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Abstract. One problem of modelling hybrid systems with existing notations of hybrid automata is
that there is no modular structure in the model. We introduce an extended modelling notation which
allows the modelling of a system as a hierarchical structure of modules. The modules are capable of
communicating through the elements of an explicitly defined interface. The interface consists of signals
and variables declared with different access modes. This paper describes a model of the railroad crossing
example and how to verify it. The current version of a tool for reachability analysis using the double
description method to represent symbolically the sets of reachable configurations is presented.
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1 Introduction

The programming of embedded systems which have to fulfil hard real-time requirements is becoming an
increasingly important task in different application areas, e.g. in medicine, in transport technology or in pro-
duction automation. The application of formal methods, i.e. of modelling formalisms and analysis methods
having a sound mathematical basis, is expected to lead to the development of systems with less defects via
a better understanding of critical system properties (c.f. [Lev95]).

Beyer and Rust presented the modelling notation CTA which allows to model hybrid systems in a mod-
ular way [BR98]. It builds on the theoretical basis used in tools like UppAal [BLL+96], Kronos [DOTY96]
and HyTech [HHWT95]. In these formalisms and tools, finite automata are used to model the discrete con-
trol component of an automaton. Analogous variables which may vary continuously with time are used to
model the non-discrete system components of a hybrid system. Component automata of a larger system
communicate via CSP-like synchronisation labels (cf. [Hoa85]) and via common variables. Algorithms for
the analysis of these kinds of models have been presented in [ACD93] and [HNSY94].

To provide features for modelling and verifying modular hybrid systems we need a new formalism and
tool which includes, in difference to the existing formalisms and tools, the following concepts:

– Compositional semantics: By using two predicates for the transition assignments in our formalism we
preserve the information we need to define the semantics of a CTA module on the basis of the semantics
of its parts.

– Hierarchy: Subsystem descriptions can be grouped. Interfaces and local components are separated.
– Explicit handling of different types of communication signals: It is possible to express explicitly that

an event is an input signal for an automaton, an output signal, or a multiply restricted signal.
– It is possible to express explicitly that an analogous variable is accessed by an automaton as output, as

input, or that it is multiply restricted, which means that each module has read and write access to that
variable.

– Automatic completion of automata for input signals. Input signals are events which an automaton must
always admit. If there are configurations of an automaton in which the reaction to an input signal is not
defined, it is understood that the automaton enters an error state.

– Replicated subsystem components do not have to be multiply defined. They are instantiated from a
common module type.

The differentiation between different roles of signals in an automaton has been used in the definition
of IO-automata [LT87] and extended to hybrid systems [LSVW96]. [AH97] use different access modes
in interfaces to describe modular hybrid systems, too. They build on reactive modules [AH96] and extend
them with continuously changing variables.



Fig. 1. Interfaces of components of the railroad crossing model

The CTA method provides a complete modelling notation and a tool for reachability analysis of those
models regarding the features mentioned above.

In section 2 the example of the railroad crossing is described. Section 3 gives an informal description
of the formalism. Section 4 gives an overview on the syntax of the modelling language and the analysis
commands. Section 5 gives an overview on the CTA tool. The last section explains open questions to be
dealt with.

2 Model for railroad crossing

2.1 The problem

The railroad crossing example deals with the following situation: The gate for a railroad crossing must
be closed when the train reaches the crossing. There are two sensors on the railroad: One switching on if
the train is at position 1000 m before the gate, and the other sensor is situated 100 m after the gate which
indicates that the train has passed the gate. The gate can be moved between the angle 0 degree (which means
the gate is closed) and the angle 90 degree (open) by a motor. The problem is to create a controller which
fulfils the safety condition that the gate is closed before the train is nearer than in a 250 m distance to the
crossing.

2.2 A modular, automaton-based approach

Our model consists of three subsystems: The train, the gate, and the controller. The controller coordinates
the actions of the other components. The environment of the controller consists of one part for the train
behaviour and one part for the gate behaviour.

Fig. 1 displays the structure of the modules: The main module ’RailRoadCrossing’ has four synchroni-
sation signals, which are locally defined because the system is modelled as a closed system. ’app’ models
the sensor at the 1000 m-position and ’exit’ models the sensor at the 100 m-position for communication
between the train and the controller. The signals ’lower’ and ’raise’ are used by the controller to control
the action of the gate. They all have to be declared in this module because they are used by more than one
contained module. The other modules contained in the ’RailRoadCrossing’ are described in the following
paragraphs.

Train. The train component (Fig. 2) models the position of the train (local variable x) and its speed
(the time derivation of x). Because the sensor on the railroad which switches on when the train reaches



Fig. 2.The train model

Fig. 3.The gate model

the position at 1000 meters distance to the gate is controlled by this module the signal ’app’ is declared as
’OUTPUT’. This means that all modules in the environment are only allowed to read the signal. The same
is true for the signal ’exit’.

The contained hybrid automaton has three discrete states: To model that the train comes from far away,
if the distance to the gate is greater than 1000 m we have the state ’Far’. The invariant of this state is that
the position of the train is greater than or equal to 1000. The derivation of ’x’ has to be between -50 and
-40 to model the possible speed of the train. When the train is passing the first sensor (x=1000) it switches
to the state ’Near’ by synchronising with the label ’app’. Following the CSP concept it means that all other
automata which know this label must also take a transition with this label. The speed is modelled by the
derivation of ’x’ again and the invariant with the corresponding guard at the transition models that the
train passes the gate, and the automaton switches to the state ’Past’. After another 100 m the invariant and
the guard of the next transition forces the automaton to leave the state by firing this transition by forcing
synchronising with the output signal ’exit’. It also sets the variable ’x’ to a value greater than 1000 to be
ready for the next cycle in the state ’Far’.

Gate.An illustration of the gate model is given in Fig. 3. This component models the angle of the gate
by the analogous variable ’g’. The module has to react on the two input signals ’lower’ and ’raise’. The



Fig. 4.The controller model

automaton starts in state ’Open’ (g=90). When it receives the signal ’lower’ it switches to the state ’Down’,
which models the situation that the gate is lowering but has not finished the task. The speed of the angle
change is modelled by the derivation of ’g’. If the angle of 0 degrees is reached the automaton has to switch
to state ’Closed’. In this state it waits for the signal ’raise’, which forces to take the transition to the state
’Up’ for starting the opening process. If the angle 90 is reached the automaton switches to the state ’Open’
and it can start from beginning.

Controller. The controller models the component (the electronic device or the controller software) for
the coordination of the other parts of the system (Fig. 4). It has two input signals to react on signals from
the ’Train’ module and two output signals to control the module ’Gate’. The local clock variable ’t’ is used
to measure the reaction time of the controller.

The automaton starts in the ’Idle’ state waiting for the train-is-coming signal from the train (1000 m-
position). This signal forces the controller automaton to switch to the state ’ToLower’ and the transition
resets the clock ’t’. That state models the situation that the controller consumes the signal, needs some time
to react, and then to perform an action. The upper bound of the reaction time ’�’ (in the example it is set to
5) is an important parameter for satisfying the safety condition of the system. At least after time� it must
send the ’lower’ signal to the gate and goes back to the ’Idle’ state. If the train has passed the 100 m position
after the gate then it sends the ’exit’ signal to the controller. After some reaction time the controller sends
the raise-signal to the gate and after this it is waiting again in state ’Idle’.

3 Theoretical background

The following section contains a short description of the CTA formalism. The complete formal definition
of the CTA semantics is given in [BR99].

3.1 Formalism for modelling

A CTA system description consists of a set of modules. One of them is designated as the top module. It
models the whole system. The other modules are used as templates. They can be instantiated several times
in other modules. This makes it possible to express a hierarchical structure of the system, and to define
replicated components of a system just once.

Each module consists of the following components:

– An identifier. A system description might contain several modules. Identifiers are used to name them.



– An interface.The interface consists of declarations of variables and signals used by the components of
the module. It defines the access modes for the variables and signals and the data types for variables.
� Signals.Signals are used for communication between modules running in parallel. Signals are

modelled as CSP-like events.
� Variables. Variables are used to model the (predominantly) continuously changing components of

a hybrid system. CTA variables are real valued, they may change continuously with time, and they
may change discretely.

– A hybrid automaton. This automaton consists of the following components:
� S: A finite set of discrete states.
� G: A finite set of signals.
� V: A finite set of analogous variables.

Variables are used invalue assignments. A value assignment for a set of variables is a member of
the set of functionsA(V ) = V ! IR.
At every point in time the situation of an automaton is described by its current discrete state and the
current value assignment of all variables of the automaton. Aconfiguration c of a CTA is defined
as the pairc = (s; a), wheres is the current discrete state anda is the current value assignment
(c 2 C = S �A(V )). A region r 2 R = P(C) is a set of configurations.

� I � C: An initial condition, described as a region.
� T: A finite set of transitions.
� inv : S ! 2A(V ): A function associating an invariant to each state. The invariant is a set of value

assignments. As long as the invariant of a state is true, the system may stay in the state. It may
leave the state earlier, but the latest moment is just after the invariant has become false.

� deriv : S ! 2A(V
0): A function associating a set of admissible derivatives to each state. In the

finite set of variablesV 0 there is, for each variablev 2 V , a corresponding elementv0 which is
used to define admissible time derivatives of the variablev. While the automaton remains in a state,
the continuous changes of a variablev are defined by their first time derivativev0.

� trans : T ! S � S: A function associating a starting state and a target state to each transition.
� guard : T ! 2A(V ): A function associating a guard with each transition. The guard is a set of

value assignments. One condition for the transition to be taken is that the guard is true.
� sync : T ! G [ f�g: A function associating a signal or no signal to each transition.� is not a

signal; it is the value of sync(t) for transitions without a signal.
� allowed : T ! (A(V ) ! 2A(V )): A function associating with each transition a function which

transforms a value assignment into one of a set of value assignments. The aim of this function is to
restrict changes which may occur in any environment.

� initiated : T ! (A(V ) ! 2A(V )) with 8t 2 T; a 2 A(V ) : initiated(t)(a)� allowed(t)(a): A
function associating with each transition a function which transforms a value assignment into one
of a set of value assignments. In contrast to ’allowed’ the aim of this function is to restrict changes
which occurwithoutan environment.
For eacht 2 T anda 2 guard(t), the set initiated(t)(a) must be nonempty. This condition ensures
that the ’initiated’ or ’allowed’ component can not inhibit a discrete transition to be taken.
A further restrictions is: For eachs 2 S, there is an elementts of T with the following properties:
� trans(ts) = (s; s)
� guard(ts) = true
� sync(ts) = �

� 8a 2 A(V ) : initiated(ts)(a) = fag

� 8a 2 A(V ) : allowed(ts)(a) = A(V )
These transitions are no-op transitions. The subset ofT consisting of all no-op transitions is referred
to by ’noop’. The ’allowed’ function of no-op transitions does not exclude any resulting value, and
’initiated’ defines that no variable value changes. ut

– Instances.A module may contain instances of previously defined modules. This is used to model
systems containing subsystems, and it is especially helpful if a subsystem occurs several times in a
system. An instance consists of the following components:
� An identifier is used to give a name to the instance.
� A reference to amodule defines which module is instantiated.
� An unification of interface components of the instantiated module with declared components of

the containing module defines how the instance is connected to the containing module. This may
connect interface signals and interface variables of the instantiated module to signals and variables
of the containing module.



Notational convention:A typical case to use the ’initiated’ predicate is to restrict variables which are
not restricted by any parallel transition. If there is a variable which does not occur ticked in at least one
inequation, then this does not mean that the whole range ofIR is possible. For a variable which does not
occur ticked in an inequation the meaning is that this transition does not change the value of the variable.
Transitions of environmental automata are allowed to restrict the variable. But if no automaton restricts the
variablex in its transition in the same point in time, then we use the information of the ’initiated’ set which
contains typically the additional restrictionx0 = x. To express that the whole range ofIR is possible forx
after a transition, one might use the clausex0 > 0 ORx0 � 0.

In our notation we only use the typical case described above. Perhaps there are other useful aspects for
a more general use of the ’initiated’ set, but we did not yet find them, and thus we restrict our notation to
have an easy to use syntax. Thus, in a syntactical INITIATE clause would be only restrictions of the form
x0 = x for each variablex 2 X (set of variables known by the automaton), ifx does not occur ticked in
any inequation of the syntactical clause for ’allow’. The consequence for us is to generate the ’initiated’ set
automatically, i. e. we have not a syntactical clause for ’initiate’ in our notation.

Beside the additional concepts, the main difference to existing formalisms are the two assignments
’allowed’ and ’initiated’ and the semantics of the invariant. The splitting of the assignments leads to a
compositional semantics. The fact that an invalid invariant not leads to a forbidden state but that a discrete
transition is forced has the following advantage: If the invariant of a state becomes invalid because another
automaton changes the values of the variables then the automaton can immediately fire a discrete transition
to another state.

In the CTA formalism each of the interface components has anrestriction type to control the access on
the component. There are four different restriction types for variables and signals:

– INPUT The declaration of a variable as input variable for a module means that this module can only
read this variable:
� The derivation for an input variable may not be restricted in the deriv-set of any state of the au-

tomaton.
� The value of an input variable after a transition may not be restricted in the allowed-set of any value

assignment in a transition.
� In difference to ’allowed’, input variables can be restricted in ’initiated’ to reflect that the value of

the input variable is not changed by this automaton.
For a signal the declaration as input means the following: For each input signal and each state of the
automaton, some transition labelled with the signal can always be taken. In this way the automaton
does not restrict the input signal and thus it is not to blame for a time deadlock. Thus, it is a guarantee
for the environment that the module do not change that component .

– OUTPUT the declaration of a variable or signal as OUTPUT is an assumption, that the variable or
signal is used only as INPUT in all other modules in the environment.

– MULTREST The multiply restricted components are available for all access modes. A module as well
as the environment for which a signal or variable is declared as multiply restricted can restrict the
component in any way.

– LOCAL The declaration of a variable or signal as LOCAL means that it is not visible outside the
module and thus no other module can access such a variable or signal.

Variable restrictions in transitions. To express nondeterminism the value of a variable after a transition
has been performed is selected from a set of possible values. These possible values are described by linear
expressions over the variables, which can be denoted with the names for the value before the assignment
and with the ticked name for the value of the variable after the assignment (for examplex0 � 3 � x+ 7).

The product automaton construction uses the standard technique for composition of automata, with
CSP synchronisation as described in [HHWT95]. We construct the product automaton of two hybrid au-
tomata in the following way:

– The new set ofstatesis the cross product of the state sets from the two automata.
– The new set ofvariables and the set ofsignalsare the union of the corresponding sets from the au-

tomata.
– The initial condition for the new automaton is the conjunction of initial conditions of the automata.
– The transition set is the subset of the cross product from the automata, which consists of the combi-

nation of two transitions with the same signals or one of the combined transition is a no-op transition,
which do not change the values of the variables and has no synchronisation label.



– Invariants andderivativesare intersected.
– Guards are intersected with the additional condition that the set of allowed assignments must not be

empty.
– The newsignalof a transition is the signal used by one of the parallel transitions.
– The new set ofallowed assignmentsis the intersection of the two sets of allowed assignments.

Thesemantics of CTAis understood as a labelled transition system.

Notation. For a realu and two value assignmentsa anda0 2 A(V ), letu�a denote the function�(v : V ) :
u � a(v), and leta+ a0 denote the function�(v : V ) : a(v) + a0(v).

time : C � IR � A(V ) ! C is a function describing how the passage of some timeu changes a
configuration(s; a) when a time derivatived 2 A(V ) for the variable values is fixed:

time((s; a); u; d) = (s; a+ u � d)

ut

A hybrid automaton can perform time transitions and discrete transitions.

Definition 1. (Time transitions and discrete transitions of a hybrid automaton)Let H be a hybrid
automaton.

time(H) is the set oftime transitions of H. It is defined as the following set:

f ((s; a1); (s; a2)) 2 C � C

j 9d 2 deriv(s); u 2 IR; u > 0 :
( (s; a2) = time((s; a1); u; d)
^ 8(u0 : 0 � u0 � u) : time((s; a1); u0; d) 2 inv(s)
)

g

discrete(H) is the set ofdiscrete transitions ofH. It is defined as the following set:

f ((s1; v1); (s2; v2))
j 9(t : T ) :

( trans(t) = (s1; s2)
^ v1 2 guard(t)
^ v2 2 initiated(t)(v1)
)

g

ut

Note. For discrete transitions the invariant is irrelevant. An invariant which is identically false can be used
to construct urgent states, i. e. states in which time cannot pass.

The state component of the configuration may not change in a time transition.
In the definition of the set of discrete transitions, the signals and the ’allowed’ function are not used.

Their meaning is defined later, when we consider the parallel composition of automata. ut

We will define a transition system semantics for hybrid automata.

Definition 2. (Transition system)A transition systemconsists of the following components:

– A (possibly infinite) setS of states, with a subsetS0 of initial states.
– A setT � S � S of transitions.

ut

Notation. We use the point notationA:x to address the componentx of A. ut

The transition system corresponding to a hybrid automaton is defined in the following way:

Definition 3. LetH be a hybrid automaton. Thetransition systemts(H) corresponding toH is defined in
the following way:



Regionreachable := r;
WHILE (post(reachable) n reachable 6= ;)

reachable := reachable [ post(reachable);

Fig. 5.Algorithm for fixed point computation of reachable regions

– ts(H):S =def H:C.
– ts(H):S0 =def H:I .
– ts(H):T =def time(H) [ discrete(H).

ut

Note. The state space of the transition system consists of the configurations of the hybrid automaton. The
set of starting states in the transition system is defined via the initial condition of the hybrid automaton.
The transitions of the transition system are all time transitions and all discrete transitions of the transition
system. ut

3.2 Reachability analysis

System properties which are to be proved in the verification are described as expressions containing reach-
ability operators.

The most important operators for reachability analysis are the operatorpost(c) for the region of all
the configurations reachable from configurationc by using a time transition or discrete transition, and the
operatorpre(c) for the configurations from whichc is reachable in one time transition or one discrete
transition. To handle regions as arguments,post(r) is defined for a regionr as

S
c2r

post(c) andpre(r) is
defined as

S
c2r

pre(c).
Using the algorithm in Fig. 5 we can define another operatorreachable(r) as notation for the fixed

point of collecting reachable configurations starting with the regionr. For backward reachability one can
define an analogous reachability operator forpre(c).

For the railroad crossing in the example the safety condition which the modelled system has to fulfil is:
’error \ reachable(initial) = ;’, whereerror is the region where the gate is not closed and the train is
within the 250 m distance to the gate, andinitial is the starting region of the system where the train is far
away (and x>=1000), the controller is in the idle-state, and the gate is open (and g=90).

In general, the algorithm for the fixed point computation does not necessarily terminate after a finite
number of steps, but in the example it does so.

3.3 Abstraction and implementation relation

The CTA modelling language is capable of modelling a modular system by using a composition hierarchy.
Several different levels of such a hierarchy can be used to express different abstraction levels of the system.

In each refinement step of a modelling process working in a top-down manner the more abstract modules
are successively replaced by more specific modules with a deeper hierarchy or a more specific behaviour.
In Fig. 6 an embedded system consists of an environment and a controller. There are two different versions
of each component: an abstract module and a detailed module.

The aim of the modularity concept is not only to have a nice modelling technique but to have a technique
for ’modular verification’, too. Many real software systems are very large, so that a reachability analysis
even with use of symbolic representation is not possible because of time and space complexity.

One solution for this problem is to use modular proving methods. For example, there is a system im-
plementation which consists of two system components named CONTROLLERIMPLEMENTATION and
ENVIRONMENT IMPLEMENTATION (denoted as CONTRIMPL jj ENV IMPL) and we have to prove
the safety property P. If the whole system is too complex for automatic analysis, it might be possible to
prove the properties with the system CONTRIMPL jj ENV ABST where ENVABST is a more abstract
model of the environment than ENVIMPL. Now, we can use for proving that the safety property P of the
system CONTRIMPL jj ENV ABST is valid if the following two proofs are valid:

– System CONTRIMPL jj ENV ABST has safety property P and



Fig. 6.Modelling by Refinement

– ENV IMPL implements ENVABST.

It is expected that these two steps are easier to compute than the complete proof in one step if the
abstractions are selected sensibly. For the first step we use reachability analysis and for the second step we
use the method described in the following paragraph.

The intuition behind our implementation concept is an assumption/guarantee principle. We describe it
with respect to our formalism: An implementation relation (m2 implementsm1) for hybrid modulesm1

andm2 has to fulfil the following properties (G set of signals,V set of variables,I input,O output,MR

multiply restricted):

– m1:GI � m2:GI . The occurrence of a signalg as input in a modulem means thatm guarantees thatg
is not restricted inm. This clearly is a guarantee. Thus each input signal of the specification should be
an input signal of the implementation. The same is sensible for input variablesm:V I .

– m2:GO � m1:GO. The occurrence of a signalg as output in a modulem means thatm assumes that
g is not restricted in the environment. The implementation should not make more assumptions than
the specification, thus each output signal of the implementation should also be an output signal in the
specification. The same is sensible for the output variablesm:V O.

– m1:G�m1:GL = m2:G�m2:GL. The signals of a modulem can be partitioned into a set of interface
signals (m:GI [m:GO [m:GMR), and a set of local signals (m:GL). Interface signals are those via
whichm can communicate with the environment. The same is sensible for the variablesm:V .

– The external trace setS2 (defined below) of the transition system generated bym2 is a subset of the
external trace setS1 of the transition system generated bym1. We use the set theoretical conceptu-
alisation of implementation of Abadi and Lamport [AL91]. They use an implementation relation for
sets of traces. They consider a set of tracesS2 to be an implementation of the set of tracesS1 if and
only if S2 � S1. Their intuition is that the occurrence of a tracet in S1 means thatS1 allows the
system behaviourt, and they consider that the implementation should not allow more behaviours than
the specification.

LetL = m:G[IR be the set of transition labels of the transition system of a modulem.m:G is the set of
synchronisation labels of the modulem. IR is used for the time values. Atrace of a given transition system
is an infinite alternating sequence< c0; l1; c1; : : : > of configurations and elements ofL, starting with an
initial configurationc0. For each(ci; li+1; ci+1) the following must hold: Ifli+1 is a synchronisation label
then a discrete transition of the transition system leads fromci to ci+1; otherwiseli+1 is an element ofIR,
the time width between the two configurations, and a time transition of the transition system of that time
was taken.

To introduce the notion of an external trace for the behaviour visible outside the module we have to
define a functionhide : C ! E which maps a configuration which contains also the information about
local variables and the discrete state to a non-local configuration which contains only the value assignments



1 MODULE RailRoadCrossing {
2 LOCAL
3 app : SYNC;
4 exit : SYNC;
5 lower: SYNC;
6 raise: SYNC;
7 INST Process_Train FROM Train WITH {
8 app AS app;
9 exit AS exit;

10 }
11 INST Process_Gate FROM Gate WITH {
12 lower AS lower;
13 raise AS raise;
14 }
15 INST Process_Controller FROM Controller WITH {
16 app AS app;
17 exit AS exit;
18 lower AS lower;
19 raise AS raise;
20 }
21 }

Fig. 7.The model of the rail road crossing system

of the interface variables (input, output, and multiply restricted) by hiding the local components (C =
S �A(V I [ V O [ VMR [ V L);E = A(V I [ V O [ VMR)).

An external traceof a given transition system is an infinite alternating sequence< e0; l1; e1; : : : > of
non-local configurations and elements ofL which is constructed by thehide function from a trace of the
transition system:
< : : : ; ei; li+1; ei+1; : : : >=< : : : ; hide(ci); li+1; hide(ci+1); : : : >.

4 System description

An introduction to the CTA languages is given in this section. The first subsection describes the language
to define the model and the second one describes the language for the analysis commands.

4.1 Modelling language

A module contains four components: declaration of variables and signals, an initial configuration of the
module, a set of instantiations and a set of hybrid automata.

One of the modules defined in a system description is the so called ’top module’ which contains all the
stuff needed to model the system. In the top module of the example model all the variables are declared as
LOCAL because it is a closed system. (Open system have at least one variable or signal of restriction type
INPUT or MULTREST.)

To provide an intuition for the notation, the textual CTA version of the example system is shown in some
figures. The top module is the module ’RailRoadCrossing’ (Fig. 7), which models the system consisting of
the train (Fig. 8), the gate (Fig. 9), and the controller (Fig. 10).

Declaration of the interface The modelling language of CTA has two orthogonal type classifications for
identifiers. There are four different restriction types to distinguish between different access modes:

– Local variables or signals are not visible outside the current module. They are used for communication
between submodules and the automaton of the current module.

– Input variables or signals may not be restricted in the current module. This means for signals that the
current module in every configuration must be able to react on such a signal.

– Output components may be restricted in the current module, but not outside the module. This means for
signals that the decision when this signal appears is only taken in the current module, not in any other
one.

– Multiply restricted variables may be restricted both in the current module and outside it (like normal
global components).



1 MODULE Train {
2 OUTPUT
3 app: SYNC;
4 exit: SYNC;
5 LOCAL
6 x: ANALOG; // Distance of the train.
7 INITIALIZATION {
8 STATE(Train) = Far AND x >= 1000; }
9 AUTOMATON Train {

10 STATE Far {
11 INV { x >= 1000; }
12 DERIV { DER(x) >= -50 AND DER(x) <= -40; }
13 TRANS { GUARD{ x = 1000; } SYNC !app; GOTO Near}
14 }
15 STATE Near {
16 INV { x >= 0; }
17 DERIV { DER(x) >= -50 AND DER(x) <= -30; }
18 TRANS { GUARD{ x = 0; } GOTO Past}
19 }
20 STATE Past {
21 INV { x <= 100; }
22 DERIV { DER(x) >= 30 AND DER(x) <= 50; }
23 TRANS { GUARD{ x = 100; } SYNC !exit; DO { x’ > 1000; } GOTO Far}
24 }
25 }
26 }

Fig. 8. The train model

1 MODULE Gate {
2 LOCAL
3 g: ANALOG; // Degree of the gate.
4 INPUT
5 lower: SYNC; // Lower the gate.
6 raise: SYNC; // Raise the gate.
7 INITIALIZATION {
8 STATE(Gate) = Open AND g = 90; }
9 AUTOMATON Gate {

10 STATE Open {
11 INV { g = 90; }
12 DERIV { DER(g) = 0; }
13 TRANS { SYNC ?raise; GOTO Open }
14 TRANS { SYNC ?lower; GOTO Down }
15 }
16 STATE Up {
17 INV { g <= 90; }
18 DERIV { DER(g) = 9; }
19 TRANS { SYNC ?raise; GOTO Up }
20 TRANS { SYNC ?lower; GOTO Down }
21 TRANS { GUARD{ g = 90;} GOTO Open }
22 }
23 STATE Down {
24 INV { g >= 0; }
25 DERIV { DER(g) = -9; }
26 TRANS { GUARD { g= 0;} GOTO Closed }
27 TRANS { SYNC ?raise; GOTO Up }
28 TRANS { SYNC ?lower; GOTO Down }
29 }
30 STATE Closed {
31 INV { g = 0; }
32 DERIV { DER(g) = 0; }
33 TRANS { SYNC ?raise; GOTO Up }
34 TRANS { SYNC ?lower; GOTO Closed}
35 }
36 }
37 }

Fig. 9.The gate model

For example, the controller in Fig. 10 has two input signals to communicate with the train. They should
be declared as input because the train forces the controller to react on the train actions. The controller
must be able to synchronise at each point in time with such input signals. For the communication with the
gate there are two output signals to control the gate. The declaration of a signal as output means that the
environment must be able to react on it. The clock ’t’ is used to measure the time to react on a signal in the
controller.



1 MODULE Controller {
2 LOCAL
3 t: CLOCK; // Timer for the controller.
4 INPUT
5 app: SYNC;
6 exit: SYNC;
7 OUTPUT
8 lower: SYNC; // Lower the gate.
9 raise: SYNC; // Raise the gate.

10 INITIALIZATION {
11 STATE(Controller) = Idle; }
12 AUTOMATON Controller {
13 STATE Idle { // Waiting for a signal from train.
14 TRANS { SYNC ?app; DO { t’ = 0; } GOTO ToLower}
15 TRANS { SYNC ?exit; DO { t’ = 0; } GOTO ToRaise}
16 }
17 STATE ToLower {
18 INV { t <= 5; }
19 TRANS {SYNC ?app; GOTO ToLower }
20 TRANS { SYNC !lower; GOTO Idle }
21 TRANS { SYNC ?exit; DO { t’ = 0; } GOTO ToRaise }
22 }
23 STATE ToRaise {
24 INV { t <= 5; }
25 TRANS { SYNC ?exit; GOTO ToRaise }
26 TRANS { SYNC !raise; GOTO Idle }
27 TRANS { SYNC ?app; DO { t’ = 0; } GOTO ToLower }
28 }
29 }
30 }

Fig. 10.The controller model

To provide an expressive syntax, there are five different data types, as in HyTech:

– CONST: A variable with a fixed value.
– DISCRETE: A variable which can be used to store a value. The derivation of a discrete variable is

always zero.
– CLOCK: A continuous variable with the fixed time derivation one.
– STOPWATCH: A clock which can be stopped. This means the time derivation can be zero or one.
– ANALOG: A continuous variable without restrictions for the time derivation.

The controller model of the railroad crossing has one clock as continuous variable and four signals.

Instantiations To get a model for the whole system, the module ’RailRoadCrossing’ contains three instan-
tiations of the other modules. Each of the interface variables and signals from the template module has to
be identified with one of the variables or signals from the containing module. Local variables or signals are
not identified with one of the containing module.

Automata, states and transitionsA hybrid automaton consists of a set of states. For each state, there is a
restriction to set the first time derivations of all the variables and another restriction to define an invariant
which must be fulfilled while the automaton stays in the state.

The transitions are syntactically contained in the source state of the transition. A transition consists of a
guard, a synchronisation label, a restriction to determine the values of the variables after the transition, and
the follower state. Such a discrete transition can only fire if the guard (a restriction over the variables) is
fulfilled and all other automata which also use the synchronisation label perform a transition with this label,
too.

Initialisation The starting state of an automaton and the initial value assignment for the variables are set
by the INITIALISATION clause.

Linear restrictions Linear restrictions are sets (disjunctions) of inequality systems to restrict the value
assignments of the variables. They consist of conjunctions of constraints which use the operators<, <=,



1 REGION CHECK RailRoadCrossing {
2 VAR
3 initial, error, reached : REGION;
4 COMMANDS
5 // We use the initial regions from the modules.
6 initial := INITIALREGION;
7 error := COMPLEMENT( STATE(Process_Gate.Gate) = Process_Gate.Closed )
8 INTERSECT
9 Process_Train.x < 250;

10 reached := REACH FROM initial FORWARD;
11 IF( EMPTY(error INTERSECT reached) ) {
12 PRINT "Safety requirement satisfied.";
13 }
14 ELSE {
15 PRINT "Safety requirement violated.";
16 PRINT "The resulting region:" reached " !";
17 };
18 }

Fig. 11.The analysis section for the railroad crossing model

>, >=, =, and<>. The expressions contained in the constraints must be linear, which means that the
expression must be an additive combination of numbers or variables which can be multiplied with a number.

A variable x can occur in three forms in linear restrictions:

– x addresses the value of x. In an assignment of a transition it means the value of x before the transition
is executed.

– x’ is used only in assignments of transitions to address the value of the variable after execution.
– DER(x) is used only in the DERIV-clause of a state to address the first time derivation of a variable.

Name spacesEach module has its own name space. All names of variables and signals are only known to
the module. To allow communication between different modules the interface components can be identified
with some components of the containing module, respecting consistency conditions. Local components
must not occur in an identification of interface components.

A module contains several different name spaces: Automata names, state names, variable and signal
names, instantiation names. For the module names only one global name space exists.

4.2 Verification language

The analysis language provided by the tool is described in the following section. It is similar to HyTech’s
analysis language [HHWT95], but extended to handle the different name spaces coming from the hierarchi-
cal name space structure.

As in the previous section the example is used for illustration. In Fig. 11 the analysis section for the
verification of the railroad crossing model is displayed.

The main idea is to compute with regions. There are variables for storing regions which are needed in
the further verification process, and statements to say how to compute the next step.

Declaration of region variables As illustrated in Fig. 11 three regions are declared: ’initial’ to have the
region for the starting point of reachability analysis, ’reached’ for the region representing the state space
which is reachable from ’initial’, and the region variable ’error’ for the region which should not appear in a
correct model.

Region expressionsA region expression consists of operations to build regions either from existing regions
or from linear restrictions, state restrictions, or region variables.

Region restrictions To define a region one can use linear restrictions over the variables of the module
on the one hand, e.g. ’ProcessGate.g>= 0’ to define a region of all configurations which fulfil the
condition that the variable ’g’ of the instantiation ’ProcessGate’ is greater than zero. On the other hand
a region can be defined by a state restriction, e.g. ’STATE(ProcessGate.Gate) = ProcessGate.Open’ to
define the region where the state of the automaton ’Gate’ of the instantiation ’ProcessGate’ is the state
’Open’.



Reachability operations For computation of regions which can be reached by using discrete and
time transitions from a given region there are four reachability operations: ’POST(<region>)’ and
’PRE(<region>)’ to compute the follower (or precursor) region using one time or discrete transition,
and ’REACH FROM<region> FORWARD’ and ’REACH FROM<region> BACKWARD’ to com-
pute the fixed point region using iterative ’POST’ (or ’PRE’) operations.

Set operationsTo build new regions by set operations the language provides three binary operators and
one unary operator: ’INTERSECT’ for the intersection of two regions, ’UNION’ for the union of two
regions, ’DIFFERENCE’ for the difference of two regions, and ’COMPLEMENT’ for the complement
of a region.

Region variable A region also can be defined by an existing region which is already computed and stored
in a region variable.

Initial region To access the initial region defined in the section ’INITIALISATION’ of the module de-
scription can be used in the analysis section by the keyword ’INITIALREGION’.

Convention for access to components.Because of the different name spaces, we use the dot notation
to address a special component in a ’Region restriction’ in a ’REGION CHECK’ section. In the analysis
section all variables and all states are available. The current name space is the name space of the top
model used for analysis, i.e. to access a component ’x’ of the module ’ProcessTrain’ the absolute name
Process Train:x is used, and the discrete state ’Far’ of the automaton ’Train’ contained in the module
instance ’ProcessTrain’ is accessible byProcess Train:Far.

Boolean expressionsA Boolean expression is used as a predicate over regions for statements which use a
condition to decide what they have to compute. Such a boolean expression consists of comparisons between
and checks of regions as well as boolean combinations of such expressions.

Comparisons To evaluate set relations between two regions there are the operators ’=’ which returns true
if both regions are the same sets, and the operator ’CONTAINS’ which returns true if the first region
contains the second one. To check whether a region is empty, one can use the keyword ’EMPTY’.

Combinations of boolean expressionsBoolean expressions can be combined by the usual operators
’AND’, ’OR’, and ’NOT’.

Statements To formulate the verification tasks different statements can be used. Possible statements are
assignments, if-then-statements, loops, and printing states.

Assignment One can assign a computed region to a previously declared region variable for further use with
an assign statement ’<regvar> := <regexpr>’.

Conditional statement With the keywords ’IF’, ’THEN’ and ’ELSE’ one can evaluate boolean expressions
and depending on the result execute some statements.

Iteration To define iterative verification processes a statement ’WHILE’ is provided with the expected
meaning.

Output of results To put messages out on the screen, the statement ’PRINT’ is possible with different ar-
guments. The argument of the print statement can be a string, a region expression or a region expression
between two strings. A region is printed out as a set of inequalities over the variables and conditions
about the discrete states. The print statement of the code in Fig. 11 illustrates it.

The statements in the example define three regions: the initial configurations, the error region (which the
model has to avoid), and the region which can be reached starting from the initial region. The ’IF’ statement
evaluates whether the computed region is empty or not.

5 CTA tool environment

The first version of the CTA tool is implemented in C++ and consists of the following components:

– A compiler front-end for thesystem descriptionto build the hierarchy of hybrid modules in memory.
– A library which provides the data structures and algorithms for the double description method (DDM)

symbolic representation of the regions[FP96].



Fig. 12.CTA Tool

– An interpreter for the analysis language which provides several analysis commands forreachability
analysis. It transforms parts of the model needed in the verification into a DDM representation and
invokes the analysis tasks on the data structures.

The tool works in the way depicted in Fig. 12: There are two inputs, a description of the model as CTA
modules and a specification of required properties as analysis commands. First, the tool analyses the model
regarding context conditions like consistency and compatibility of combined modules.

After that, the analysis command interpreter executes the analysis commands and writes out the results
of the verification process. To avoid problems with the name spaces, the module which will be used for
analysis has to be declared in each region section.

At least for reachability analysis we can only use one single hybrid automaton. From this it follows that
we have to transform our hierarchically structured system of communicating modules to a flattened normal
form. This normal form of CTA consists of a set of hybrid automata without scopes, special data types and
restriction types of variables/signals as well as without abstraction layers as a ’flat’ system. This is done
with the help of our tool after context check and some additional analysis. The second step is to produce a
product automaton from the set of hybrid automata.

If we have not modelled all necessary transitions for reacting on input signals in an automaton, the tool
adds these transitions automatically, but they lead to a special error state ’INPUTERROR’. If such a state
exists, we can analyse if this state is reachable. If it is reachable then we have modelled a situation where
an input signal is restricted, and thus we have a modelling mistake.

5.1 Region representation

From the real-valuedness of the variables follows the infinity of the set of configurations of any automaton
with at least one analogous variable. Thus, for the analysis the tool has to use a symbolic representation
of configuration sets. In the CTA tool a region is represented by sets of pairs(s; a), wheres is a discrete
state anda is a set of convex polyhedra inIRjV j, which are limited by hyper-planes. For operations over the
polyhedra the tool uses the double description method. A region (as a set of configurations) is represented
by a map which assigns to each state the corresponding set of polyhedra (if it is not empty).



Fig. 13.Structure of automaton representation

Fig. 13 shows a rough overview of the internal representation with focus on the main data structure: The
polyhedra. One automaton consists of a set of states and a set of transitions. Each state has two important
components, one set of polyhedra for the state invariant and another set of polyhedra for the derivation. We
have to use sets of polyhedra because the data structure with the efficient algorithms represents only convex
polyhedra. Each transition has two such sets, the guard and the allowed assignments.

The component for the polyhedron representation is the most important one because all the algorithms
of automaton components are based on the basic algorithms like intersection, unions and emptiness check
for such polyhedra.

5.2 Results of the verification of the example

For analysis of the railroad crossing example we used the code from Fig. 11. Starting with the initial config-
uration of all automata the tool computes the region of reachable configurations. The region which violates
the safety condition of the example is stored in another region. If the intersection of the reached region and
the error region is nonempty, the model violates the condition. Using the model given in former sections the
tool computes that the intersection is empty and thus the model fits the safety conditions. After execution
of an reachability statement the tool gives a message how many steps were used to reach the fixed point.

The verification task of the example which is displayed in Fig. 11 fails if we increase the reaction time
’�’ of the controller or if we increase the safety distance in which the train must not be before the gate is
closed.

6 Open Questions

The verification of modelled systems with a lot of combined automata (i.e. more than five automata) is an
open problem of the current version of the tool. As in other tools (i.e. HyTech), the technique used in the
CTA-tool does not use symbolic representation for the discrete part of a configuration.

In our tool the region representation is separated from the rest of the tool through a clear interface.
Thus, we are able to plug in other representation techniques. In the next step the research group is going to
investigate the possibilities of BDD data structures for representing continuous state spaces and the discrete
state space together.
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