A Unifying View on SMT-Based Software Verification

Dirk Beyer LMU Munich, Germany

Guest Lecture at RWTH Aachen, December 13, 2023

Based on [1]: Dirk Beyer, Matthias Dangl, Philipp Wendler:

A Unifying View on SMT-Based Software Verification

Journal of Automated Reasoning, Volume 60, Issue 3, 2018. https://doi.org/10.1007/s10817-017-9432-6

SMT-based Software Model Checking

- Predicate Abstraction (BLAST, CPACHECKER, SLAM, ...)
- ► Impact

(CPACHECKER, IMPACT, WOLVERINE, ...)

- Bounded Model Checking (CBMC, CPACHECKER, ESBMC, ...)
- k-Induction

(CPACHECKER, ESBMC, 2LS, ...)

 New: Interpolation-based model checking (CPACHECKER)

Motivation

► Theoretical comparison difficult:

- different conceptual optimizations (e.g., large-block encoding)
- different presentation

 \rightarrow What are their core concepts and key differences?

Motivation

Theoretical comparison difficult:

- different conceptual optimizations (e.g., large-block encoding)
- different presentation
- \rightarrow What are their core concepts and key differences?
- Experimental comparison difficult:
 - implemented in different tools
 - different technical optimizations (e.g., data structures)
 - different front-end and utility code
 - different SMT solver
 - \rightarrow Where do performance differences actually come from?

Goals

- Provide a unifying framework for SMT-based algorithms
- Understand differences and key concepts of algorithms
- Determine potential of extensions and combinations
- Provide solid platform for experimental research

Approach

- Understand, and, if necessary, re-formulate the algorithms
- Design a configurable framework for SMT-based algorithms (based upon the CPA framework)
- Use flexibility of adjustable-block encoding (ABE)
- Express existing algorithms using the common framework
- Implement framework (in CPACHECKER)

Base: Adjustable-Block Encoding

Originally for predicate abstraction:

- Abstraction computation is expensive
- Abstraction is not necessary after every transition
- Track precise path formula between abstraction states
- Reset path formula and compute abstraction formula at abstraction states
- Large-Block Encoding: abstraction only at loop heads (hard-coded)
- Adjustable-Block Encoding: introduce block operator "blk" to make it configurable

Base: Configurable Program Analysis

Configurable Program Analysis (CPA):

- Beyer, Henzinger, Théoduloz: [2, CAV '07]
- One single unifying algorithm for all algorithms based on state-space exploration
- Configurable components: abstract domain, abstract-successor computation, path sensitivity, ...

 CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain
- Reuse other CPAs

- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain
- Reuse other CPAs
- Build further algorithms on top that make use of reachability analysis

Predicate CPA

Predicate CPA

Predicate CPA: Abstract Domain

• Abstract state: (ψ, φ)

- tuple of abstraction formula ψ and path formula φ (for ABE)
- conjunction represents state space
- abstraction formula can be a BDD or an SMT formula
- path formula is always SMT formula and concrete

Predicate CPA: Abstract Domain

• Abstract state: (ψ, φ)

- tuple of abstraction formula ψ and path formula φ (for ABE)
- conjunction represents state space
- abstraction formula can be a BDD or an SMT formula
- path formula is always SMT formula and concrete
- Precision: set of predicates (per program location)

Predicate CPA

Transfer relation:

- computes strongest post
- changes only path formula, new abstract state is (ψ, φ')
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations

for arithmetic and heap operations)

Transfer relation:

- computes strongest post
- changes only path formula, new abstract state is (ψ, φ')
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations

for arithmetic and heap operations)

- Merge operator:
 - standard for ABE: create disjunctions inside block

Transfer relation:

- computes strongest post
- changes only path formula, new abstract state is (ψ, φ')
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
 - standard for ABE: create disjunctions inside block
- Stop operator:
 - standard for ABE: check coverage only at block ends

Transfer relation:

- computes strongest post
- \blacktriangleright changes only path formula, new abstract state is (ψ, φ')
- purely syntactic, cheap
- variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
 - standard for ABE: create disjunctions inside block
- Stop operator:
 - standard for ABE: check coverage only at block ends
- Precision-adjustment operator:
 - only active at block ends (as determined by blk)
 - computes abstraction of current abstract state
 - new abstract state is $(\psi', true)$

Predicate CPA

Predicate CPA: Refinement

Four steps:

- 1. Reconstruct ARG path to abstract error state
- 2. Check feasibility of path
- 3. Discover abstract facts, e.g.,
 - interpolants
 - weakest precondition
 - heuristics
- 4. Refine abstract model
 - add predicates to precision, cut ARG or
 - conjoin interpolants to abstract states, recheck coverage relation

Predicate CPA

Predicate Abstraction

Predicate Abstraction

- ▶ [5, CAV '97], [7, POPL '02], [6, POPL '04]
- Abstract-interpretation technique
- Abstract domain constructed from a set of predicates π
- Use CEGAR to add predicates to π (refinement)
 [4, J. ACM '03]
- Derive new predicates using Craig interpolation
- Abstraction formula as BDD

Expressing Predicate Abstraction

- Abstraction Formulas: BDDs
- Block Size (blk): e.g. blk^{SBE} or blk^{l} or blk^{lf}
- Refinement Strategy: add predicates to precision, cut ARG

Use CEGAR Algorithm:

- 1: while $true \ do$
- 2: run CPA Algorithm
- 3: if target state found then
- 4: call refine
- 5: **if** target state reachable **then**
- 6: **return** false
- 7: **else**
- 8: return *true*

Predicate CPA

Example Program

Predicate CPA

IMPACT

IMPACT

- "Lazy Abstraction with Interpolants" [10, CAV '06]
- Abstraction is derived dynamically/lazily
- Solution to avoiding expensive abstraction computations
- Compute fixed point over three operations
 - Expand
 - Refine
 - Cover
- Abstraction formula as SMT formula
- Optimization: forced covering

Expressing IMPACT

- Abstraction Formulas: SMT-based
- ▶ Block Size (blk): blk^{SBE} or other (new!)
- Refinement Strategy: conjoin interpolants to abstract states, recheck coverage relation

Furthermore:

- Use CEGAR Algorithm
- Precision stays empty
 - \rightarrow predicate abstraction never computed

Predicate CPA

Predicate CPA

Bounded Model Checking

Bounded Model Checking:

- Biere, Cimatti, Clarke, Zhu: [3, TACAS '99]
- No abstraction
- Unroll loops up to a loop bound k
- Check that P holds in the first k iterations:

$$\bigwedge_{i=1}^{k} P(i)$$

Expressing BMC

Block Size (blk): blk^{never}

Furthermore:

- Add CPA for bounding state space (e.g., loop bounds)
- Choices for abstraction formulas and refinement irrelevant because block end never encountered
- ► Use Algorithm for iterative BMC:
 - 1: k = 1
 - 2: while !finished do
 - 3: run CPA Algorithm
 - 4: check feasibility of each abstract error state
 - 5: *k*++

Predicate CPA

Bounded Model Checking: Example with k = 1

1-Induction

1-Induction:

Base case: Check that the safety property holds in the first loop iteration:

P(1)

 \rightarrow Equivalent to BMC with loop bound 1

Step case: Check that the safety property is 1-inductive:

$$\forall n: (P(n) \Rightarrow P(n+1))$$

k-Induction

k-Induction generalizes the induction principle:

- No abstraction
- ► Base case: Check that P holds in the first k iterations: → Equivalent to BMC with loop bound k
- Step case: Check that the safety property is *k*-inductive:

$$\forall n: \left(\left(\bigwedge_{i=1}^k P(n+i-1) \right) \Rightarrow P(n+k) \right)$$

- Stronger hypothesis is more likely to succeed
- Add auxiliary invariants
- Kahsai, Tinelli: [8, PDMC'11]

k-Induction with Auxiliary Invariants

Induction:

- 1: k = 1
- 2: while !finished do
- 3: BMC(k)
- 4: Induction(k, invariants)
- 5: k + +

Invariant generation:

- 1: $prec = \langle weak \rangle$
- 2: invariants = \emptyset
- 3: while !finished do
- 4: invariants = GenInv(prec)
- 5: prec = RefinePrec(prec)

*k***-Induction:** Example with k = 1 (and loop bound k + 1 = 2)

Interpolation and SAT-Based Model Checking

McMillan: [9, CAV '03]

Interpolation-based model checking (IMC)

- Construct fixed points by interpolants derived from unsatisfiable BMC queries
- Originally designed for finite-state systems (circuit); recently adopted for programs

Expressing IMC

Block Size (blk): blk^l

Furthermore:

- Use block formulas to partition BMC queries
 - ▶ Already recorded in predicate abstract state: (ψ, φ, σ)
- ▶ IMC algorithm (on top of CPA Algorithm):
 - 1: k = 1
 - 2: while !finished do
 - 3: run CPA Algorithm
 - 4: check feasibility of each abstract error state
 - 5: partition unsatisfiable BMC queries
 - 6: construct fixed points by interpolants
 - 7: *k*++

IMC: Example (error path to l_8 with one loop unrolling)

IMC: Example (error path to l_8 with one loop unrolling)

$$\underbrace{e_{0}: (l_{2}, (true, true, true), \{l_{4} \mapsto -1\})}_{(e_{1}: (l_{3}, (true, x_{0} = 0, true), \{l_{4} \mapsto -1\})}$$

$$\underbrace{e_{2}: (l_{4}, (true, true, x_{0} = 0, y_{0} = 0), \{l_{4} \mapsto 0\})}_{(e_{3}: (l_{5}, (true, x_{0} < 2, x_{1} = x_{0} + 1, x_{0} = 0 \land y_{0} = 0), \{l_{4} \mapsto 0\})}$$

$$\underbrace{e_{4}: (l_{6}, (true, x_{0} < 2 \land x_{1} = x_{0} + 1, x_{0} = 0 \land y_{0} = 0), \{l_{4} \mapsto 0\})}_{(e_{5}: (l_{7}, (true, x_{0} < 2 \land x_{1} = x_{0} + 1 \land y_{1} = y_{0} + 1 \land \neg(\neg(x_{1} = y_{1}))), \{l_{4} \mapsto 1\})}$$

$$\underbrace{e_{5}: (l_{7}, (true, x_{1} < 2 \land x_{2} = x_{1} + 1, x_{0} < 2 \land x_{1} = x_{0} + 1 \land y_{1} = y_{0} + 1 \land \neg(\neg(x_{1} = y_{1}))), \{l_{4} \mapsto 1\})}_{(e_{7}: (l_{5}, (true, x_{1} < 2 \land x_{2} = x_{1} + 1, x_{0} < 2 \land x_{1} = x_{0} + 1 \land y_{1} = y_{0} + 1 \land \neg(\neg(x_{1} = y_{1}))), \{l_{4} \mapsto 1\})}$$

$$\underbrace{e_{9}: (l_{7}, (true, x_{1} < 2 \land x_{2} = x_{1} + 1 \land y_{2} = y_{1} + 1 \land y_{2} = y_{1} + 1 \land \neg(x_{2} = y_{2})), \{l_{4} \mapsto 1\})}_{(e_{10}: (l_{8}, (true, true, x_{1} < 2 \land x_{2} = x_{1} + 1 \land y_{2} = y_{1} + 1 \land \neg(x_{2} = y_{2})), \{l_{4} \mapsto 1\})}$$

$$\underbrace{x_{0} = 0 \land y_{0} = 0 \land x_{0} < 2 \land x_{1} = x_{0} + 1 \land y_{1} = y_{0} + 1 \land \neg(\neg(x_{1} = y_{1}))) \land$$

Formula A

 $\underbrace{x_1 < 2 \land x_2 = x_1 + 1 \land y_2 = y_1 + 1 \land \neg(x_2 = y_2)}_{\text{interpolant: } x_1 = y_1}$

Dirk Beyer

IMC: Example (error path to l_8 with one loop unrolling)

$$\underbrace{x_0 = y_0 \land x_0 < 2 \land x_1 = x_0 + 1 \land y_1 = y_0 + 1 \land ((x_1 = y_1)) \land Formula A}_{Formula A}$$

$$\underbrace{x_1 < 2 \land x_2 = x_1 + 1 \land y_2 = y_1 + 1 \land \neg (x_2 = y_2)}_{Formula B}$$
fixed point $x = y$ reached

Dirk Beyer

 BMC naturally follows by increasing block size to whole (bounded) program

Insights

- BMC naturally follows by increasing block size to whole (bounded) program
- ▶ Difference between predicate abstraction and IMPACT:
 - BDDs vs. SMT-based formulas: costly abstractions vs. costly coverage checks
 - Recompute ARG vs. rechecking coverage
 - We know that only these differences are relevant!
 - Predicate abstraction pays for creating more general abstract model
 - IMPACT is lazier but this can lead to many refinements → forced covering or large blocks help

Evaluation: Usefulness of Framework CPACHECKER

- 5 existing approaches successfully integrated
- Ongoing projects for integration of further approaches
- Interesting insights learned about these approaches
- High configurability allows new combinations and hybrid approaches
- Already used as base for other successful research projects

Evaluation: Usefulness of Implementation

Used in other research projects

- Used as part of many SV-COMP submissions, 27 gold medals
- Also competitive stand-alone

 Awarded Gödel medal by Kurt Gödel Society

Experimental Evaluation

- CPACHECKER revision 40806
- Interpolants provided by MATHSAT5
- Compared algorithms
 - IMC
 - PDR
 - BMC
 - k-Induction
 - Predicate abstraction
 - IMPACT
- Subset of ReachSafety from SV-COMP '22
 - Safe: 4234 tasks
 - Unsafe: 1793 tasks

Quantile Plot: Safe Tasks

Quantile Plot: Unsafe Tasks

Experimental Comparison of Algorithms: Summary

We reconfirm that

- BMC is a good bug hunter
- k-Induction is a heavy-weight proof technique: effective, but costly
- CEGAR makes abstraction techniques (Predicate Abstraction, IMPACT) scalable
- IMPACT is lazy: explores the state space and finds bugs quicker
- Predicate Abstraction is eager: prunes irrelevant parts and finds proofs quicker
- IMC is competitive among polished SV approaches

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

k-Induction

Predicate Abstraction

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

(A)

 $$k$-Induction$ solves <math display="inline">29\,\%$ more tasks

(B)

Predicate Abstraction solves 3% more tasks

SMT Solver Can Make a Difference

Now, which do you think is better, i.e., solves more tasks?

(A)

 $$k$-Induction$$ solves <math display="inline">29\,\%$ more tasks \$Z3\$\$ with bitprecise arithmetic

(B)

Predicate Abstraction solves 3% more tasks MATHSAT5 with linear arithmetic

Depending on configuration, either (A) or (B) can be true!

Technical details (e.g., choice of SMT theory) influence evaluation of algorithms

References I

- Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-017-9432-6
- Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing the convergence of model checking and program analysis. In: Proc. CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_51
- Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.org/10.1007/3-540-49059-0_14
- [4] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643
- [5] Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV. pp. 72–83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10
- Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

References II

- Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc. POPL. pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279
- [8] Kahsai, T., Tinelli, C.: PKIND: A parallel k-induction based model checker. In: Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp. 55–62. EPTCS 72, EPTCS (2011). https://doi.org/10.4204/EPTCS.72.6
- [9] McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1
- McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136. LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14