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Abstract. We build on work in designing modeling languages for hybrid systems in the development of CTA, the
Cottbus Timed Automata. Our design features a facility to specify a hybrid system modulary and hierarchically, com-
munication through CSP-like synchronizations but with special support to specify explicitly different roles which the
interface signals and variables of a module play, and to instanziate recurring elements serveral times from a template.
Continuous system components are modeled with analogue variables having piecewise constant derivatives. Discrete
system aspects like control modes are modeled with the discrete variables and the states of a finite automaton. Our
approach to specifying distributed hybrid systems is illustrated with the specification of a component of a production
cell, a transport belt.

1 Introduction

During the last years, several tools have been developed which allow to model hybrid systems as
consisting of a discretely structured portion given as a finite automaton, and of a set of continuously
varying variables modeling continuous components of the system. Examples are UppAal [BLL

�
96],

Kronos [DOTY96] and HyTech [HHWT95].
These formalisms and their associated tools have been successful in illustrating the usefulness

of following concepts:

– Analogue variables with varying range-defined time-derivatives to model the coninuous part of
system, i.e. to give time restrictions.

– Discrete variables and states for modelling the discrete part of system.
– Invariants and guards for states and transitions of the finite-automaton portion of the system de-

scription.
– The construction of larger systems as parallel composition of subsystems communicating syn-

chronously via CSP-like (cf. [Hoa85]) signals.
– Several possibilities to express nondeterminism which is especially important for modelling en-

vironments and hardware components.

We build on this work, and especially on HyTech, in the development of a further refined notation
for the modular description of hybrid systems. Our notation introduces the following concepts:

– Hierarchy: Subsystem descriptions can be grouped. Interfaces and local components are sepa-
rated.

– Explicit handling of different types of communication signals. We allow to express explicitly
that an event is an input signal for an automaton, an output signal, or a multiply restricted signal.

– We allow to express explicitly that an analogue variable is accessed by an automaton as output,
as input, or that it is multiply restricted.

�
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– Automatical completion of automata for input signals. Input signals are events which an automa-
ton must always admit. If there are configurations of an automaton in which the reaction to an
input signal is not defined, it is understood that the automaton enters an error state.

– Recurring subsystem components do not have to be multiply defined. They are instantiated from
a common module type.

We will illustrate our approach to the specification and verification of hybrid systems with the ex-
ample of a component of a production cell.

The structure of the paper is the following: In Section 2, we will describe the transport belt. This
is the production cell component we will use to illustrate our formalism. In Section 3, we introduce
the concepts, and in Section 4, we describe the structure of the example specification we consider to
be helpful for the specification of distributed systems.

2 A transport belt in a production cell

Fig. 1. The belt

We illustrate our approach by modeling a transport belt of a production cell (cf. Fig. 1). This trans-
port belt has the following set of physical features:

– The belt can be either moving or stopped. The direction of movement is fixed. Thus, we can dis-
tinguish an end from where objects are fed to the belt and an end to which objects are transfered.
We will call them the producer end and the consumer end.

– The belt is equipped with two sensors for objects. One sensor is positioned near the producer
end, the other near the consumer end. Each sensor has two sensitivity radii. The smaller radius
defines the region in which an object is sensed safely, the larger radius defines the region out
of which an object is never sensed. In the region between the larger and the smaller radius, the
transitions of the sensor from the off-state to the on-state and vice versa occur.

– The belt has a length and a speed (when switched on).

The control program of the belt fetches objects from the neighbour at the producer end, trans-
ports them to the consumer end, and transfers them to the neighbour positioned at that end. It might
be described in the following way.

– Wait until the producer wants to transfer an object.
– Tell the producer that the transfer can start.
– Start belt motion.



– Wait until the object has been transfered to belt.
– Tell the producer that the transfer has been accomplished.
– Transport object to other end of belt.
– Stop belt motion.
– Tell the comsumer that an object is to be transfered.
– Wait for the consumer to tell that the transfer can start.
– Start belt motion.
– Wait till the consumer tells that transfer has been accomplished.
– Stop belt motion.
– Start program at the beginning.

The context of the belt consists of two neighbours:

– There is a producing neighbour. Its functionality is modeled as repeated transfer of objects to the
belt.

– There is a consumer neighbour. Its functionality is modeled as repeated receipt of objects from
the belt.

3 Cottbus Timed Automata: Informal description

A Cottbus Timed Automaton consists of a set of modules. One of these is designated as the main
module. It models the whole system. The other modules are used as types. They can be instanti-
ated several times in other modules. This makes it possible to express a hierarchical structure of the
system, and to define recurring components of a system just once.

Each module consists of the following components:

– An identifier. A system description might contain several modules. We use identifiers to name
them.

– Signals. Signals are used for communication between modules running in parallel. Signals are
modeled after CSP-like events. This means the following:

� Each module has an alphabet of signals.
� A transition in a module can be labeled with a signal. If a transition is labeled with a signal,

this transition can only be taken if in the same moment, all other modules which have this
signal in their alphabet also take a transition which is labeled with this signal.

It will become clear later that a module may contain as control components both instances of
other modules and a local automaton. The parallel composition of all these control components
can again be described as an automaton. It is this automaton which is considered when synchro-
nization with interface signals becomes important.
The basic communication model only allows synchronous communication. This communication
model abstracts from the differences between inputs and outputs. We will discriminate between
these types of signals. For this, we use the notion of a signal restriction. We say that a signal is
restricted in a module if the module does not in every configuration admit the signal.
Signals can have one of four access types:

� Signals declared as 'local' are not visible outside the current module. They are used for com-
munication between submodules and the automaton of the current module.



� The other access types for signals are 'input', 'output' and 'multiply restricted'. Signals de-
clared with these access types belong to the interface of the module. This means that when
the module is instantiated, these signals can be identified with signals which are declared in
the instantiating module.
In the sequel, we will call the module in which a signal is declared the “current module”.
The different access types for interface signals make different usage types of these signals in
the system explicit:

� Input signals may not be restricted in the current module. This means that the current
module must in every configuration be able to react on such signal.

� Output signals may be restricted in the current module, but they may not be restricted in
any other module. This means that the decision when this signal appears is only taken in
the current module, not in any other one.

� Multiply restricted signals may be restricted both in the current and in other modules.
– Variables. Variables are used to model the (predominantly) continuously changing components

of a hybrid system. CTA variables are real valued, they may change continuously with time, and
they may change discretely. Thus, the value of a variable is influenced via two mechanisms:

� For each discrete state the system may be in and for each variable, the CTA determines
a range of values for the time derivative of the variable. This allows to model continuous
changes of an analogue system component.

� When a transition is taken, a new value can be assigned to a variable. This models discrete
changes.

The values of variables are used to model how long the system may stay in a given discrete
control mode, and to model if a given transition from one control mode to another can be taken.
This is done by formulating invariants and guards for states and transitions. These invariants and
guards are predicates over the values of the analogue variables.
A variable restriction is a notion similar to that of a signal restriction. We say that a variable
is restricted in a module if its derivative is defined in a state of the module, or if the variable is
assigned to in a transition of the module.
For variables like for signals, we have four different access modes:

� Local variables are not accessed outside the current module.
� Input variables may not be restricted in the current module.
� Output variables may be restricted in the current module, but not outside of the module.
� Multiply restricted variables may be restricted both in the current module and outside of it.

All but local variables belong to the interface of a module. Like for interface signals, this means
that when the current module is instantiated, these variables may be identified with variables
declared in the containing module.

– Automaton. The current module contains an automaton. This automaton consists of a finite set
of states, a finite set of transitions between these states, and a signal alphabet.
Instances of previously defined modules and the explicitly defined automaton run in parallel. As
described earlier, they may communicate through the use of common signals. The signal alpha-
bet of the automaton defines the set of signals with which the automaton must synchronize when
they occur.
With each state, we may associate the following:

� An invariant. This is a predicate over analogue variables. As long as the invariant of a state is
true, the system may stay in the state. It may leave the state earlier, but the latest moment is
just after the invariant has become false.



This does not mean that the automaton can never be in a state in which the invariant is false.
When an invariant is not fulfilled, this only means that time may not pass while the automaton
is in this state. Thus, this forces a discrete transition to be taken.

� A condition for the derivatives of analogue variables. As long as the system stays in a state,
the derivatives of the variables must fulfill the condition.

With each transition, we may associate the following:
� A guard. Like the invariant of a state, this is a predicate over the variables of the module. One

condition for the transition to be taken is that the guard is true.
� A signal. For the transition to be taken, all other modules having the signal in their alphabet

must do a transition which is labeled with this signal.
� A set of assignments to analogue variables. When the transition is taken, the variables get

new values. If several transitions involving assignments to the same variables are performed
synchronously, an assignment is performed which fits all components. If there is no such
assignment, the transition may not be taken.

– Initial condition. An initial condition is another component of a module. This is a predicate over
the module variables and the states of the module's automaton.

– Instances. The current module may contain instances of previously defined modules. This is
used to model systems containing subsystems, and it is especially helpful if a subsystem occurs
several times in a system. An instance consists of the following components:

� An identifier is used to give a name to the instance.
� A reference to a module defines which module is instantiated.
� An identification of interface components of the instantiated module with declared compo-

nents of the containing module defines how the instance is connected to the containing mod-
ule. This may connect interface signals and interface variables of the instantiated module to
signals and variables of the containing module.
A component (a signal or a variable) of the containing module may not be associated with
more than one interface component. This ensures that inside one module, there are no aliases
for one signal or variable.

In determining if a signal or variable is restricted, restrictions in instances are considered as re-
strictions in the current module.
When a previously defined module is instantiated in the current module, not all of its interface
components must be identified with signals and variables in the containing module. Typically
output signals and variables which are not needed in the environment are left out.
An instance represents an automaton. The alphabet of the automaton corresponding to the in-
stance is the set of signals which are identified with interface signals of the instantiated module.

3.1 Notation

Later, we present some example specifications which illustrate some of our notational choices (cf.
Fig. 2, 3, 4):

– Keywords are written with capital letters. A module definition is started with the keyword
MODULE.

– At the beginning of the module, signals and variables are declared. The keywords INPUT,
OUTPUT, MULTREST and LOCAL introduce sections for the different types of signals and vari-
ables.



– The INITIALIZATION-keyword introduces the initial condition for the automaton. The initial
conditions for variables are given as arithmetical predicates, initial conditions for states are given
with equality expressions having the form STATE=s for automaton states s.

– The keyword AUTOMATON defines an automaton. In braces, the set of states of the automaton is
described.
Each state is introduced with the keyword STATE. It has a name. In braces, the components of
the state are described:

� INV introduces the invariant. If it is missing, it is assumed that the invariant is identically
true.

� DERIV introduces the restrictions for variables. If it is missing, it is assumed that there are
no restrictions for the derivatives in this state. For a variable v, the expression DER(v) rep-
resents the time derivative of v.

� TRANS introduces transitions. First, a set of target states is given. If there is more than one
target state it means that there is a nondeterministic choice of target states. Afterwards, the
components are given in braces:

� GUARD introduces the guard. If this clause is missing, the guard is assumed to be identi-
cally true.

� A SYNC-clause gives a synchronization signal. The signal name is prefixed by a `?' for
input signals of the automaton, by a `!' for output signals and by a `#' for multiply re-
stricted signals. A missing SYNC-clause indicates that the transition is not labeled with a
signal.
If the SYNC-signal is followed by a THEN and another signal, this denotes a notational
shortcut. It is explained in Section 3.2.

� A DO-clause introduces information about discrete value changes of the analogue vari-
ables.

– INST is the keyword used for instantiations. First the name of the instance is given, then a
FROM-clause gives the name of the module which is instantiated, and after the keyword WITH,
a set of identifications of module interface components with signals and variables of the con-
text module are given. Each such identification has the form v1 AS v2. v1 must be a signal or
variable of the interface of the instantiated module, and v2 must be the signal or variable of the
context module with which v1 is identified.

3.2 Notational conveniences

To make usage the formalism easier, we introduce some conventions:

– Each automaton must have an alphabet of signals with which it must synchronize. This is not
given explicitly, but derived implicitly from the set of signals occuring in any transition of the
automaton. The signs ?, ! and # are used to mark signals as input, output or multiply restricted.

– We allow a disjunction of follower states in a transition. Such a transition is equivalent to several
transitions which only differ in the follower state.

– In the SYNC-clause of a transition, we can give a further signal after a THEN. This is translated
into a two-step transition. The first step leads to an internal state with an identically false invari-
ant (thus it is urgent) and with one transition which is labeled with the signal given behind the
THEN. This makes it easy to specify signal translations.



– By their definition, input signals may not be restricted in a module, but often, we know from
the context that in some configurations, a given input signal should never occur. It would be
inconvenient if we were forced to declare transitions for the input signals in these configurations.
We complete the automaton automatically in the following way:

� Generate a further state for the automaton. We call it the error state.
� For each state � in the automaton and for each input signal

�
, do the following:

� Let � be the set of transition outgoing from � which are labeled with
�
.

� Let � be the disjunction of all guards of the transitions in � .
� If � is identically true, state � does not restrict the input signal

�
. No completion is neces-

sary.
� If � is not identically true, insert a new transition from � to the error state labeled with

�

and guarded with the negation of � . After this completion, the automaton can react on
�

in every configuration for state � .
This algorithm also generates transitions from the error state into the error state for all input
signals.

� If all transitions leading into the error state come from the error state, it is superfluous, be-
cause the automaton was complete before. We remove it and all transitions involving it.

4 The example specification

4.1 Global structure

For systematic modular specification of distributed hybrid systems, we chose to restrict ourselves to
a specific style to structure our specification. It contains the following components, some of which
are further hierarchically subdivided:

– One module describes the belt hardware. This includes the module describing belt and piece
movement and the two sensors.

– One module describes the control program.
– One module describes the belt context. The two neighbours (a piece producer and a piece con-

sumer) are modeled independently and then combined, via instantiation, to a module encompass-
ing the whole context.

– One module contains specialized test automata which make verifications easier.
– The module MBeltSystem represents the total system. There are no interface signals or vari-

ables: This module thus describes a closed system. It consists of the composition of all other
modules.

In the next section we describe each component separately.
In the context of distributed systems, the distinction between a context model and the system

model proper is especially important. The context model typically is a simplifying abstraction of the
true context of the system. If we can prove critical system properties for the system in this simpli-
fied context, and if we can prove that the true context models implement these abstractions, we can
deduct that the critical system properties are fulfilled for the system model in its true context. We
plan to apply the ideas of Abadi and Lamport (cf. [AL93]) to our formalism: They investigate for
which classes of properties we can deduct properties of the total system from proved properties of
the system components.



1 --This module computes the output of a sensor on the belt.
2 MODULE MSensor
3 {
4 INPUT
5 in: SYNC;
6 pos: ANALOG;
7 sens_pos: CONST;
8 OUTPUT
9 sens_on: SYNC;
10 sens_off: SYNC;
11 LOCAL
12 --Some local constants to model the range of sensor.
13 sensor_radius_min = 3: CONST;
14 sensor_radius_max = 5: CONST;
15 --Initially,we assume to be in the off-state after the sensor
16 -- and the plate is not on the belt.
17 INITIALIZATION
18 {
19 STATE = off_after;
20 }
21 AUTOMATON
22 {
23 --In this state,the sensor is off because the plate is too far
24 -- before the sensor.
25 STATE off_before
26 {
27 --We stay here as long as the plate has not
28 -- reached the minimal range of the sensor.
29 INV pos <= sens_pos -sensor_radius_min;
30

31 --After the plate has reached the maximal sensor range,we
32 -- can generate an on-signal and go to the on-state.
33 TRANS on
34 {
35 GUARD
36 {
37 pos >= sens_pos -sensor_radius_max;
38 }
39 SYNC !sens_on;
40 }
41 }
42 --We can stay here as long as we are in the on-state,that is,
43 -- as long as the plate is in the maximal sensor range.
44 STATE on
45 {
46 INV pos <= sens_pos + sensor_radius_max;
47 --We can leave this state whenever the plate leaves the
48 -- minimal sensor range.
49 TRANS off_after
50 {
51 GUARD
52 {
53 pos >= sens_pos + sensor_radius_min;
54 }
55 SYNC !sens_off;
56 }
57 }
58 --This location represents the situations where the plate
59 -- is far after the sensor.
60 STATE off_after
61 {
62 --We leave this state when another plate is put onto
63 -- the belt.
64 TRANS off_before
65 {
66 SYNC ?in;
67 }
68 }
69 }
70 }

71

Fig. 2. The sensor model



4.2 The model of the belt hardware

The belt hardware is modeled hierarchically with the modules MBeltMovement, MSensor and
MBeltModel. We will describe MSensor in some detail.

MBeltMovement describes what happens when the belt moves. It determines the position of a
plate.

The module MSensor (cf. Fig. 2) describes the behaviour of a sensor.

– Inputs. The signal in tells the sensor if a new plate has entered the belt. pos is read by the
sensor model to determine the position of the plate, and the constant sens_pos represents the
sensor position on the belt, measured in the same way as the plate position as distance from
feeding end of the belt.

– Outputs. The sensor module generates two signals which represent the sensor switches:
sens_on is sent when the sensor switches on, and sens_off is sent when the sensor switches
off.

– Locals. Two radii are used in the sensor model to express indeterminism about the dis-
tance the center of the plate is allowed to have from the sensor to be sensed successfully.
sensor_radius_min is the radius around the sensor position such that a plate with a cen-
ter in this radius is sensed surely. sensor_radius_max is the radius out of which a plate is
never sensed. While the plate travels between these radii, the sensor switches on respectively off.

– Initial condition. We assume in the beginning that the sensor is off and the plate is behind the
sensor, not before it.

– Automaton. We model the sensor with three states: Two represent off-states of the sensor, one
for situations in which a plate is before the sensor, the other for situations in which a plate is
behind the sensor. One represents the state when the sensor is on. The invariants and guards of
these states express what has been described previously about the use of the two radii.

The module MBeltModel combines the previously defined modules into a single module rep-
resenting the transport belt without its control program. The sensor module is instantiated twice, for
two different sensor positions, because the belt has two sensors.

4.3 The environment model

The environment model consists of three modules, two to model each of the neighbours of the belt,
and one which instantiates these two and represents the whole of the context.

MBeltInContext (cf. Fig. 3) specifies the behaviour of the plate producing neighbour. It has
a cyclical behaviour: First it allows a transfer to be started via the signal #start_in_transfer.
After some indeterminate time, the signal !in is emitted. This represents the moment in which the
plate reaches the producing neighbour's end. After this, the automaton waits for a message that the
plate has been transferred successfully (?stop_in_transfer), and starts from the begin.

MBeltOutContext is similar to MBeltInContext: It specifies the behaviour of a plate
consumer: It also waits for a start signal, then it waits for a signal to occur which tells us that the
plate has reached the producer's end, and then, after some time, a stop-message is produced.

MBeltContext (cf. Fig. 4) instantiates the two previously discussed modules. It combines
their interfaces.



1 --This module models the neighbour producing plates.
2 MODULE MBeltInContext
3 {
4 INPUT
5 stop_in_transfer: SYNC;
6

7 OUTPUT
8 in: SYNC;
9

10 MULTREST
11 start_in_transfer: SYNC;
12

13 INITIALIZATION
14 {
15 STATE = start;
16 }
17 AUTOMATON
18 {
19 --Wait some time,then try to start a transfer from
20 -- the input belt to modeled belt.
21 STATE start
22 {
23 --After some time,send a start-transfer-signal
24 -- to input belt.
25 TRANS in_transfer
26 {
27 SYNC #start_in_transfer;
28 }
29 }
30

31 --Accomplish a transfer from input belt to belt.
32 STATE in_transfer
33 {
34 --After some indeterminate time,output a load-message.
35 TRANS wait_for_stop
36 {
37 SYNC !in;
38 }
39 }
40

41 --Wait for message about the accomplished transfer.
42 STATE wait_for_stop
43 {
44 TRANS start
45 {
46 SYNC ?stop_in_transfer;
47 }
48 }
49 }
50 }

51

Fig. 3. The input context model

5 Discussion

Theoretical results for existing hybrid automata models (cf. [Hen96]) carry over to our model. This
makes automatized verification methods possible, also using symbolic methods for the representa-
tion of configurations. Like in the HyTech tool, one important analysis technique is forward- and
backward-reachability analysis for given regions. Currently, we are implementing a tool allowing
automatized analysis of systems modeled as CTA.

In our example, we presented an approach for the modular specification of larger hybrid systems.
The proofs which are possible for the transport belt are only valid if the neighbouring production cell
components implement the abstractions given in the automata which model the environment of the
transport belt.



1 --This module describes the context of belt.
2 MODULE MBeltContext
3 {
4 INPUT
5 --This signal is received by output belt from belt1
6 -- when the plate leaves belt.
7 out: SYNC;
8 --This signal is received from input belt when the transfer
9 -- has been accomplished.
10 stop_in_transfer: SYNC;
11

12 OUTPUT
13 --This signal is generated by input belt when the plate
14 -- leaves it.
15 in: SYNC;
16 --This signal is generated by output belt when the transfer
17 -- has been accomplished.
18 stop_out_transfer: SYNC;
19

20 MULTREST
21 --On this signal synchronize the input belt and
22 -- the modeled belt when a transfer may start.
23 start_in_transfer: SYNC;
24 --On this signal synchronize the modeled belt and
25 -- the output belt when a transfer may start.
26 start_out_transfer: SYNC;
27

28

29 --Here we instantiate the two context modules.
30 INST iBeltInContext
31 FROM MBeltInContext
32 WITH
33 {
34 in AS in;
35 start_in_transfer AS start_in_transfer;
36 stop_in_transfer AS stop_in_transfer;
37 }
38

39 INST iBeltOutContext
40 FROM MBeltOutContext
41 WITH
42 {
43 out AS out;
44 start_out_transfer AS start_out_transfer;
45 stop_out_transfer AS stop_out_transfer;
46 }
47 }

48

Fig. 4. The context model

A detailed model of the total system might be too large for automatic analyses. Thus, an analysis
method taking into account the modular structure of the system would be helpful. We investigate
how we can apply the results of Abadi and Lamport [AL93] in our context.
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