
Concepts of Cottbus Timed Automata

Dirk Beyer and Heinrich Rust

Lehrstuhl für Software Systemtechnik, BTU Cottbus
Postfach 10 13 44

D-03013 Cottbus, Germany
Tel. +49(355)69-3803, Fax.:-3810, Email:fdb|rust g@informatik.tu-cottbus.de

1 Introduction

Today, many industrial production cells are controlled by software. Many such systems have
to deal with requirements which the developer has to guarantee. Because of the complexity of
the implementation one of the main problems for developing the software for reactive systems
is to be sure that such properties are fulfilled. One way to handle the problems is to use formal
methods: This means to develop a formal model which is used to prove the properties of the
specification with tool support.

There are many different methods to model such reactive systems. Some of these abstract
from real-time aspects of the system. We chose a problem area where we have real-time re-
quirements, for example the throughput of the modelled production cell. So we have to use
formal methods which support models of real-time systems.

In the past we looked for automata-based approaches. We used the concepts of timed and
hybrid automata, for which there exist a well developed theoretical base ([AD94], [Hen96])
and some tools implementing these concepts as well as supporting reachability analysis.

We used one of the tools, HyTech, for collecting experience in the domain of automata-
based modelling techniques [Rus99]. For use in software development processes, this tool has
some disadvantages, for example:

– There is only one name space, i. e. variable names are global.
– A system has to be modelled as a flat set of communicating automata, modular structure

can not be expressed.
– There is no template mechanism to parametrize general parts of the system.

We extended the hybrid automaton theory to include the missing concepts by introducing
CTAs [BR98]. We presented a refined notation which introduces the following concepts:

– Hierarchy: Subsystem descriptions can be grouped. Interfaces and local components are
separated.

– Explicit handling of different types of communication signals. We allow to express ex-
plicitly that an event is an input signal for an automaton, an output signal, or a multiply
restricted signal.

– We allow to express explicitly that an analogue variable is accessed by an automaton as
output, as input, or that it is multiply restricted.

– Automatical completion of automata for input signals. Input signals are events which an
automaton must always admit. If there are configurations of an automaton in which the
reaction to an input signal is not defined, it is understood that the automaton enters an error
state.



– Recurring subsystem components do not have to be multiply defined. They are instantiated
from a common module type.

In the following sections of this paper we extend CTAs for answering the following ques-
tions:

– How do we handle restrictions for value assignments in transitions of composable au-
tomata?

– How do we create the product automaton for a set of automata?
– How do we use proved properties of parts of the system to prove properties of the whole

system?

1.1 CTA module description

The following section contains an informal description of CTA modules:
A Cottbus Timed Automaton consists of a set of modules. One of these is designated as

the main module. It models the whole system. The other modules are used as types. They can
be instantiated several times in other modules. This makes it possible to express a hierarchical
structure of the system, and to define recurring components of a system just once.

Each module consists of the following components:

– An identifier. A system description might contain several modules. We use identifiers to
name them.

– Signals.Signals are used for communication between modules running in parallel. Signals
are modeled after CSP-like events.

– Variables. Variables are used to model the (predominantly) continuously changing com-
ponents of a hybrid system. CTA variables are real valued, they may change continuously
with time, and they may change discretely.

– Automaton.The current module contains an automaton. This automaton consists of a finite
set of states, a finite set of transitions between these states, and a signal alphabet.
With each state, we associate the following:
� An invariant . This is a predicate over analogue variables. As long as the invariant of a

state is true, the system may stay in the state. It may leave the state earlier, but the latest
moment is just after the invariant has become false.

� A condition for thederivatives of analogue variables. As long as the system stays in a
state, the derivatives of the variables must fulfill the condition.

With each transition, we associate the following:
� A guard. Like the invariant of a state, this is a predicate over the variables of the

module. One condition for the transition to be taken is that the guard is true.
� A signal. For the transition to be taken, all other modules having the signal in their

alphabet must do a transition which is labeled with this signal.
� A set ofallowed assignments to analogue variables. When the transition is taken, the

variables may get new values. If several transitions involving assignments to the same
variables are performed synchronously, an assignment is performed which fits all com-
ponents. If there is no such assignment, the transition may not be taken.

� A set ofinitiated assignments to analogue variables. The automaton use this restriction
for variables which are not restricted by any other automaton in a transition executed in
parallel.



– Initial condition. An initial condition is another component of a module. This is a predi-
cate over the module variables and the states of the module’s automaton.

– Instances.The current module may contain instances of previously defined modules. This
is used to model systems containing subsystems, and it is especially helpful if a subsystem
occurs several times in a system. An instance consists of the following components:
� An identifier is used to give a name to the instance.
� A reference to amoduledefines which module is instantiated.
� An identification of interface components of the instantiated module with declared

components of the containing module defines how the instance is connected to the
containing module. This may connect interface signals and interface variables of the
instantiated module to signals and variables of the containing module.

A formal definition is described in [BR99].
At every point in time we describe the situation of a CTA with its current state (one element

from the state setS) and the current value assignment of all variables of the automaton. A
configuration c of a CTA is defined as the pairc = (s; a) from the set of all configurations
C = S�A(V ), wheres 2 S is the current state anda 2 A(V ) is the current value assignment.
From the real-valuedness of the variables follows the infinity of the set of configurations of any
automaton with at least one analog variable. Thus, for the analysis we have to use symbolic
representation of configuration sets. Aregion r 2 R = P(C) is a set of configurations.
In the CTA notation these regions are described by conjunctions of (in-) equations, i. e. all
CTA regions are convex and limited by hyperplanes. In this way an equation system defines a
polyhedron inIRjV j.

Variable restrictions in transitions. The value of a variable in the CTA notation is de-
cribed by a set of possible values to allow nondeterminism. When a transition of the automaton
is performed, then the variables change their values. Such value changes are described by lin-
ear expressions over the variables, which can be denoted with the names for the value before
the assignment and with the ticked name for the value of the variable after the assignment (for
examplex0 � 3 � x + 7).

2 Extended concepts used by CTA

In this section we describe informally the concepts we have developed over the last months.

2.1 Double transition predicates

The value changes in transitions are restricted by two predicates called ’allowed’ and ’initi-
ated’. These two predicates are conjunctions of linear inequalities containing ticked (for the
value after the transition) and unticked variables (for the value before the transition). Both
predicates are defined with a single syntactical predicate introduced with the keyword ’AL-
LOW’ in a transition description.

– allowed: The ALLOW clause in a transition contains a set of inequalities to describe the
possible value changes. That means the values of the variables before and after the transi-
tion have to fulfill the inequalities. If there are environmental automata then all the value
changes of the transitions which are taken in parallel (same point in time) must be consis-
tent with this predicate. From another point of view this predicate describes which value
changes are allowed to be performed by the environment.



– initiated: This predicate contains all restrictions of ’allowed’ and additionally some more
restrictions. ’Initiated’ describes the value changes initiated by this transition. A typical
case to use this predicate is to restrict variables which are not restricted by any parallel
transition. If there is a variable which does not occur ticked in at least one inequation of
the ALLOW clause, then this does not mean that the whole range ofIR is possible. For a
variable which does not occur ticked in ’ALLOW’ the meaning is that this transition does
not change the value of the variable. Transitions of environmental automata are allowed to
restrict the variable. But if no automaton restricts the variablex in its transition in the same
point in time, then we use the information of the ’initiated’ set which contains typically the
additional restrictionx0 = x. To express that the whole range ofIR is possible forx after a
transition, one would use the clause ALLOWfx0 > 0 AND x0 � 0g.

In our notation we only use the typical case described above. Perhaps there are other useful
aspects for a more general use of the ’initiated’ set, but we did not yet find them, and thus we
restrict our notation to have an easy to use syntax. Thus, in the INITIATE clause would be
only restrictions of the formx0 = x for each variablex 2 X (set of variables known by the
automaton), ifx does not occur ticked in ALLOW. The consequence for us is to generate the
’initiated’ set automatically, i. e. we do not have a syntactical clause for INITIATE in our
notation.

Note. All variables which occur in an ’ALLOW’ clause must be declared as OUTPUT, LO-
CAL, or MULTREST.

To illustrate the intention of our double transition predicates, we display the automata for
Fisher’s timing-based mutual exclusion protocol in Fig. 1. In our Fisher automaton a process
is modelled by five states. ’Start’ is the initial state for the automaton. From here it takes a
transition initializing the shared variablek to the state which models the uncritical section.
From this state only one transition is possible: If the shared variable signifies that no process
is in the critical section then the process can try to go to critical section. It goes to the state
modelling the ’Assign’ statement. The clockxi (with time derivation1 in all states) measures
the time staying in this state, and the invariant forces to leave the state after timea, which
models the maximal time needed by the assign statement of the process. Then the transition to
the ’Wait’ state sets the variablek to the number of the process. In this state we have to wait
at least timeb to give other processes a chance to setk to its process number. After timeb the
process can decide to enter the critical section ifk = i. Otherwise it goes back to the uncritical
section (to try it again). Leaving the critical section the automaton setsk to value0 to signify
that the resource is free again.

The ALLOW clause at transitiont1 of processp1 defines both the ’allowed’ set and the
’initiated’ set. The restriction for the ’allowed’ set isx0 = 0, which defines the new value
of variablex after the transition is taken. The ’initiated’ set is additionally restricted by the
convention described above:x0 = 0 AND k0 = k. Thus variablek is not changed by this
transition althoughk could be changed by a transition executed in parallel to this transition.

The advantage of the distinction beetween ’allowed’ and ’initiated’ is that we can express
that the value of a variable is not changed by a transition in one automaton but this transition
allows a value change by a transition in a parallel automaton. If, for example,p1 is in state1
and it takes transitiont1 then we have two possible situations in processp2:

– p2 takest2 at the same point in time. The only valid value of variablek is 2 because of the
ALLOW clause oft2.



Fig. 1.Fisher’s mutual exclusion protocol



– If p2 does not taket2 in parallel, then the ’initiated’ set of processp1 forcesk = 0.

2.2 Normal form and product automaton

At least for reachability analysis we can only use one single hybrid automaton. From this
it follows that in a first step we have to transform our hierarchically structured system of
communicating modules to a flattened normal form. This normal form of CTA consist of a set
of hybrid automata without scopes, special data types and restriction types of variables/signals
as well as without abstraction layers as a ’flat’ system. This is done with the help of our tool
after context check and some additional analysis.

The second step is to produce a product automaton from the set of hybrid automata. We
construct the product automaton of two hybrid automata in the following way:

– The new set ofstatesis the cross product of the state sets from the two automata.
– The new set ofvariablesand the set of signals are the union of the corresponding sets from

the automata.
– The initial condition for the new automaton is the intersection of initial conditions of the

automata.
– The transition set is the subset of the cross product from the automata, which consists of

the combination of two transition with same signal or one of the combined transition is a
noop transition.

– Invariants andderivativesare intersected.
– Guards are intersected with the additional condition that the ’initiated’ set must be not

empty.
– The newsignalof a transition is the signal used by on of the parallel transitions.
– The newallowedset is the intersection of the two allowed sets.
– The newinitiated set is the subset of the initiated set of the first automaton which is allowed

by the second automaton united with the subset of the initiated set of the second automaton
which is allowed by the first automaton.

Almost everything in this construction is standard, only the handling of ’allowed’ and
’initiated’ is special.

2.3 Implementation relation

Many real software systems are very large, so that a reachability analysis even with use of sym-
bolic representation is not possible because of time and space complexity. One solution for this
problem is to use modular proving methods. For example, we have a system implementation
which consists of two system components named CONTROLLERIMPLEMENTATION and
ENVIRONMENT IMPLEMENTATION (denoted as CONTRIMPL jj ENV IMPL) and we
have to prove the safety property P. If the whole system is too complex for automatical analy-
sis, it might be possible to prove the properties with the system CONTRIMPL jj ENV ABST
where ENVABST is a more abstract model of the environment than ENVIMPL. Now, we
can use for proving that the safety property P of the system CONTRIMPL jj ENV ABST is
valid if the following two proofs are valid:

– System CONTRIMPL jj ENV ABST has safety property P and
– ENV IMPL implements ENVABST.



It is expected that these two steps are easier to compute than the complete proof in one step
if the abstractions are selected sensibly. For the first step we use reachability analysis and for
the second step we use the method described in the following paragraph.

The intuition behind our implementation concept is an assumption/guarantee principle. We
describe it with respect to our formalism: An implementation relation (m2 implementsm1) for
hybrid modulesm1 andm2 has to fulfill the following properties (G set of signals,V set of
variables,I input,O output):

– m1:GI � m2:GI. The occurrence of a signalg in a modulem:GI means thatm guarantees
that g is not restricted inm. This clearly is a guarantee. Thus each input signal of the
specification should be an input signal of the implementation. The same is sensible for
input variablesm:V I.

– m2:GO � m1:GO. The occurrence of a signalg in a modulem:GO means thatm assumes
that g is not restricted in the environment. The implementation should not make more
assumptions than the specification, thus each output signal of the implementation should
also be an output signal in the specification. The same is sensible for the output variables
m:V O.

– m1:G � m1:GL = m2:G � m2:GL. The signals of a modulem can be partitioned into
a set of interface signals (m:GI [m:GO [m:GMR), and a set of local signals (m:GL).
Interface signals are those via whichm can communicate with the environment. The same
is sensible for the variablesm:V .

– The trace setS2 of the transition system generated bym2 is a subset of the trace setS1

of the transition system generated bym1. We use the set theoretical conceptualization of
implementation of Abadi and Lamport [AL91]. They use an implementation relation for
sets of traces. They consider a set of tracesS2 to be an implementation of the set of traces
S1 if and only if S2 � S1. Their intuition is that the occurrence of a tracet in S1 means
thatS1 allows the system behaviourt, and they consider that the implementation should
not allow more behaviours than the specification.

3 Tool support

We are developing a verification tool for CTA models. In the current version we support the
analysis of a hierachical model and the transformation to the normal form. From this we can
build a model which can be analysed with the HyTech tool. But the CTA models which we
can translate to HyTech are a restricted subset of all CTA models. Thus we are developing our
own implementation of the techniques.

We developed a library to support the representation of regions as polyhedra and all the
algorithms we need. For this we use the ddm method which is described in [Che68].

The complete tool will work in the following way (c.f. Fig. 2): Our tool needs two different
inputs: The model description of the system consists of a set of modules. These modules are
defined by the CTA model notation. The other input is a set of analysis commands which we
use to verify the required properties of the system specification. The main verification tech-
niques are reachability (forward and backward) analysis and proving implementation relations
between modules.



Fig. 2.CTA Modelchecker

4 Discussion

In our formalism we solved some important problems of the existing automata based meth-
ods. In CTA it is possible to develop system models with modular structure and abstraction
layers for controlling the complexity of real systems. We have concepts to support an assump-
tion/guarantee principle. The tool we developed supports the most important analyses.

In our further work we will investigate the maturity of our tool in applying our formalism
to more complex problems.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science, 126:183–235, 1994.
[AL91] Martin Abadi and Leslie Lamport. The existence of refinement mappings.Theoretical Computer Science, 82(2):253–

284, 1991.
[BR98] Dirk Beyer and Heinrich Rust. Modeling a production cell as a distributed real-time system with cottbus timed

automata. In Hartmut K¨onig and Peter Langend¨orfer, editors,FBT’98: Formale Beschreibungstechniken f¨ur verteilte
Systeme, pages 148–159, June 1998.

[BR99] Dirk Beyer and Heinrich Rust. A formal definition for a modular hybrid modelling notation. Technical Report
I-3/1999, BTU Cottbus, 1999.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming problem.U.S.S.R.
Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. InProceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science (LICS 1996), pages 278–292, 1996.

[Rus99] Heinrich Rust. Modeling a production cell component as a hybrid automaton. Technical Report I-2/1999, BTU
Cottbus, 1999.


