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Abstract. To develop efficient algorithms for the reachability analysis
of timed automata, a promising approach is to use binary decision
diagrams (BDDs) as data structure for the representation of the
explored state space. The size of a BDD is very sensitive to the ordering
of the variables. We use the communication structure to deduce an
estimation for the BDD size. In our experiments, this guides the choice
of good variable orderings, which leads to an efficient reachability
analysis. We develop a discrete semantics for closed timed automata
to get a finite state space required by the BDD-based representation
and we prove the equivalence to the continuous semantics regarding
the set of reachable locations. An upper bound for the size of the BDD
representing the transition relation and an estimation for the set of
reachable configurations based on the communication structure is given.
We implemented these concepts in the verification tool Rabbit [BR00].
Different case studies justify our conjecture: Polynomial reachability
analysis seems to be possible for some classes of real-time models, which
have a good-natured communication structure.

Keywords: Timed automata, Discretization, BDDs, Formal verification,
Real-time systems

1 Introduction

The demand for correct controllers in reactive systems, especially in safety-
critical systems, has more and more influence on the development process. There-
fore, many developers use formal methods. Model checking, i.e. the process which
checks whether a particular model satisfies a given specification or not, is com-
monly used for verification of automata-based models. It is very popular because
the verification task is done full-automatically by tools.

In this paper we use timed automata as the formalism to describe the system
and reachability analysis for the verification process. To ensure safety properties,
the set of reachable configurations is computed and then it is checked whether
unsafe states are reachable or not.
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Reachability analysis of timed automata has been implemented in tools like
Kronos [BDM+98] and Uppaal [LPY97] which represent the continuous part of
the model (i.e. the clock valuations) as difference bound matrices. This tech-
nique has two main disadvantages: firstly, locations are enumerated explicitly,
which often results in the state explosion problem, and secondly, that there is no
canonical representation for (non-convex) clock valuations, which often hinders
the construction of efficient algorithms.

Because binary decision diagrams became very popular as a data structure
for model checking of automata-based models, it is obvious to use a symbolic
representation based on BDDs for the discrete states in a first step. The sec-
ond step towards an efficient reachability check is to use a discrete semantics
for the timed automata. Using BDDs also for the representation of the contin-
uous state space allows a uniform representation of the discrete as well as the
continuous part of the model. There already exists some experience with tool
implementations of this technique, e.g. using a BDD-based version of Kronos
[BMPY97].

One of the most important demands for industrial use is the efficiency of the
verification process. This means that our task is to find efficient algorithms and
heuristics that solve the problem with good (desired polynomial) space and time
complexity.

In this paper we introduce a third step leading to polynomial time and space
complexity of the reachability analysis for some classes of models. We use the
communication structure, and also the knowledge of the developer of the model
(by providing a notation for structural modeling) to compute good variable
orderings for the BDD representation. Using such variable orderings compresses
the BDD representation of the reachable configurations dramatically and thus,
leads to more efficient verification.

Our paper is structured as follows: Section 2 introduces the formal definition
of timed automata and their continuous semantics. We also explain our notation
for modular modeling. Section 3 illustrates a modular model of a MOS circuit
and the timed automaton for Fischer’s protocol. Section 4 introduces a discrete
semantics for closed timed automata and a proof of the equivalence of both
semantics regarding the reachability problem. In Section 5 we explain the impact
of the communication structure on the BDD representation, we introduce an
estimation for the size of the BDD for the reachable set and its implications for
finding good variable orderings. Section 6 explains the results of our experiments.

2 Cottbus Timed Automata

The main goal of our modeling formalism is to combine knowledge of software
engineering, i.e. hierarchical structuring of large system descriptions, and the
well-investigated theoretical basis of timed automata. Thus, we use composi-
tional modules that have well-defined interfaces and contain timed automata to
describe its behavior [BR98,BR99]. In this section we introduce timed automata
informally using an example, then we introduce CTA modules which is a mod-
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Fig. 1. Timed automaton for an nMOS transistor.

eling concept providing means for modular design. After this we give a formal
definition of timed automata as used in this paper.

2.1 Example

Fig. 1 shows a timed automaton which models the behavior of an nMOS transis-
tor. The automaton consists of four locations. Location Off is the initial location
of the automaton and the initial value for out is 0. It models the situation that
the transistor is non-conducting. The transistor can stay in this situation as long
as the input gate is 0. When the gate becomes high the automaton takes the
transition to location Rising and resets clock c. In this moment the transistor
starts to open its channel. Location Rising as well as location Falling are called
unstable, because in reality the output changes during this situation. If the gate
is still high after at least 2 time units the channel of the transistor can be con-
ducting and thus, the automaton can go to location On setting variable out to
high. The variable out represents the state of the transistor. After at most 3 time
units the automaton must leave location Rising. A transition to location On is
possible, or if the gate is low meanwhile the automaton has to go to location
Off immediately. The automaton has an analogous behavior for switching from
conducting (out = 1) to non-conducting (out = 0).

2.2 Informal Introduction to CTA Modules

This section describes informally the formalism of Cottbus Timed Automata
(CTA). A formal definition and the complete semantics of CTA are given
in [BR99].

A CTA system description consists of a set of modules. One of them is des-
ignated as the top module. It models the whole system. The other modules are
used as templates. They can be instantiated several times in different modules.
Thus, it is possible to express a hierarchical structure of the system, and to
define replicated components of a system just once.
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Each module consists of the following components:

– An identifier. Identifiers are used to name the modules within the system
description.

– An interface. The interface contains the declarations of clock variables,
discrete variables and synchronization labels used by the components of the
module.
– Synchronization labels. Synchronization labels (shortly called signals)

are used to synchronize transitions of automata contained in different
modules. Synchronization labels follows the concepts of events in CSP.

– Variables. Clock variables are used to model (predominantly) continu-
ously changing components of a real-time system. Discrete variables are
provided to store discrete values. The values are changed by an assign-
ment in a transition of the automaton.

– A timed automaton. A module contains an automaton. This automaton
consists of a finite set of states, a finite set of transitions between these states,
and an alphabet of synchronization labels.

– Initial condition. This is a predicate over the module variables and the
states of the module’s automaton specifying the initial configuration.

– Instances. A module may contain instances of previously defined modules.
This is used to model systems containing subsystems, and it is especially
helpful if a subsystem occurs several times in a system. An instance consists
of the following components:
– An identifier is used to give a name to the instance.
– A reference to a module defines which module is instantiated.
– A unification of interface components of the instantiated module with

declared components of the containing module defines how the instance
is connected to the containing module. This may identify interface sig-
nals and interface variables of the instantiated module with signals and
variables of the containing module.

In a CTA module each of the interface components has a restriction type
to control the access to the component. There are four different restriction types
for variables and signals:

– INPUT The declaration of a variable as input variable for a module means
that this module can only read this variable: the value of an input variable
may not be restricted within any value assignment of a transition. For a
signal the declaration as input means the following: for each input signal
and each state of the automaton, some transition labeled with the signal can
always be taken. In this way the automaton does not restrict the input signal
and thus it is not to blame for a timed deadlock. Thus, it is a guarantee for
the environment that the module does not change that component.

– OUTPUT the declaration of a variable or signal as OUTPUT is an assump-
tion, that the variable or signal is used only as INPUT in all other modules
in the environment.
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– MULTREST The multiply restricted components are available for all ac-
cess modes. A module as well as the environment for which a signal or
variable is declared as multiply restricted can restrict the component in any
way.

– LOCAL The declaration of a variable or signal as LOCAL means that it is
not visible outside the module and thus no other module can access such a
variable or signal.

2.3 Timed Automata

This section gives a definition of timed automata and their continuous semantics.
We use a formal definition of timed automata similar to that introduced by Alur
and Dill [AD94], because it is commonly accepted and provides a good standard.

Definition. We define clock constraints allowed as invariants and guards in
an automaton. Let X be a set of clocks. Clock constraints over X are conjunc-
tions of comparisons of a clock with a time constant from IN, the set of natural
numbers (including 0). Formally, the following grammar generates the set of
clock constraints over X:

ϕ := x ≤ c | x ≥ c | x < c | x > c | ϕ ∧ ϕ,

with x ∈ X and c ∈ IN.
A clock assignment v of X is a total function from X into the set of non-

negative real numbers IR+. V al(X) denotes the set of all clock assignments of X.
For a clock constraint ϕ ∈ Φ(X), [[ϕ]] denotes the set of all clock assignments of
X that satisfy ϕ.

The clock assignment which assigns the value 0 to all clocks is denoted by v0.
For v ∈ V al(X) and δ ∈ IR+, v + δ is the clock assignment of X that assigns the
value v(x) + δ to each clock x. For v ∈ V al(X) and Y ⊆ X, v[Y := 0] denotes
the clock assignment of X that assigns the value 0 to each clock in Y and leaves
the other clocks unchanged.

A timed automaton A is a tuple (L, L0, X, Σ, I, E), where

– L is a finite set of locations,
– L0 ⊆ L is a set of initial locations,
– X is a finite set of clocks,
– Σ is a finite set of synchronization labels,
– I is a total function that assigns an invariant from Φ(X) to each location in

L,
– E ⊆ L×Σ×Φ(X)×2X×L is a set of switches. A switch (l, a, ϕ, Y, m) repre-

sents a transition from location l to location m labeled with synchronization
label a. The guard ϕ has to be satisfied to enable the location switch. The
switch resets all clocks in the set Y to the value 0.
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A configuration of a timed automaton A is a pair (l, v) with l ∈ L and
v ∈ V al(X).

For a more compact notation discrete variables (which have a finite subset
of the natural numbers as domain) are introduced which change their value
only by location switches. Discrete variables are not considered explicitly here
because they can be considered as an abbreviating notation for automata. Our
tool implementation allows for discrete variables because it does not matter
whether a BDD variable represents the state of an automaton or the value of a
discrete variable directly. We can apply the theoretical results by transforming
discrete variables into automata where a location represents the value and a
labeled transition represents a read/write operation for the value change of a
discrete variable.

Semantics. The semantics of a timed automaton is defined by associating a
labeled transition system with it. A labeled transition system S is a tuple
(Q, Q0, Σ,→) where Q is the set of configurations, Q0 ⊆ Q is a set of initial
configurations, Σ is a set of labels, and →⊆ Q × Σ × Q is a set of transitions.
The system starts in an initial configuration and can change its configuration
from q to q′ on label a if q

a→ q′. q → q′ is written if q
a→ q′ for some label a.

The continuous semantics [[A]]C of a timed automaton A =
(L, L0, X, Σ, I, E) is the labeled transition system (L × V al(X), L0×{v0}, Σ ∪
IR+,→), with → containing two kinds of transitions:

– Time transitions:
For (l, v) ∈ L × V al(X) and δ ∈ IR+, (l, v) δ→ (l, v + δ) if v ∈ [[I(l)]] and
v + δ ∈ [[I(l)]].

– Discrete transitions:
For (l, v) ∈ L × V al(X) and (l, a, ϕ, Y, m) ∈ E, (l, v) a→ (m, v[Y := 0]) if
v ∈ [[ϕ]].

Note that for all clock constraints ϕ ∈ Φ(X) the statements “v ∈ [[ϕ]] and
v+δ ∈ [[ϕ]]” and “for all δ′ ∈ IR with 0 ≤ δ′ ≤ δ, v+δ′ ∈ [[ϕ]] holds” are equivalent.
This is true because only conjunctions are allowed as clock constraints.

In the following we define the runs and the reachable locations for a
timed automaton A = (L, L0, X, Σ, I, E) and a labeled transition system
S = (Q, Q0, ΣS ,→). Let (q0, q1, ..., qk) be a finite sequence of configurations
and a0, a1, ..., ak−1 ∈ ΣS , such that q0 ∈ Q0 and qi

ai→ qi+1 holds for all
i ∈ {0, 1, ..., k− 1}. Then (q0, q1, ..., qk) is a run of A with semantics S. RunA,S
denotes the set of runs of A with semantics S. The configuration qk is called
reachable. ReachA,S denotes the set of reachable configurations of A with se-
mantics S. If qk = (l, v) with l ∈ L and v ∈ V al(X), then the location l is
called reachable. ReachLocA,S denotes the set of reachable locations of A with
semantics S.

Two semantics S1 and S2 are location-equivalent for a timed automaton
A, iff ReachLocA,S1 = ReachLocA,S2 holds.
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The reachability problem for a timed automaton is the question whether
for a given timed automaton A and a location l, l ∈ ReachLocA,[[A]]C holds.

Complex systems can be described as parallel composition of a set of timed
automata which communicate through synchronization labels.

The semantics of a composition of two timed automata A1 and A2 with
disjoint sets of clocks is defined to be the semantics of the product automa-
ton A1‖A2. The locations of the product automaton are pairs of component
locations, and their invariants are conjunctions of the invariants of the corre-
sponding component locations. Two switches of different components with the
same synchronization label are synchronized. We define formally:

Let A1 = (L1, L
0
1, X1, Σ1, I1, E1) and A2 = (L2, L

0
2, X2, Σ2, I2, E2) be two

timed automata, and assume that X1 ∩X2 = ∅. The product automaton A1‖A2
is the timed automaton (L1×L2, L

0
1×L0

2, X1∪X2, Σ1∪Σ2, I, E) with I(l1, l2) =
I1(l1) ∧ I2(l2) and E defined as the set of the following switches:

– for a ∈ Σ1 ∩ Σ2, for every (l1, a, ϕ1, Y1, m1) ∈
E1 and (l2, a, ϕ2, Y2, m2) ∈ E2 we have
((l1, l2), a, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (m1, m2)) ∈ E,

– for a ∈ Σ1 \ Σ2, for every (l1, a, ϕ1, Y1, m1) ∈ E1 and l2 ∈ L2 we have
((l1, l2), a, ϕ1, Y1, (m1, l2)) ∈ E,

– for a ∈ Σ2 \ Σ1, for every (l2, a, ϕ2, Y2, m2) ∈ E2 and l1 ∈ L1 we have
((l1, l2), a, ϕ2, Y2, (l1, m2)) ∈ E,

– these are all transitions.

3 Examples: CTA Models of a Mutex Protocol and a
MOS Circuit

In this section we introduce CTA models of two examples: Fischer’s timing-based
protocol for mutual exclusion for n processes [Lam87], which serves as benchmark
in many publication and an AND circuit with 4 input lines. A model of this
circuit using plain timed automata is used by [BMPY97] for the tool Kronos.
At the end of the paper we use this example for verification and comparison with
Kronos.

Fischer’s protocol. The model is composed from n timed automata like the
one depicted in Figure 2, each modeling one process. Each component automaton
has four locations. Uncritical is the initial location and represents the uncritical
region of the process. The shared discrete variable k is initialized with the value
0. From this location only one transition is possible: If the shared variable ensures
that no other process tries to enter the critical region (k = 0), the process can
move to the location Assign. This location expresses that a process needs at most
a time units to complete the assignment k := i. Therefore, the clock xi measures
the staying time in this location, and the invariant forces the automaton to leave
the location within a time units. Then the transition to the Wait location sets
the variable k to process identifier i. In this location the process has to wait at
least b time units to guarantee that all other processes completed the assignment.
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Fig. 2. Fischer’s mutual exclusion protocol.

After b time units it is allowed to enter the critical region if k = i. Otherwise
it goes back to the uncritical region. Leaving the critical region the automaton
sets k to value 0 to signify that the resource is free again.

MOS circuit. How the model is built up by several module instances and
automata is shown in Fig. 3. It illustrates the communication connections be-
tween different components in a manner something like data flow diagrams. An
edge from a variable to a module instance indicates read only access, an edge
from a module instance to a variable indicates an exclusive write access. The
main module modeling the behavior of the logical AND gate with four inputs
consists of two module instances of a NAND gate and one module instance of a
NOR gate. The environment of the AND gate is modeled by a clock p for the
time cycles and four variables to model the four input lines. The clock has the
initial value 0, and when the value 15 is reached the automaton resetP resets
the clock to 0. (Automata are drawn as graphs within a circle.) A module Input
consists of an automaton which can change the value of one of the input vari-
ables once during the first five clock ticks of p. During the last ten clock ticks
the input signals stay unchanged (they are stable). The binary variables o1 and
o2 represent the output values of the two NAND gates and o models the output
of the NOR gate and thus the output of the whole circuit.

Fig. 4 shows the structure of the module for NAND gates (named Nand in the
figure). It consists of two pMOS transistors and two nMOS transistors. Reading
the variable out (conducting or non-conducting) of the transistors (connected
to this module as oP1, oN1, oP2 and oN2) the automaton (named nand in the
figure) determines the output of the NAND gate. The behavior of the module
for NOR gates is analogous.

A module for an nMOS transistor contains a clock c and an automaton. An
nMOS transistor takes between 2 and 3 time units to change the output after
a change of the gate is detected as shown in Fig. 1. The differences to pMOS
transistors are the inverse output value and that the pMOS transistors have to
react not earlier than 4 time units after a change at the gate.
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Fig. 3. Model of the AND circuit.

Interesting questions about the behavior of the AND gate are for example:
How many transistors can switch their state together at the same point in time?
(This number is proportional to the maximum of current needed by the gate.) Is
it possible that a short circuit occurs in the AND gate? To answer these questions
we have to compute the reachable configurations of the model. In Section 6 we
show only results for the computation of reachable configurations because this
is the bottleneck of the reachability analysis.

The real-valuedness of the clocks leads to an infinite state space. Therefore,
we use a discretization of the continuous state space as a requirement to get a
finite state space. We give a formal definition of a discrete semantics in the next
section.

4 Discretization

The discretization of time is possible for all timed automata [GPV94]. However,
in the following we restrict ourselves to the subclass of closed timed automata
to permit a discretization which is particularly simple and which allows very
efficient reachability analysis. Closed timed automata have only clock con-
straints ϕ generated by ϕ := x ≤ c | x ≥ c | ϕ∧ϕ with x ∈ X and c ∈ IN, i.e. the
relations < and > are not allowed. The product automaton of two closed timed
automata is closed again.

For closed timed automata it is sufficient to use integer clock values for the
computation of reachable locations. For a set of clocks X the set of integer clock
assignments V alI(X) is defined to be the set of total functions from X to IN. Let
CA(x) be the greatest constant occurring in some expression constraining the
variable x. For v ∈ V alI(X) and δ ∈ IN, v ⊕ δ is the clock assignment of X that
assigns the value min (v(x) + δ, CA(x) + 1) to each clock x. The definition of the
discrete semantics is analogous to the continuous semantics previously defined.
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Let A = (L, L0, X, Σ, I, E) be a closed timed automaton. The discrete
semantics [[A]]I of A is the labeled transition system (L × V alI(X), L0 ×
{v0}, Σ ∪ IN,→I) with the following transitions:

– For (l, v) ∈ L × V alI(X) and δ ∈ IN, (l, v) δ→I (l, v ⊕ δ) if v ∈ [[I(l)]] and
v ⊕ δ ∈ [[I(l)]].

– For (l, v) ∈ L × V alI(X) and (l, a, ϕ, Y, m) ∈ E, (l, v) a→I (m, v[Y := 0]) if
v ∈ [[ϕ]].

To prove the location equivalence of discrete and continuous semantics, we
define for a set of clocks X the relation �⊆ V al(X) × V alI(X) associating
every continuous clock assignment with its possible discrete representatives.
For v ∈ V al(X) and v′ ∈ V alI(X), v � v′ holds iff there exists some γ ∈ IR with
0 ≤ γ < 1, such that for each clock x ∈ X:

a) v′(x)− 1 + γ < v(x) ≤ v′(x) + γ, or
b) v′(x)− 1 + γ < v(x) and v′(x) = CA(x) + 1.

Thus, v′ is a representative of v if v′ results from v by rounding off all clock values
with fractional parts smaller than or equal to a certain bound and by rounding
up all clock values with fractional parts greater than this bound in the first
case. The second case restricts the range of the representatives to the greatest
constant CA(x) + 1; this is sufficient to distinguish the interesting situations.

Theorem 1. Let A be a closed timed automaton with the set of clocks X and
let v ∈ V al(X) and w ∈ V alI(X) be clock assignments with v � w.

1. If v satisfies a clock constraint ϕ of A, then w also satisfies ϕ.
2. For all Y ⊆ X, v[Y := 0] � w[Y := 0].
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Proofs of the location equivalence of the discrete semantics and the continuous
semantics for other formalisms than timed automata can be found in [HMP92]
and [AMP98].

Lemma 1. Let A = (L, L0, X, Σ, I, E) be a closed timed automaton with the
continuous semantics [[A]]C = (L × V al(X), L0 × {v0}, Σ ∪ IR+,→C) and the
discrete semantics [[A]]I = (L × V alI(X), L0 × {v0}, Σ ∪ IN,→I). Then the
following holds:

1. Let (l, v′), (l, w′) ∈ L × V alI(X), δ′ ∈ IN, such that (l, v′) δ′
→I (l, w′) holds.

Then for all v ∈ V al(X) with v � v′ there exists a w ∈ V al(X), such that

(l, v) δ′
→C (l, w) and w � w′ holds.

2. Let (l, v′), (m, w′) ∈ L× V alI(X), a ∈ Σ, such that (l, v′) a→I (m, w′) holds.
Then for all v ∈ V al(X) with v � v′ there exists a w ∈ V al(X), such that
(l, v) a→C (l, w) and w � w′ holds.

3. Let (l, v), (l, w) ∈ L×V al(X), δ ∈ IR+, such that (l, v) δ→C (l, w) holds. Then
for all v′ ∈ V alI(X) with v � v′ there exists a δ′ ∈ IN and a w′ ∈ V alI(X),

such that (l, v′) δ′
→I (l, w′) and w � w′ holds.

4. Let (l, v), (m, w) ∈ L × V al(X), a ∈ Σ, such that (l, v) a→C (m, w) holds.
Then for all v′ ∈ V alI(X) with v � v′ there exists a w′ ∈ V alI(X) such that
(l, v′) a→I (m, w′) and w � w′ holds.

Proof. The statements 1 and 2 follow from the definitions of the semantics.
Statement 3: We have to distinguish the two cases of the definition of �. Let

v′ ∈ V alI(X), v � v′. Then according to the definition of the relation � there
exists some γ ∈ IR with 0 ≤ γ < 1, such that the following holds for all x ∈ X:

Case a) v′(x) + γ + δ < CA(x) + 1:
v′(x)− 1 + γ < v(x) ≤ v′(x) + γ.

Because w = v + δ, the following holds for all x ∈ X:
v′(x)− 1 + γ + δ < w(x) ≤ v′(x) + γ + δ.

Let δ′ = bδ + γc and w′ = v′ + δ′. Then for all x ∈ X the following holds:
w′(x)− δ′ − 1 + γ + δ < w(x) ≤ w′(x)− δ′ + γ + δ.

Because 0 ≤ γ + δ − δ′ < 1, this implies w � w′.

Case b) v′(x) + γ + δ ≥ CA(x) + 1:
Using δ′ = bδ + γc and w′ = v′ ⊕ δ′, analogously to Case 1 we obtain:

w′(x)− δ′ − 1 + γ + δ < w(x),
and thus, w � w′.

Because v and w satisfy the invariant I(l) and v � v′ and w � w′ hold, we
can conclude from Theorem 1, statement 1 that v′ and w′ satisfy the invariant

I(l). Thus, we get (l, v′) δ′
→I (l, w′).

Statement 4 follows from Theorem 1. ut
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Theorem 2. For every closed timed automaton A, ReachLocA,[[A]]C =
ReachLocA,[[A]]I holds.

Proof. Let A = (L, L0, X, Σ, I, E) be a timed automaton with the continu-
ous semantics [[A]]C = (L × V al(X), L0 × {v0}, Σ ∪ IR+,→C) and the discrete
semantics [[A]]I = (L × V alI(X), L0 × {v0}, Σ ∪ IN,→I).

At first, we prove ReachLocA,[[A]]C ⊆ ReachLocA,[[A]]I . We show per induction
over k that for every run ((l0, v0), (l1, v1), ..., (lk, vk)) in RunA,[[A]]C there exists
a run ((l0, v′

0), (l1, v
′
1), ..., (lk, v′

k)) in RunA,[[A]]I , such that vi � v′
i holds for all

i ∈ {0, 1, ..., k}.
Start of induction: According to the definition of run, l0 ∈ L0 and v0 = v0

hold. ((l0, v0)) is also in RunA,[[A]]I , and v0 � v0 holds.
Inductive step: We have to show that there exists some a′ ∈ Σ∪ IN and some

v′
i+1 with vi+1 � v′

i+1, such that (li, v′
i)

a′
→I (li+1, v

′
i+1). The inductive hypothesis

ensures vi � v′
i and there exists some a ∈ Σ ∪ IR+ with (li, vi)

a→R (li+1, vi+1).
The assertion of the theorem follows from the claim of Lemma 1, statement 3,
if a ∈ IR+, and of statement 4, if a ∈ Σ. This finishes the inductive proof.

Similarly, we can show using statements 1 and 2 of Lemma 1:
ReachLocA,[[A]]I ⊆ ReachLocA,[[A]]C . ut

5 Efficient Verification Using the Structure of the Model

Because the number of states of a product automaton grows exponentially in
the number of processes, the state explosion problem forces typically the use of
symbolic representation of the state space. The technique of representing sets of
states as binary decision diagrams is in widespread use and also implemented in
our tool Rabbit. The second step to efficient verification is to use a finite set of
configurations for the reachability analysis by introducing a discrete semantics.
The discretization enables a unique representation of the set of configurations
consisting of locations of the automata together with the discretized continuous
state space of clocks. This technique is also examined in [BMPY97].

In this section we introduce an advanced technique for efficient verification
of some classes of models. We use a variable ordering resulting from the com-
munication structure of a system and we determined empirically the polynomial
complexity of the reachability analysis of some classes of models. We prove an
upper bound for the representation of the transition relation and that it is poly-
nomial for Fischer’s protocol. Because of our empirical studies we think that
it is sound to infer from these results a size estimation for the representation
of the set of reachable configurations. We use this estimation as a qualitative
assessment of different variable orderings.

5.1 Communication Graph and Variable Ordering

Aziz et al. proved an upper bound for the size of BDDs for transition relations
of communicating finite automata [ATB94]. On the basis of this upper bound
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Fig. 5. Communication graph and variable ordering, example 1.

they determine good variable orderings for the set of reachable locations. In this
section we use the results of that work to explain the characteristics of good
variable orderings for timed automata.

The problem is to find a variable ordering for a given parallel composition
of the timed automaton A such that the number of nodes of the BDD repre-
sentation of ReachA,[[A]]I is as small as possible. For this purpose we investigate
the communication between the components. Two components Aj and Ak with
j, k ∈ {1, ..., n}, are communicating, symbolically Aj ⇀↽ Ak, iff Σj ∩ Σk 6= ∅
and j 6= k. Considering the components as nodes and the communication relation
⇀↽ as set of edges we get the communication graph.

We use simple examples to illustrate two general characteristics of good vari-
able orderings:

1. Communicating components have successive positions within the ordering.
2. Components which communicate with many other components are at the

beginning of the ordering.

We consider three finite automata (i.e. timed automata without clocks) A1,
A2 and A3, each having the locations l1, l2 and l3.

In the first example A3 communicates neither with A1 nor with A2. A1 and
A2 ensure by communication that they stay in the same location every time.
Let xi1 and xi2 encode the configuration of Ai. Fig. 5 shows the communi-
cation graph and the BDDs of the reachable locations for the variable ordering
(x11, x12, x21, x22, x31, x32) on the left side and (x11, x12, x31, x32, x21, x22) on the
right side. It illustrates that respecting characteristic 1 leads to a better variable
ordering.

In the second example A1 communicates with A2 and A3, and A2 does not
communicate with A3. It is ensured by communication that A1 and A2 as well
as A1 and A3 stay in different locations every time. Fig. 6 shows the commu-
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nication graph and the BDDs of the reachable locations for the variable order-
ings (x11, x12, x21, x22, x31, x32) and (x21, x22, x31, x32, x11, x12). Both orderings
do not differ with respect to the first characteristic, but the sizes of their BDDs
are different. We see that of two variable orderings the one respecting character-
istic 2 is better.

To derive an algorithm for finding variable orderings we first show an upper
bound of the BDD’s size of a transition relation of the product automaton.
The only bottleneck in our algorithms is the size of the BDD for the reachable
configurations, because we do not compute the monolithic transition relation
(instead we use partitioned transition relations represented by very small BDDs
[RAB+95]). But we need the upper bound for the transition relation, because
good variable orderings for the transition relation are often good for the set of
reachable configurations. Therefore, we derive an estimation for the size of the
set of reachable configurations from the upper bound for the size of the transition
relation. An algorithm for finding a good variable ordering searches for a variable
ordering having a low size estimation.

To justify this argumentation we refer to results of other research groups:
The result of [ATB94] is that there is a good correlation between the BDD size
predicted by the bound and the actual BDD size for the transition relation.
Experiments in [YBO+98] show that good variable orderings for the transition
relation are also good for the set of reachable locations. In [ATB94] as well as
in this paper it is demonstrated by empirical studies that we actually find good
variable orderings for the set of reachable configurations using this strategy.
However, there are counterexamples with linear growth of BDDs for the transi-
tion relation but exponential growth of BDDs for the reachable configurations
[McM92].

For the purpose of finding good variable orderings it is not necessary that
the estimated size is absolutely close to the real size because the estimation
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should only reflect the relation between different variable orderings, i.e. good
variable orderings should lead to better estimations than bad variable orderings.
Last, but not least the upper bound for the BDD’s size in the next section and
algorithms using the estimation have the advantage that they behave according
to both of the characteristics mentioned in this section, and these characteristics
reflect the experience and intuition of many experts.

5.2 Upper Bound for the BDD’s Size

In this section we prove the upper bound for the number of nodes of the BDD
for the transition relation. We start with an introduction of some conventions
and notations. In this section we adapt the notations introduced in Section 2.3
to be able to represent assignments by BDDs.

Range(x) is used to denote the range of a discrete variable x. Boolean vari-
ables are special discrete variables with the range {0, 1}. Let X be a set of
discrete variables. The set Φ(X) of constraints ϕ is generated by the following
grammar: ϕ := x1 ∼ c | x1 ∼ x2 | ϕ∧ϕ, with x1, x2 ∈ X, ∼ ∈ {≤,≥, <, >,=},
Range(x1) = Range(x2) and c ∈ Range(x1).

An assignment v of X is a total function which assigns an element of
Range(x) to each variable x. The set of all assignments of X is denoted by
V al(X). The set of all assignments of X that satisfy a constraint ϕ ∈ Φ(X) is
denoted by [[ϕ]]. ϕ is related to different sets of variables (because e.g. x > 5
is a constraint for both {x} and {x, y}). Therefore, we identify two sets of as-
signments V ⊆ V al(X) and W ⊆ V al(X ∪ Y ) iff W = {w ∈ V al(X ∪ Y )|∃v ∈
V al(X) ∀x ∈ X : w(x) = v(x)} holds.

Now we introduce some notations for a set of assignments V ⊆ V al(X).

– For a variable x ∈ X, the existential quantification ∃x.V is defined as
set of all assignments of X \ {x} with the values of all variables but x equal
to the values of the same variables in an assignment in V ; formally: for
w ∈ V al(X \ {x}), w ∈ ∃x.V holds iff there exists some v ∈ V al(X), such
that v(y) = w(y) for all y ∈ X \ {x}.

– For two variables x ∈ X and y 6∈ X, V [x← y] is the set of assignments which
is obtained by renaming x to y; formally: for a w ∈ V al((X \ {x}) ∪ {y}),
w ∈ V [x ← y] holds iff there exists a v ∈ V , such that v(x) = w(y) and
v(z) = w(z) for all z ∈ X \ {x}.

– For a variable x ∈ X and a constant c ∈ Range(x) the cofactor V |x=c is
defined as ∃x.(V ∩ [[x = c]]).

A finite relation can be represented by a set of assignments by mapping the
arguments of the relation to discrete variables. Let R ⊆ R1 ×R2 × ...×Rn be a
relation and X = {x1, x2, ..., xn} a set of discrete variables with Range(xi) = Ri

for all i ∈ {1, 2, ..., n}. Then R(x1, x2, ..., xn) denotes the set of assignments of
X with v ∈ R(x1, x2, ..., xn) iff (v(x1), v(x2), ..., v(xn)) ∈ R.

The algorithm for computing all reachable configurations of a parallel com-
position of n timed automata is shown in Fig. 7. We use the abbreviations
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introduced in the figure also in the following. We deal only with closed timed
automata and the integer semantics as introduced in the previous section. Trans-
fering the results to other discretizations is possible.

Input: parallel composition A = {L, L0, X, Σ, I, E}
with the discrete semantics [[A]]I = (Q, Q0, Σ ∪ IN,→)
of closed timed automata Ai = (Li, L

0
i , Xi, Σi, Ii, Ei), i ∈ {1, ..., n}

with the discrete semantics [[Ai]]I = (Qi, Q
0
i , Σi ∪ IN,→i)

and disjoint sets of clocks: Xj ∩Xk = ∅ for all j, k ∈ {1, ..., n} with j 6= k
Output: ReachA,[[A]]I (q1, ..., qn),
with variable qi corresponding to the configuration Ai (Range(qi) = Qi)

R := Q0(q1, . . . , qn)
do

Rprev := R
forall a ∈ (Σ ∪ {1})
R := R ∪

(
∃q1...∃qn(R ∩ a→(q1, q

′
1, ..., qn, q′

n))
)
[q′

1 ← q1]...[q′
n ← qn]

until R = Rprev

return R

Fig. 7. Computation of the set of reachable configurations.

For the proof of the upper bound we need a formal definition for BDDs.
The following definition is similar to the one from McMillan [McM92]. A BDD
is identified with its root node. Let

→
x be a vector (x1, x2, ..., xn) of Boolean

variables. If n = 0, then B is a binary decision diagram over
→
x iff B is the

0-terminal-node (short B = 0) or B is the 1-terminal-node (short B = 1). If
n > 0 then B is a BDD over

→
x iff

– B is a BDD over (x2, ..., xn), or
– B = (x1,B0,B1), where B0 and B1 are BDDs over (x2, ..., xn). B is called an

xn-node, B0 is called low child, and B1 is called high child of B.

A BDD B over (x1, x2, ..., xn) represents a set of assignments of
{x1, x2, ..., xn} which are denoted by [[B]] and defined as follows:

[[B]] =



∅, if B = 0
V al({x1, x2, ..., xn}), if B = 1
([[B0]] ∩ [[xi = 0]]) ∪ ([[B1]] ∩ [[xi = 1]]), if B = (xi,B0,B1)

In the sequel we consider only BDDs which are generated by applying only
the following rule: Fold together all equal subtrees. The second rule, which is to
eliminate nodes with two edges to the same sub-node, we do not apply because we
need these nodes for referencing within the formal considerations in the following.
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The number of nodes of such a BDD is an upper bound for the number of nodes
after applying the second rule. The first rule has more impact on the reduction
of the BDD and is more sensitive for the variable ordering than the second rule.

Proposition 1. Let B be a BDD over the vector (x1, x2, ..., xk) of Boolean vari-
ables and i ∈ {1, ..., k − 1}. Then the number of xi+1 nodes in B is less than or
equal to twice the number of xi nodes.

Let B be a BDD over (q1, q
′
1, ..., qn, q′

n), i ∈ {1, ..., n} and x the Boolean
variable which is the first in the variable ordering of the variables encoding
qi. Then |B|i is used to denote the number of x-nodes in B and |B|n+1 is
used to denote the number of terminal nodes in B. |B| is the number of all
non-terminal nodes in B. For a set of assignments V ⊆ V al({q1, q

′
1, ..., qn, q′

n})
and a set of variables M = {qi1 , q

′
i1

, ..., qik
, q′

ik
} (i1, ..., ik ∈ {1, ..., n}), V |M

denotes the set of all cofactors of V regarding the variables in M , i.e.
V |M = {V |qi1=c1,q′

i1
=c′

1,...,qik
=ck,q′

ik
=c′

k
| cl, c

′
l ∈ Qil

for all l ∈ {1, ..., k}}.
As abbreviating notation V |i denotes V |{q1,q′

1,...,qi−1,q′
i−1} for i ∈ {1, ..., n + 1}.

For a set M , |M | is used to denote the number of elements of M .

Proposition 2. Let B be a BDD over (q1, q
′
1, ..., qn, q′

n) and V ⊆
V al({q1, q

′
1, ..., qn, q′

n}) be a set of assignments with [[B]] = V . Then |B|i ≤
| V |i ∪ {∅} | holds for all i ∈ {1, ..., n + 1}.
Note: Let x1, ..., xs be the Boolean variables encoding q1, q

′
1, ..., qi−1, q

′
i−1. If there

exists an assignment of {x1, ..., xs} in V |i which is not an encoding of an assign-
ment of {q1, q

′
1, ..., qi−1, q

′
i−1}, then we have to consider the empty set as addi-

tional cofactor. This is the case if the cardinality of a set Qk (k ∈ {1, ..., i− 1})
is not a power of two. Otherwise |B|i = | V |i |.

From the number of cofactors of an assignment we can infer the size of
its BDD representation. An upper bound for the number of cofactors of the
transition relation is given by the following lemma. The time transitions are
taken synchronously for the clocks in all components. We would get additional
edges in the communication graph connecting all automata having a clock. This
does not give any hint for the variable ordering, and thus, we do not consider
them here. In the sequel we consider only the relation of discrete transitions
→′ =

⋃
a∈Σ

a→. To regard the communication structure we define a function
reflecting the communication between parts of the system. This function depends
on the ordering of the components. The set CommA(i) contains the indices of
all components of A which have an index less than i and communicate with a
component having an index greater than or equal to i: CommA(i) = {k | k < i
and there exists an l ≥ i with Ak ⇀↽ Al}.
Lemma 2. For the transition relation →′ (q1, q

′
1, ..., qn, q′

n) and every i ∈
{1, ..., n + 1}, the following holds:

∣∣→′(q1, q
′
1, ..., qn, q′

n)|i ∪ {∅}
∣∣ ≤ 4 ·

∏
k∈CommA(i)

|Qk|2 + 4
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Proof. At first we give a lemma used in our computation of the number of
cofactors. For all V, W ⊆ V al({q1, q

′
1, ..., qn, q′

n}), i1, ..., ik ∈ {1, ..., n} and cl, c
′
l ∈

Qil
(l ∈ {1, ..., k}) the following holds:

(V ∩W )|qi1=c1,q′
i1

=c′
1,...,qik

=ck,q′
ik

=c′
k

(1)
= V |qi1=c1,q′

i1
=c′

1,...,qik
=ck,q′

ik
=c′

k
∩ W |qi1=c1,q′

i1
=c′

1,...,qik
=ck,q′

ik
=c′

k

Equation 1 analogously holds for the union of sets of assignments.

We partition the transition relation→′ into three subsets. From its cofactors
we can conclude the cofactors of →′ applying equation 1.

Case 1. Discrete transitions concerning only the components A1 to Ai−1:⋃
a∈Σ\(Σi∪...∪Σn)

a→

=
⋃

a∈Σ\(Σi∪...∪Σn)
⋂

k∈{1,2,...,n}

{ a→k (qk, q′
k), if a ∈ Σk

[[q′
k = qk]], otherwise

=
⋃

a∈Σ\(Σi∪...∪Σn)




⋂
k∈{1,...,i−1}

{ a→k (qk, q′
k), if a ∈ Σk

[[q′
k = qk]], otherwise

∩ ⋂
k∈{i,...,n} [[q′

k = qk]]




=
⋃

a∈Σ\(Σi∪...∪Σn)
⋂

k∈{1,...,i−1}

{ a→k (qk, q′
k), if a ∈ Σk

[[q′
k = qk]], otherwise

∩ ⋂
k∈{i,...,n} [[q′

k = qk]]

Regarding equation 1 for the cofactors we get:(⋃
a∈Σ\(Σi∪...∪Σn)

a→
)∣∣∣

i
⊆

{
∅, ⋂

k∈{i,...,n} [[qk = q′
k]]

}
.

A sketch of the BDD for these cofactors is shown by Fig. 8. In the figure,
’A’ denotes a BDD for the part where transitions change the assignments
for the variables. ’E’ denotes the BDD for the empty set and ’B’ denotes the
BDD for the assignments with qk = q′

k.

Case 2. Discrete transitions concerning only the components Ai to An:⋃
a∈Σ\(Σ1∪...∪Σi−1)

a→

=
⋂

k∈{1,...,i−1} [[q′
k = qk]]

∩ ⋃
a∈Σ\(Σ1∪...∪Σi−1)

⋂
k∈{i,...,n}

{ a→k (qk, q′
k), if a ∈ Σk

[[q′
k = qk]], otherwise

Denoting the second term of the intersection by T , using equation 1 follows:(⋃
a∈Σ\(Σ1∪...∪Σi−1)

a→
)∣∣∣

i
⊆ {∅, T}. The BDD representation is shown in

Fig. 9.
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Case 3. Discrete transitions concerning components before Ai as well as com-
ponents from Ai:⋃

a∈(Σ1∪...∪Σi−1)∩(Σi∪...∪Σn)
a→

=
⋂

k∈{1,...,i−1}\CommA(i) [[q′
k = qk]]

∩ ⋃
a∈(Σ1∪...∪Σi−1)∩(Σi∪...∪Σn)

⋂
k∈CommA(i)∪{i,...,n}

{ a→k (qk, q′
k), if a∈Σk

[[q′
k =qk]], otherwise

Denoting the first term of the intersection as T1 and the second term
as T2 we get T1|i ⊆ {∅, V al({qi, q

′
i, ..., qn, q′

n})}, and, because T2 ⊆
V al( {qk, q′

k | k ∈ CommA(i)} ∪ {qi, q
′
i..., qn, q′

n} ), the following holds:
| T2|i | ≤

∏
k∈CommA(i) |Qk|2.

Applying equation 1,∣∣∣ (⋃
a∈(Σ1∪...∪Σi−1)∩(Σi∪...∪Σn)

a→
)∣∣∣

i
∪ {∅}

∣∣∣ ≤ ∏
k∈CommA(i) |Qk|2 + 1

holds.
Fig. 10 shows this most interesting part as BDD representation.
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Using equation 1 for the union of the three parts of the transition relation
the claim follows. ut

From the upper bound of the number of cofactors we derive an upper bound
for the BDD’s size now. We use |qi| to denote the number of Boolean variables
encoding qi.

Theorem 3. Let B be the BDD over (q1, q
′
1, ..., qn, q′

n) with [[B]] =→′

(q1, q
′
1, ..., qn, q′

n). Then the following holds:

|B| ≤
∑n

i=1

(
22|qi| − 1

)
·
(

4 ·
∏

k∈CommA(i)
|Qk|2 + 4

)

Proof. Lemma 2 states for every i ∈ {1, ..., n}:
∣∣→′ (q1, q

′
1, ..., qn, q′

n)|i ∪ {∅}
∣∣ ≤ 4 ·

∏
k∈CommA(i)

|Qk|2 + 4.

Using Proposition 2, for every i ∈ {1, ..., n}

|B|i ≤ 4 ·
∏

k∈CommA(i)
|Qk|2 + 4

follows. Finally, using Proposition 1, we get the upper bound for the number of
all BDD nodes which code qi and q′

i:

∑2|qi|−1
l=0 2l ·

(
4 ·∏k∈CommA(i) |Qk|2 + 4

)
=

(
22|qi| − 1

) · (4 ·∏k∈CommA(i) |Qk|2 + 4
)

.

Applying the sum over all i ∈ {1, ..., n} we get the claim. ut
The statement of this upper bound for the BDD’s size obviously reflects the

rules of the previous section: If we order communicating components on neigh-
boring positions in the variable ordering and if we place components communi-
cating with many other components at the beginning of the ordering, then the
sets CommA(i) have only few elements and the upper bound is relative small.

In the upper bound we used the assumption that q and q′ of one component
have successive positions within the variable ordering. This makes sense because
usually every bit of the successor configuration depends on all bits of the current
configuration and thus, there exist a lot of communication within a component.
Because a bit of the successor configuration usually is most inter-related to the
corresponding bit of the current configuration, we use an interleaved ordering,
i.e. each bit of the current configuration is directly followed by the corresponding
bit of the successor configuration.

To use the upper bound for the transition relation as size estimation for the
BDD representing all reachable configurations we need a modification of Theo-
rem 3. Furthermore, the aim is not to compute an upper bound but to compute
an estimation of the BDD’s size for comparison of different variable orderings by
an algorithm. Therefore, the size estimation should reflect the actual BDD size
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induced by the variable ordering as good as possible, because the quality of the
estimation corresponds directly to the quality of the variable ordering we will
”declare as the best”.

Differently from the BDDs for transition relations, BDDs for sets of reachable
configurations do not contain primed variables for successor configurations. This
leads to the following estimation:

∑n

i=1

(
2|qi| − 1

)
·
(

4 ·
∏

k∈CommA(i)
|Qk|+ 4

)
.

Let B be the BDD over (q1, ..., qn) with [[B]] = ReachA,[[A]]I (q1, ..., qn). For i ∈
{1, ..., n}, let the variable qi be encoded by the Boolean variables xi,1, ..., xi,|qi|,
such that B is a BDD over (x1,1, ..., x1,|q1|, ..., xn,1, ..., xn,|qn|). The estimation
contains the pessimistic bound that the number of xi,k+1 nodes in B is twice the
number of xi,k nodes (1 ≤ k < |qi|). This assumption is not realistic for variables
qi with large number of bits and the estimation is not very similar to the actual
size. To get a better estimation for the number of xi,k+1 nodes we can also use
a linear or exponential interpolation. In our tool implementation we use a linear
interpolation and for our purpose the estimation is sufficient because it reflects
the relation between different variable orderings approximately.

5.3 Finding Good Variable Orderings for CTA Models

An algorithm for finding the variable ordering of the best estimation, which
considers the bits encoding one component as a unit, must compute the size
estimation for all permutations of the sequence q1, . . . , qn. Such an algorithm is
of exponential time complexity and therefore, it is not relevant for practical use.
With a computation of the estimation in O(n2), the time complexity would be
O(n2n!)

Dynamic programming reduces this complexity to O(n32n) by storing the
results already computed in former iterations for parts of an ordering. But this
is not efficient and therefore we need an algorithm of polynomial time complexity.
Because of this, exact algorithms are not acceptable, especially for large numbers
of components. Thus, we have to accept heuristic solutions, e.g. we can use
the arbitrary insertion heuristic [LLKS85]. Using this heuristic we get a time
complexity in O(n3) which is sufficient for our purpose, i.e. to find a good variable
ordering regarding our estimation.

Using the structure of CTA models. Cottbus Timed Automata can be
considered as composition of timed automata and thus, the algorithms mentioned
above can be used. Nevertheless, it is very promising to use special techniques
for CTA which use the information about the hierarchical structure as hints for
good variable orderings.

The main idea is that the bit-encodings of all objects (variables, automata)
contained in the same module instance have successive positions in the variable
ordering because objects which are considered as strongly coupled are put to-
gether by the model’s developer. In the module hierarchy, it is considered that
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synchronization labels and variables are accessible only where they are really
needed. The modules’ interfaces should be as small as possible. These consider-
ations lead to a model in which the communication (in the sense of Section 5.1)
within a module normally is stronger than the communication of the module
with its environment.

We can not guarantee that an algorithm using the hierarchical structure
always computes better variable orderings than the algorithm for plain com-
position of timed automata, but using the structure has the following main
advantages:

– The modeller’s knowledge about the system is used.
– The problem of variable ordering is partitioned into smaller sub-problems,

which results in smaller computation times or that exact algorithms are
applicable for these smaller problems, and thus, one might be able to get
better variable orderings.

6 Experimental Results

To demonstrate the high performance of our approach we give two examples.
We use an algorithm for mutual exclusion to examine the computation of the
estimation of the BDD’s size and we validate the quality of the variable orderings
found using our heuristics by measuring the time and the number of nodes needed
for verification of the mutex property. The second example is an AND circuit.
We consider the module structure to find good variable orderings for the analysis
of this model.

Fischer’s protocol. Fischer’s protocol is a timing-based mutual exclusion pro-
tocol. We verified the mutual exclusion property for Fischer’s protocol for n
processes. The automaton modeling one process has a location for the critical
section. The verification task is to compute all reachable configurations and to
check whether there exists a reachable situation in which at least two processes
are in the critical section. The communication graph of Fischer’s protocol for n
processes is shown in Fig. 11. Changing the positions of the process automata
in the variable ordering has no effect on the estimation of the BDD’s size; only
the position of the variable k is important and that the encodings of clock and
location of an automaton have neighboring positions. Table 1 reports the results
of our experiments with different variable orderings. We give the computation
times in seconds on a SUN Ultra-Sparc 1 with 200 MHz processor. We exam-
ined five combinations of tools and strategies. The first row of an experiment
in the table contains the computation time in seconds and for experiments with
our tool the second row displays the growth of the maximal size of the BDD
representing reachable configurations.

In the third experiment we used a variable ordering violating the rule that
the variables of a component have successive positions. We used the variable
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Process 1 Process 2 Process n

Variable k

Fig. 11. Communication graph of Fischer’s protocol.

ordering ( variable k, automaton 1, ..., automaton n, clock 1, ..., clock n ). It
leads to a very strong growth of the BDD’s size.

If we place the variable k on the last position we get Comm1 = Commn+2 =
∅ and Commi = {1, ..., i − 1} for i ∈ {2, ..., n + 1}. We can compute the esti-
mation for the BDD B of all reachable configurations as follows: We start to
compute |B|i =

∏
k∈CommA(i) |Qk| (we can leave out the 4 because of using

the O-notation). Since Comm1 = Commn+2 = ∅, we get the estimation 1 for
|B|1 and |B|n+2. For |B|i (i ∈ {2, ..., n + 1}) we get 12i−1 since |Qk| = 12 for
k ∈ {1, ..., n} (number of configurations for each process = four locations × three
clock values) and Commi = {1, ..., i− 1} for i ∈ {2, ..., n + 1}. Because variable
k is on position n + 1, the biggest term of the sum for the estimation is that for
component k, which is

(
2|qn+1| − 1

) · 12n. The estimation for |B| therefore is in
O(n · 12n) (or O(log2n · 12n) using linear interpolation). The fourth experiment
shows that the BDD’s size actually grows exponentially.

Placing variable k on first position we have Comm1 = Commn+2 = ∅,
Comm2 = ... = Commn+1 = {1}. The estimation for |B|1 and |B|n+2 is 1
again, but the estimation for |B|2, ..., |B|n+1 is n + 1 (because |Q1| = n + 1).
Thus, the estimation for the size of B is in O(n2). In the last experiment the
estimation matches the actual size (number of nodes) very good.

Table 1 also contains a comparison with the most popular tools for the verifi-
cation of timed automata, Kronos and Uppaal. These tools use difference bound
matrices to represent sets of clock assignments. The first and second experiment
in the table show the computation times of our experiments with these tools.
The results show that the computation times of Kronos and Uppaal seem to be
at least exponential in n, while the computation time of our tool Rabbit seems to
be polynomial using a good variable ordering (fifth row). A BDD-based version
of Kronos is able to verify 14 processes as reported in [BMPY97], which also
means exponential growth of computation time.
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Table 1. Computation times for the verification of the mutex property of Fischer’s
protocol. MO means that more than 64 MB memory were needed. The last three
experiments belong to our tool Rabbit.

No. proc. 4 5 6 7 8 10 12 14 16 32 64
Kronos 3.0 191 MO
Uppaal 0.5 13.0 657 MO
Separated 0.3 1.0 5.0 21.6 110 MO
No. nodes 828 3053 10983 38515 132245
k at end 0.3 0.6 1.6 3.9 9.4 46.3 249 MO
No. nodes 456 1003 2119 4625 9158 36405 145438
k in front 0.3 0.4 0.8 1.3 2.3 4.0 8.9 13.6 22.7 208 1920
No. nodes 326 544 812 1129 1497 2375 3450 4720 6190 24983 100200

Table 2. Times and BDD’s size for computation of all reachable configurations of the
’And4’ model. ’N/A’ indicates that measured values are not available for that model.

Number of input signals 2 4 8 16
Kronos (BDD): Computation time N/A 324.7 N/A N/A
Rabbit: Computation time 0.5 6.0 79.6 1208.7
Rabbit: Number of BDD’s nodes 2007 15722 119870 789835

MOS circuit. This section applies our algorithms to the model ’And4’ intro-
duced in Section 3. This model has a more complicated communication graph
than Fischer’s protocol. Table 2 contains the results of our measurements. The
computation times are given also in seconds of CPU time on a SUN Ultra-Sparc
1 with 200 MHz processor.

The first row contains a result of the BDD-based version of Kronos. This
result, also obtained using a SUN Ultra-Sparc 1, is published in [BMPY97]. The
second row of the table shows the computation time needed by our tool Rabbit to
compute the whole set of reachable configurations. The number of nodes needed
to represent this set is given in the third row. (Using a ’stupid’ random variable
ordering the number of nodes is about 4,000,000 for four input signals.)

7 Summary

To provide efficient verification, symbolic representation of the locations of a
timed automaton using a BDD-based representation is the first step. The second
step is a finite semantics to be able to use BDDs also for the representation of the
continuous part of the model. In extension of [ABK+97,AMP98] we gave a formal
definition of a discrete semantics for closed timed automata. We proved the
correctness of using this discrete semantics for the computation of all reachable
locations.

As the next step towards efficient reachability analysis we use the commu-
nication structure of the system to find good variable orderings. Based on the
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concepts described in this paper we implemented Rabbit. This is a tool for the
BDD-based reachability analysis of closed timed automata as an extension of our
existing model checker using matrices [BR00]. We developed a BDD library fol-
lowing the ideas of [BRB90]. In order to use the modeller’s knowledge for finding
a good variable ordering we use the modular modeling notation Cottbus Timed
Automata [BR98]. This notation enables us to build hierarchical structures of
timed automata-based models.

The main result of our paper is that we can compute good variable order-
ings based on an estimation for the BDD size and that the verification of timed
automata using our technique is very efficient. Our experimental results show
that for some classes of real-time models the reachability analysis seems to be of
polynomial time and space complexity. Based on the communication structure,
we can decide whether a model is good-natured or not for BDD-based reacha-
bility analysis. An open question is for which classes of models our technique
performs well. Currently, we are modeling a production cell consisting of various
transport belts and machines. We will also investigate the topic of combining
reachability analysis with refinement checking to be able to verify larger models.
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