tasks with known bugs
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Category Event Condition Action Systems (ECA)
▶ Several thousand LOC per task
▶ Auto-generated
▶ Only integer variables
▶ Linear and non-linear arithmetics
▶ Complex and dense control structure

if (((a24==3) && (((a18==10) && ((input == 6)
&& ((115 < a3) && (306 >= a3))))
&& (a15==4)))) {

a3 = (((a3 ∗ 5) + −583604) ∗ 1);
a24 = 0;
a18 = 8;
return −1;

}
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Category ECA: 738 bug-free tasks
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Category ECA: 411 tasks with known bugs

▶ Only BMC and k-Induction solve 1 task
(the same one for both)

▶ Impact and Predicate Abstraction solve none
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Category Product Lines

▶ Several hundred LOC
▶ Mostly integer variables, some structs
▶ Mostly simple linear arithmetics
▶ Lots of property-independent code
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Category Product Lines: 332 bug-free tasks
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Category Product Lines: 265 tasks with known bugs
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Recent Evaluation including IMC

▶ CPAchecker revision 40806
▶ Interpolants provided by MathSAT5
▶ Compared algorithms

▶ IMC
▶ PDR
▶ BMC
▶ k-Induction
▶ Predicate abstraction
▶ Impact

▶ Subset of ReachSafety from SV-COMP ’22
▶ Safe: 4234 tasks
▶ Unsafe: 1793 tasks
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Quantile Plot: Safe Tasks
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Quantile Plot: Unsafe Tasks
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Experimental Comparison of Algorithms: Summary

We reconfirm that
▶ BMC is a good bug hunter
▶ k-Induction is a heavy-weight proof technique:

effective, but costly
▶ CEGAR makes abstraction techniques

(Predicate Abstraction, Impact) scalable
▶ Impact is lazy:

explores the state space and finds bugs quicker
▶ Predicate Abstraction is eager:

prunes irrelevant parts and finds proofs quicker
▶ IMC is competitive among polished SV approaches
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SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

(A)

k-Induction

solves 29 % more tasks
Z3

with bitprecise arithmetic

(B)

Predicate Abstraction

solves 3 % more tasks
MathSAT5

with linear arithmetic

Depending on configuration, either (A) or (B) can be true!

Technical details (e.g., choice of SMT theory)
influence evaluation of algorithms
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Comparison of SMT Solvers and Theories

▶ Which SMT solver should we use in a verifier?
▶ Which formula encoding?
▶ Which of these should we use for benchmarks in papers?

▶ Large study made possible by our framework
▶ Produced some interesting insights
▶ Resulted in change of default configuration of CPAchecker

▶ Comparison using CPAchecker and Predicate CPA
▶ 5 594 verification tasks from SV-COMP’17
▶ 15 min time limit (CPU time), 15 GB memory limit
▶ Measured with BenchExec
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SMT Study: 120 Configurations

BMC k-Induction Impact Pred. Abs
Ś

MathSAT5 Princess SMTInterpol Z3
Ś

Bitprecise Linear Linear unsound
Ś

with Quantifiers Quantifier-free
Ś

Arrays UFs
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Point of View: SMT Solvers

▶ Princess is never competitive
▶ Interpolation in Z3 is unmaintained since 2015
▶ Bitvector interpolation in Z3 produces up to 24 % crashes
▶ MathSAT5 has known interpolation problem for bitvectors,

but problem occurs rarely
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Point of View: Theories and Encodings

▶ Unsound linear encoding always the easiest (as expected)

▶ Correctness as expected:
BV > sound LIRA > unsound LIRA

▶ Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA

▶ Effectivity for MathSAT5:
sound LIRA < BV ≈ unsound LIRA
(but BV needs more CPU time)

▶ Effectivity for SMTInterpol:
sound LIRA ≪ unsound LIRA

⇒ MathSAT5 is really good with bitvectors.
⇒ Sound LIRA encoding rarely makes sense.
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Point of View: Algorithms

▶ Mostly, the best configurations of MathSAT5,
SMTInterpol, and Z3 are close for each algorithm
▶ Gives confidence for valid comparison of algorithm
▶ But outlier exists:

Z3 is worse than others for predicate abstraction

▶ Predicate abstraction and Impact suffer most from
disjunctions of sound LIRA encoding.
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Point of View: Arrays and Quantifiers

▶ Little difference with/without arrays/quantifiers
⇒ Arrays don’t hurt

(though this might change
once more complex array predicates are used)

▶ But quantifiers restrict solver choice
(Princess and Z3)
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SMT Study: Final Conclusions

▶ Choice of theories, solver, and encoding details affects
comparisons of algorithms!

▶ For now:
use MathSAT5 with bitvectors and arrays if possible
▶ Possible problems for users: license, native binary
▶ Next-best choice:

SMTInterpol with unsound linear arithmetic
▶ No improvement of situation in sight
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