
Cottbus Timed Automata:
Formal Definition and Compositional Semantics

Dirk Beyer and Heinrich Rust

Software Systems Engineering Research Group
Technical University Cottbus, Germany�

db|rust � @informatik.tu-cottbus.de

Abstract. We present a formalism for modular modeling of hybrid systems, the Cottbus Timed
Automata. For the theoretical basis, we build on work about timed and hybrid automata. We use
concepts from concurrency theory to model communication of separately defined modules, and we
extend these concepts to be able to express explicitly read- and write-access to signals and variables.

1 Introduction

The programming of embedded systems which have to fulfill hard real-time requirements is be-
coming an increasingly important task in different application areas, e.g. in medicine, in trans-
port technology or in production automation. The application of formal methods, i.e. of modeling
formalisms and analysis methods having a sound mathematical basis, is expected to lead to the
development of systems with less defects via a better understanding of critical system properties
(cf. (Rust, 1994)).

In (Beyer and Rust, 1998) a modeling notation is presented which allows to model hybrid
systems in a modular way. It builds on the theoretical basis used in tools like Uppaal (Bengtsson
et al., 1996), Kronos (Daws et al., 1996) and HyTech (Henzinger et al., 1995). In these for-
malisms and tools, finite automata are used to model the control component of an automaton, and
analogue variables which may vary continuously with time are used to model the non-discrete
system components of a hybrid system. Partial automata of a larger system communicate via
CSP-like synchronization labels (Hoare, 1985). Algorithms for these kinds of models have been
presented in (Alur et al., 1993) and (Henzinger et al., 1994).

On the basis of the refined notation presented in (Beyer and Rust, 1998), we introduce the
following concepts:

– Compositional semantics: By defining the semantics of a hybrid automaton as labeled update
system in our formalism we preserve the information we need to define the semantics of a
CTA module on the basis of the semantics of its parts.

– Hierarchy: Subsystem descriptions can be grouped. Interfaces and local components are
separated.

– Explicit handling of different types of communication signals: We allow to express explicitly
that an event is an input signal for an automaton, an output signal, or a multiply restricted
signal.

– We allow to express explicitly that an analogue variable is accessed by an automaton as
output, as input, or that it is multiply restricted.

– Automatical completion of automata for input signals. Input signals are events which an
automaton must always admit. If there are configurations of an automaton in which the
reaction to an input signal is not defined, it is understood that the automaton enters an error
location.

– Recurring subsystem components have not to be multiply defined. They are instantiated from
a common module type.

The differentiation between different roles of signals in an automaton has been used in the
definition of IO-automata (Lynch and Tuttle, 1987) and extended to hybrid systems in (Lynch

et al., 1996). In (Alur and Henzinger, 1997), another approach is presented to describe modular
hybrid systems. It builds on reactive modules (Alur and Henzinger, 1996) and extends them with
continuously changing variables.

2 Formal Definition

Our semantics for the basic underlying model is similar to that of hybrid automata (Henzinger,
1996). We extend it by formalizing our concepts of different types of input, output, multiply re-
stricted and locally defined signals and variables, and by formalizing what it means to instantiate
a module in a context module.

2.1 Hybrid Automata

At first, we define value assignments, which are used to define invariants and derivations of
locations, as well as guards and value changes of transitions of a hybrid automaton. Then we
introduce some helpful notions and abbreviations, and the definition of hybrid automata follows.

Notation. Let �����������
	
	
	�����
�� be a finite set of variables. A value assignment ���������
is a total function from � into � , where � is the set of real numbers. We write ��� for the
set of all non-negative real numbers. � denotes the set of natural numbers, � inclusive. �����!
denotes the set of all value assignments of � . For a finite set " , a pair #%$�&'�("*)+�!���!
is called configuration. It consists of an element of " and a value assignment. Sometimes, a
set of configurations is called a region. �-,/.� 0.2143 abbreviates an infinite sequence of elements
�-,�5��6,7�8�6,�9��
	
	
	: .

For an S-tuple of length ; , < . �=" �)>	
	
	?)+"
 � " . with @A$B�DC��
	
	
	���;E� is a projection
operator: it selects the @ ’th element: <F.G���IHJ���
	
	
	��KH�
� � L�MH�. . For a partial function NO��PRQS�TVU ,
we write dom �IN? for its domain: dom �IN? W� def ��XY$ZP\[^]`_a$ U �7_b�*NW�2Xc K� , and range �IN? for
its range: range �IN? W� def ��_d$ U [^]`Xe$ZPR�J_f�*NW�2XF K� . For a partial function N%�JPgQh�TiU and a
set PajhklP , the restriction of N to Pmj is the function Nn[^oqpr�DP�jhQh�TVU with sSXe$YPajutwv�xJye�IN? z�
Nn[oqp0�2Xc n�*NW�2Xc . For a set { of functions, {a[|oqp is the result of applying }~[|oqp component-wise.

For a total function N���PR� U and a partial function �Z��PRQh�TVU we define the override
operator �*�S���-P�� U �)+�-PRQh�TVU � W���-P�� U as follows:

�INd���� 8�2Xc �� def

� �h�2XF if X%$e�D�/�+�~��
NW�2XF otherwise

We define the extension of a value assignment or a configuration by not restricting the values
for the added variables, and some further notation. Let &Mk�"Y)!������ be a set of configurations
over the locations " and the variable assignments for � , let �Vk������! be a set of variable
assignments for � , and let � j be a superset of � . Then, the extensions of � and & to � j , written
extend �-�m����j� and extend ��&�����j� , are defined as follows:

extend �-�m��� j E� def ��� j $Y����� j
[^]��m$e�����!���-� j [�� K�
extend ��&�����j� w� def ���IH�j2�6��j� �$%"�)e�!����j�
[^]?�IHJ�6�� z$%&���H��*H�jJ�d�f���-�Dj�[�� K�

We define the extended union operator � }!���D�r �=¡)����r � p ¡ �¢���? �r£D� p ¡ for two sets of value
assignments ��k¤�����! and � j kl�!��� j as �f� }7� j � def extend �-�a���m�L� j 8� extend �-� j ���a�L� j .
For the extended intersection t }b�D�D�? �=¡)Z���r � p ¡ �¥���r �q£D� p ¡ we use a similar definition:
�ft }7��j�� def extend �-�m�����Z�¦j� rt extend �-�!j~���§�¨��j� . Analogously we define union and inter-
section for sets of configurations.

The basic concept in our formalization is the hybrid automaton.

2

Definition 1. (Hybrid automata) A hybrid automaton consists of the following components:

– " : A finite set of control locations.
– � : A finite set of signals.
– � : A finite set of analogue variables. Variables are used in value assignments.
– ��k���"�)e�!���! � : An initial condition, described as a set of configurations.
– � : A finite set of transitions.
– inv �`"O�¥� �? �=¡ : A function associating an invariant to each location. The invariant is a set

of value assignments.
– deriv �S"¤�i�7�? �=¡ : A function associating a set of value assignments to each location. We

interpret the values given by these value assignments as admissible time derivatives for the
variables while the automaton is in the argument location.

– trans �����i")�" : A function associating a source location and a target location to each
transition.

– guard ���§�¥� �? �=¡ : A function associating a guard with each transition.
– sync ���*���O�����7� : A function associating a signal or no signal to each transition. � is not

a signal; it is the value of sync �	�6 for transitions without a signal.
– update �
� � �-�����! z� � � QS�T�� : A function associating with each transition a function

which yields for a value assignment a set of updates. The aim of this function is to define
value changes for the variables. An update is a value assignment for a subset of the vari-
ables of the automaton. For a particular update
+$ update �	�6 8�-�� of transition � and value
assignment � , the variables from ��� dom �	
F are not changed.
For each ��$�� and �+$ guard �	�� , the set update �	�6 8�-�� must be nonempty. This condition
ensures that the ’update’ component can not inhibit a discrete transition to be taken.

A further restrictions is: For each H $�" , there is an element ��� of � with the following
properties:

– trans �	���: n���IHD�KH/
– guard �	� � n�*�����!
– sync �	� � n���
– sF�f$Z�!���! z�/s�
Z$ update �	� � 8�-�� ��Jv�xJyY�	
F n���

These transitions are no-op transitions. The subset of � consisting of all no-op transitions is
referred to by ’noop’. The ’update’ function of no-op transitions does not restrict the environment
in any way, i.e. all variables stay unchanged.

Note. ’inv’, ’deriv’ and ’update’ are typically defined via predicates over the variables of
the automaton. For ’update’ predicates, non-primed variables represent values of the function
argument (before the transition) and primed variables represent values of the function result
(after the transition). In the domain of the ’update’ functions only those variables occur which
are restricted by the corresponding predicate.

If there is a variable which does not occur primed in at least one inequation of the ’update’
predicate, then this does not mean that the whole range of � is possible. For a variable which
does not occur primed in the ’update’ predicate the interpretation is that this transition does not
change the value of the variable, but transitions of environmental automata are allowed to restrict
the variable. But if no automaton restricts the variable � in its transition in the same point in time,
then it does not change its value. To express that the whole range of � is possible for � after a
transition even without a context, one might use the ’update’ predicate ��� j�� � OR � j�� �`� .

In the sequel of the paper we use the dot notation � 	^X to address the component X of � .

3

Fig. 1. Fischer’s mutual exclusion protocol

2.2 Illustration

To show the intention of the hybrid automata we display the automata for Fischer’s timing-based
mutual exclusion protocol in Figure 1 (cf. (Lamport, 1987)). In our Fischer automaton a process
is modeled by four locations. The initial location is the location Uncritical, which models the
uncritical section, and the initial value of the shared variable k is 0. From this location only
one transition is possible: If the shared variable signifies that no process is in the critical section
then the process can try to enter the critical section. It enters the location modeling the Assign

statement. The clock XF. (with time derivation 1 in all locations) measures the time staying in
this location, and the invariant forces to leave the location after at most time a, which models
the maximal time needed by the assign statement of the process. Then the transition to the Wait

location sets the variable k to the number of the process. In this location we have to wait at least
time b to give other processes a chance to set k to its process number. After time b the process
can decide to enter the critical section if k = i. Otherwise it goes back to the uncritical section.
Leaving the critical section the automaton sets k to value 0 to signify that the resource is free
again.

To present our notation we show the textual version of the system in Figure 2. Implicit
invariants and guards are understood to be true. The instantiation concept used in the module is
explained in the sequel of the paper.

The parallel composition of several hybrid automata and the semantics of a hybrid automaton
will be defined formally in the next two sections.

4

1
2 MODULE Process {
3 INPUT
4 // Constants for time bounds.
5 a: CONST; // a is the maximal time the modeled assignment k:=1 needs.
6 b: CONST; // b is the minimal time the process waits for assignments
7 // initiated from other processes.
8 processNo: CONST; // Parameter for significant value of k.
9 MULTREST

10 k: DISCRETE; // k is the shared variable for announcement.
11 LOCAL
12 x: CLOCK; // A clock to measure the time in a state.
13
14 INITIALIZATION { STATE(Fischer) = uncritical AND k = 0; }
15
16 AUTOMATON Fischer {
17 STATE uncritical { DERIV { DER(x) = 1;}
18 TRANS assign { GUARD { k = 0; }
19 UPDATE { x’= 0; } } }
20 STATE assign { INV { x <= a; }
21 DERIV { DER(x) = 1; }
22 TRANS wait { UPDATE { x’= 0 AND
23 k’= processNo; } } }
24 STATE wait { DERIV { DER(x) = 1; }
25 TRANS uncritical { GUARD { x >= b AND
26 k <>processNo; } }
27 TRANS critical { GUARD { x >= b AND
28 k = processNo; } } }
29 STATE critical { DERIV { DER(x) = 1; }
30 TRANS uncritical { UPDATE { k’= 0; } } }
31 }
32 }
33
34 MODULE System {
35 LOCAL
36 a = 3: CONST; b = 3: CONST;
37 pNo1 = 1: CONST; pNo2 = 2: CONST;
38 MULTREST
39 k: DISCRETE;
40
41 INST Process1 FROM Process WITH {
42 a AS a;
43 b AS b;
44 processNo AS pNo1;
45 k AS k;
46 }
47 INST Process2 FROM Process WITH {
48 a AS a;
49 b AS b;
50 processNo AS pNo2;
51 k AS k;
52 }
53 }

54

Fig. 2. Fischer’s Protocol: An example for a CTA model

2.3 Parallel Composition of Hybrid Automata

In this section, we define what it means for two hybrid automata to be composed parallelly.
Modular specification makes it necessary to combine several hybrid automata.

Definition 2. (Parallel composition of hybrid automata) Let � and � j be two hybrid au-
tomata. Their parallel composition �l��� [�[�\j is defined in the following way (cf. (Henzinger,
1996) for the general principle):

– �z	 "+� def ��	 ">)��Yj�	 "
– �z	 ��� def ��	 � ��� j 	 �
– �z	 � � def �+	 �����Zj~	 �
– �z	 �!� def ��	 � t^} � j 	 �
– �z	 �*� def

��	� �	�:��� j z$
�+	 �)�� j 	 � ������
��	 sync �	�� n���Yj�	 sync �	�uj� �
���� ���+	 sync �	�6 �
$�� j 	 �¤� � j $�� j 	 noop � ���Zj~	 sync �	�uj� �
$
�+	 � � �z$���	 noop

�	�
�

– �z	 inv ���IHJ�KH j � n� def �+	 inv �IH� t } � j 	 inv �IH j
– �z	 deriv ���IHD�KH�j� � n� def ��	 deriv �IH/ t^} �Yj�	 deriv �IH�j�
– �z	 trans ���	�:���uj~ � W� def� �-<?������	 trans �	�6 � ��6<?�/���Yj�	 trans �	�uj� � � h� �-<S9�����	 trans �	�6 � ��6<S9D���Yj�	 trans �	�uj� � �

5

– �z	 sync ���	�:���uj~ � W� def

� � j 	 sync �	� j if ��	 sync �	�6 n�����	 sync �	�� otherwise
– �z	 update ���	�:���uj� � 8�-�� �� def�

Z� �z	 � Qh�T � ����
]
r�w$��+	 update �	�6 8�-�F[��� � z�
E[����� 	�
 ¡ ��
?��]
h9 $��Zj~	 update �	�uj� 8�-�F[� p � � z�
E[����� 	
� ¡ ��
S9

�

– �z	 guard ���	�����Gj� � �� def�+	 guard �	�6 t^} � j 	 guard �	� j t } ���a$Z��� �z	 �! [�z	 update ���	����� j � 8�-�� �
���7�7�
Note. The set of transitions of the parallel composition consists of pairs of transitions which

have to be executed together. The no-op transitions defined to be in �+	 � ensure that independent
transitions in the two automata can be executed independently in the parallel composition. For
non-synchronizing pairs of transitions, at least one of the paired transitions must be a no-op
transition.

We include the information in the guard that the resulting set of ’update’ functions for a
value assignment is empty or nonempty. In this way, the restriction for ’update’ sets in hybrid
automata, i.e. that they have to be nonempty for value assignments in the guard, is trivially
fulfilled for transitions with contradicting ’update’ functions.

The parallel composition allows all transformations of value assignments which are allowed
by � .update and � ’.update, i.e. they must not be contradictive. If we do not restrict a variable
in the ’update’ set of a transition, this means that the value is not changed. Note that the set of
’update’ functions which does not change any variables is the singleton set of functions which
contains only a function nowhere defined (i.e. all update functions with empty domain). The
contradictive set of update functions is the empty set (i.e. there is no update function, the domain
does not matter).

The parallel composition of two hybrid automata is again a hybrid automaton:

Proposition 1. Let � and ��j be two hybrid automata. Then ��[�[�\j is also a hybrid automaton.

Notation. (Parallel composition of several automata) Let � be a nonempty finite set of
hybrid automata. Then ��� 1�� � denotes a parallel composition of all elements of � in some
order.

Note. Different orders of the automata from � lead to different automata, but with respect to
the communication behavior they are isomorphic.

2.4 Compositional Semantics of Hybrid Automata

This section defines labeled update systems and how to construct a labeled update system for a
given hybrid automaton. We define also the trace semantics and we provide labeled transition
systems as intermediate abstraction level.

The semantics of a dynamical system is often defined as a transition system. For systems
which allow synchronous composition, a transition system does not provide enough structure:
a labeled transition system semantics is not compositional for synchronous composition. CTA
have a synchronous composition operator. Because of that, we define an update semantics, which
keeps enough structure to allow the definition of synchronous composition.

Definition 3. A labeled update system is a tuple ���n���¦����5J���m���J���A , where

– � is a set of variables.
– � is a universe of values.� is the state space of the labeled update system. It is defined by � and � together:� � def � ��� . Each state is an assignment which maps each variable to a value from the

universe.
– �¦5�k�� is the set of initial states.

6

– � is the set of labels.
– �¦$�� is a special label for an update without synchronization.
– � k����M����)���)b��� Qh�T �� are the updates of the labeled update system. �-,`���F��
c �$ �

means that in state , on label � , the update described by
 can take place, which means that
each variable � in the domain of
 gets the value
q�2�� , and other variables stay unchanged.

Notation. For a real
�

and two value assignments � and ��j�$������! , let
� ��� denote the

function �r�2����� Y� � �A�F�2�� , and let ��� � j denote the function �r�2����� Y�L�F�2�� ���� j �2�� .
The passage of some time

� $ �z� together with a fixed time derivative ��$ �!���� for the
time-dependent value changes of variables, leads from a configuration �IHJ�6�� to the resulting
configuration �IHD�6��� � ���` .

The labeled update system corresponding to a hybrid automaton is defined in the following
way:

Definition 4. Let � be a hybrid automaton. The labeled update system us ���\ �
���n���¦���A57���d���J���A corresponding to � is defined in the following way:

– �'� def ��	 �����4H � � , H � is a new element which is characteristic for � : it is a variable
representing the location of automaton � .

– ��� def �>����	 "
– �¦5w� def ��,!$%� ��� [D�-,��IH � ��6,�[��� � �$��+	 ���
– � � def ��	 � �a���O�Y���7�
– �B� def time ���\ c� discrete ���� with:

time ���� � def

������ ����� �-,`���F��
F ����������

] �>$�� .deriv �-,��IH � � z��] � $��2��� ���D z�

q�IH � W�§,��IH �

�
E[� � � �*,�[� � � � � ���
�¨sE� � jF�J� � � j � � L�J,�[� � � � � j ����$�� .inv �-,��IH � �
�	�Z� �

�
�����
�����

discrete ���\ r� def

������ ����� �-,`���F��
F ����������

] ��$���	 �B�� .trans �	�6 n���-,��IH � ���
q�IH � �
�Y,�[��� � $�� .guard �	�6
�
E[� � � $
� .update �	�6 8�-�F[��� �
�	�Z� ��	 sync �	�6

�
�����
�����

Note. The state space of the labeled update system consists of the configurations of the
hybrid automaton. The set of starting states of the labeled update system is defined via the initial
condition of the hybrid automaton. A hybrid automaton can perform time updates and discrete
updates, thus the updates of the labeled update system are all time updates and all discrete
updates.

Illustration. We illustrate these definitions with our example in Figure 1: If the automaton�
� has entered location Assign then the variable � � has the value 0 and the first time derivative
of � � is � . In this situation the following time updates of the automaton are possible: For each
time
 in the interval �-������� (� is the upper bound for � � in the invariant) the automaton may take
the time update to the configuration � Assign �6,J with ,���� � n��� � �
 ��C (, is a value assignment
for the automaton, ,!� �+	 ��� �). The other possibility is to take the discrete update choosing
the transition to location Wait leading to the configuration � Wait �6,J where , is not changed by the
transition.

Note. For discrete updates the invariant is irrelevant. An invariant which is identically false
can be used to construct urgent locations, i. e. locations in which time cannot pass. The location
component of the configuration may not change in a time update.

Update systems contain enough structure for the definition of synchronous composition:

7

Definition 5. Let � ��� j be two labeled update systems. Their synchronous composition �c[�[� j is
defined as ���n���¦���¦57���m���J���¦ , where

– � � def �S	 �§��� j 	 �
– ��� def �S	 �)���j2	 �
– �¦5w� def ��,!$���� � �� [(,�[� � � $�� 	 �¦5��d,�[� p � � $���j2	 �A5/�
– � � def �S	 � ��� j 	 �

– �B� def

������������ �����������
�-,����F��
c

����������������

]?� ,��
� �c�
��
r�: z$��S	 � �]c�-,�94��� 9���
S9� �$�� j 	 �M�
,�[� � � �§,��

� ,�[�:p � � �§,�9
�
E[����� 	
 ¡ ��
r��
E[����� 	 � ¡ ��
h9
�

�� � �Z� �?�z� � 9
���/ � � �
$�� j 	 � � �Y� �c�=� � 9�� �z�dv�xJyZ�	
h9� W���J � � �
$��S	 � � �Z� � 9�� �?�������dv�xJyY�	
?�� n���J
	

�
�����������
�����������

Note that in the labeled transition system, for unchanged values in a transition one does not
know whether the variable was unchanged or has been updated explicitly to the value it had
before, while in an update system this information is available. This is the reason why an update
system semantics is compositional for synchronous composition, but not a labeled transition
system semantics. We use the same symbol [�[as composition operator for hybrid automata as
well as for labeled update systems.

The parallel composition of two labeled update systems is again a labeled update system:

Proposition 2. Let � and �`j be two labeled update systems. Then �c[�[��j is also a labeled update
system.

Proposition 3. The labeled update system semantics is compositional for hybrid automata, i.e.
for two hybrid automata � and ��j , us ����[�[�Yj� W� us ����
[�[us ���Yj� .
Proof. The proof follows from the definitions of the construction operators [�[. ��

To define also the (traditional) semantics as labeled transition system for hybrid automata
we have to introduce this notion.

Definition 6. A labeled transition system is a tuple � �!���!5����d���J� � , where:

– � is a (possibly infinite) set of states,
– �¦5�k�� is a set of initial states,
– A set � of labels.
– A set ��k���) ��) � of transitions.

We can construct the labeled transition system ts � us ���\ � corresponding to a hybrid automa-
ton � from its labeled update system us ���\ :
Definition 7. Let � be the labeled update system. The labeled transition system ts �
�� §�
� �b���A5����m���J� � is defined in the following way:

– ��� def �S	 �
– �¦5w� def �S	 �A5
– � � def �S	 �
– �*� def ���-,`���F�6,A�
F �$ ��) ��) � [¢�-,����F��
c �$��S	 � �

Note. The state space of the labeled transition system is the state space of the labeled update
system. The set of initial states of the transition system is defined by the initial states of the
labeled update system. The transitions of the labeled transition system are computed by applying
the update function.

Notation. A run for a labeled transition system ����� �b���!5����m���J� � is an infinite sequence
�-, . ��� . .2143 with , 5 $ � 5 and sS@¦$l� �?, . $��b��� . $�� �����7�J���-, . ��� . �6, .��=� �$�� � . � � is the
closure regarding non-synchronizing transitions; formally we define � � inductively, for �
��� :

8

– �-,`���F�6, j z$ �����-,`���F�6, j �$ � �
– �-,`���F�6,/j j� z$ � � �\�-,/j j-���J�6,4j� z$ ���i�-,`���F�6,/j� �$ � �
– �-,`���J�6, j j z$ ���O�-, j j ���F�6, j �$ � � �i�-,`���F�6, j �$ � �

For a given labeled transition system � , the infinite sequence � � . .2143 is a trace iff there
exists a corresponding run �-,4.u����.� 0.2143 of � .

Note. The transition relation � contains so-called silent transitions, i.e. transitions without
synchronization. These transitions are not considered by the trace semantics, because they do
not influence the environment.

Definition 8. The trace semantics ��� �z is the set of all traces of the labeled transition sys-
tem � . For two trace semantics ��� �z and ��� �zj , composition is defined by intersection:
��� �z
[�[��� ��j n� def ��� �� t���� �nj .

We can construct the trace semantics ��� ts �
�� � for a labeled update system � from its labeled
transition system ts �
�� . We write the abbreviation ���
�� for ��� ts �
�� � .
Proposition 4. Let � � ����� � ��� � ��� �5 ��� � ���J��� � and � 9 � ��� 9 ��� 9 ��� 95 ��� 9 ���J��� 9 be two la-
beled update systems with � � tz� 9 ��� and � � � � 9 . Then the trace semantics is compositional
for the operator [�[: ���
� �
[�[���
� 9 n�����
� � [�[� 9 .
Proof. k¦� We start to show ���
� �
[�[���
� 9 mk����
� � [�[� 9 . From �M�¥� � .� 0.2143 $����
� �
[�[���
� 9
it follows by the definition of the composition of two trace sets as intersection �*$����
� � and
�¤$	���
� 9 . Thus, we find two runs �-, �. ����. 0.2143 of � � and �-, 9. ��� .I 0.21/3 of � 9 . Since both systems
communicate with each other only via (the same set of) labels but not via shared variables
(� � t%� 9 � �), we can construct a run �-,�.u����.� 0.~1/3 where ,�.6[�
 �M, �. and ,�.�[� � �M, 9. . Because
the composition of two updates of a labeled update system is built exactly in this way, we can
conclude that �-,�.G��� .I 0.2143 is a run of � � [�[� 9 and thus, �>$
���
� � [�[� 9 .� � It remains to be shown that ���
� �
[�[���
� 9 � ���
� � [�[� 9 . For each trace �M$����
� � [�[� 9
exists a run �-, . ��� . .~1/3 of � � [�[� 9 . Because � � t%� 9 � � , we can split , . �?� � ��� 9 � � into
, �. ��� � �¥� and , 9. ��� 9 �¢� with ,�.�[�
 �B, �. and ,�.�[� � �B, 9. . Per induction this is sound for
all , . . Therefore we can construct two runs �-, �. ��� . .2143 of � � and �-, 9. ��� . .~1/3 of � 9 . Thus we get
�>$
���
� � and �>$
���
� 9 . ��

Note. Without the condition � � t%� 9 � � the proposition is not true for sets of traces. As
counterexample we consider a trace � � � �h.� 0.2143 $����
� �
[�[���
� 9 and there exist only runs
�-, �. ����. 0.2143 of � � and �-, 9. ��� .� 0.21/3 of � 9 with , �� �2��
��, 9� �2�� for some � and �e$+� � tZ� 9 . Then
there exists no run �-,�.0��� .� 0.21/3 of � � [�[� 9 , and �
$
���
� � [�[� 9 .� � � � 9 is a necessary condition. Let � � ��� 9
� � . Then the reaction of system � � on
label ��$ � � � � 9 is allowed in the composed system � � [�[� 9 , but it cannot be an element of the
intersection of the traces ���
� � and ���
� 9 because � 9 has no trace in which � occurs.

2.5 Hybrid Modules

Hybrid modules are hybrid automata with partitions of the variables and signals into input,
output, multiply restricted and local sets. Thus, hybrid modules encapsulate those of our new
concepts which concern the interface specification of a CTA module.

Definition 9. A hybrid module consists of the following components:

– � : A hybrid automaton.
– � � �+	 � : The signals of the hybrid module are those of the hybrid automaton.
– � �bk ��	 � : The set of input signals.
– ��� k ��	 � : The set of output signals.

9

– ��� k ��	 � : The set of multiply restricted signals.
– ��� k ��	 � : The set of locally defined signals.
– � � ��	 � : The variables of the hybrid module are those of the hybrid automaton.
– � �fk �+	 � : The set of input variables.
– � �Mk �+	 � : The set of output variables.
– ��� k �+	 � : The set of multiply restricted variables.
– ��� k �+	 � : The set of locally defined variables.

These components have to fulfill the following axioms:

– � � , � � , ��� and ��� are a partition of �+	 � . This means that they are pairwise disjoint,
and their union is ��	 � .

– For each H+$ �+	 " and each �7.!$ � � , the following holds: Let ��j k �+	 � be the set of
transitions of � starting at H and marked with ��. . The disjunction of the guards of � j is
identically true.

– � � , � � , ��� and ��� are a partition of ��	 � .
– For each �7.E$Y� � , the following two conditions hold:� sFHA$
�+	 "�� �+	 deriv �IH/ n� extend ����	 deriv �IH�
[��� ���	��

���G¡ � ��	 �� � s���$
�+	 �B� sF��$���	 guard �	�6 z� s�
Y$��+	 update �	�6 8�-�� L� �7.
$e�D�/�+�	
F

Note that the operation ‘ [’ is used as component-wise domain restriction for a set of func-
tions.

Note. These definitions encapsulate our decisions for the difference between input signals
and the other signals, and between input variables and the other variables. Note that output,
multiply restricted and local signals and variables are not differentiated by these definitions. The
differences between these concepts will be defined when we consider hybrid compositions.

The definition for input signals can be interpreted as follows: For each input signal and each
location of the automaton, some transition labeled with the signal can always be taken. In this
way the automaton does not restrict the input signal and thus it is not to blame for a deadlock.

The multiply restricted components are available for all access modes. A module as well as
the environment for which a signal or variable is declared as multiply restricted can restrict the
component in any way.

The definitions for input variables can be interpreted as follows:

– The derivation for an input variable may not be restricted in the ’deriv’ set of any location of
the automaton.

– The value of an input variable after a transition may not be restricted by one of the ’update’
functions of a transition.

All variables which occur in an ’update’ predicate must be declared as output, local or mul-
tiply restricted.

2.6 Compatibility of Hybrid Modules

To build a composition of hybrid modules we need some restrictions to ensure that the compo-
sition is a hybrid module again. For the definition of compatibility we need some notation.

Notation. Let � � ��� � �
	
	
	����
 � be a finite, nonempty set of hybrid modules ([��[��§;).
Let � be a finite set of signals with �M� � ��� ����� ����� ��� (we use the symbol � for the
disjoint union) and � be a finite set of variables (�M�B� ���m�����m�����a���) for each module
� $�� .

Let �A.
�� 	�� � ���� 1 � �\	 � �"! Q
�#�� 1 � �\	 ���l�m�\	 ���V�a�\	 ���$! be the set of signals

which are used at most as input signal in all the modules. These signals must not be restricted
by the composed automaton.

10

If �� is a tuple, then �G. denotes < .������ .
The set of all combinations of transitions (from modules of the set �) which are synchro-

nized with input signal � is given by the following function:

� � �A.
 � 	 � �¥�� �
 � � � ����������� �	� � ��� � ¡ , defined by:

���~�� �� def

���� ��� ���$¨����	 �+	 �)\}
}
}S)¨�¨
 	 ��	 �������
] �m$\�DC��
	
	
	/��;E�¦�J� � 	 ��	 sync �	� � W�¤�
�

� s
 $\�DC��
	
	
	4��;E��� �~�d$¨���7	 �¤�a���7	 ��	 sync �	�
�� n�¤�� � �~�
$¨� � 	 �¤� � � $e� � 	 ��	 noop !
� ���
���

Furthermore we need a function t to get the set of all tuples of transitions synchronized with
� for a given signal � and a source location �H :

�z� � .
�� 	 �)+�2���
	 �+	 "�)O}
}
})¨�¨
�	 ��	 "n W�¥�� �
 � ��� ����������� ��� � ��� � ¡ ,
defined by:
�
�~� � �H/ �� def � ���$ ���~�� [Rs
 $\�DC��
	
	
	���;E� �D<c���2� � 	 ��	 trans �	� � � n�*H ���

Now we can define the compatibility of hybrid modules.

Definition 10. (Compatibility of sets of hybrid modules) A nonempty, finite set of hybrid mod-
ules � is compatible if and only if there is a set � which is partitioned into four subsets � � ,
��� , ��� and ��� , the input, output, multiply restricted and locally defined signals of the hy-
brid composition, and a set � which is partitioned into four subsets � � , � � , � � and ��� , the
input, output, multiply restricted and locally defined variables of the hybrid composition, such
that the following conditions hold:

1. Communication through common components:

sh�\��� j $�� �7�
��� j �i�2�\	 �¤tm� j 	 �Mk��¤�a�\	 ��td� j 	 � k��!
2. Hiding of local components:

sS�\��� j $ � �7�
��� j � � �\	 ���%tm�¨j2	 �������7� ���\	 ���Yt �
�Z�\	 ����ta� j 	 � �>���7�A���\	 ���\t¨� !

3. Usage of input components:

sS��$ � �
� � ��tm�\	 ��� ���7� � � ��ta�\	 ���
�%� ��td�\	 �������7� �B� ��td�\	 ��� !

4. Usage of output components:

sS�\��� j $ � �7�
��� j � � �\	 ���ltm�¨j2	 �Mkl�¨j~	 � �
�e�\	 ���lt �Mk�� ����� � � !

sS�\��� j $ � �7�
��� j � � �\	 � �¤ta�¨j2	 � k �¨j2	 � �
�Z�\	 � �¤t¨� k������%�Z��� !

5. Avoiding restriction of input signals:
Let � ����� �

�� 1 � �\	 � be the set of all variables.

s �m$ � .
�� 	 � � s �H�$e���
	 �+	 ">)\}
}
}S)¨�¨
 	 ��	 "��

� ������� �
�

�� 1 � ���� ��G¡

�
�����������

�
�� �.! �
�" X � " ;?���I� . 	 ��	 guard �	� . ���� �#�$� � ������ �����
�a$Z����� �#�$�
��������
]
Z$�� �#�$� QS�T �B�
sS@n$O�DC��
	
	
	4��;E�¦�
]
S.=$Z�¨.0	 ��	 update �	�u.I 8�-�c[� � � �n z�

S.r��
E[����� 	 �2¡

� �����
�����

	
%%%%%%%%%%

11

Note. In the following we explain these conditions:

1. Elements of � can at most communicate through elements of � and � . This means that for
different hybrid modules in a hybrid composition, common signals and common variables
must be elements of � and � .

2. The local signals and variables of different modules are different and the local signals and
variables of a hybrid module are not used outside the hybrid module.

3. Input signals and input variables of the hybrid composition are not used as output or multiply
restricted signals or variables in the component modules.

4. Output signals of a hybrid module may at most be used as input signals in the context of the
hybrid module, and those of them which are members of the signals of the containing hybrid
composition must be either locally defined or output signals. The analogue proposition is
true for variables.

5. To avoid the restriction of input signals we have to ensure that at every point in time a
transition is enabled to synchronize with an input signal. Thus we have to fulfill the condition
that for each input signal in each location tuple the disjunction of the common guards is
identically true and the set of ’update’ functions does not forbid the transition. To construct
this condition, we take the conjunction of the guards from all transitions in the common
transition (note that the guards of no-op transitions are true) and then we have to subtract the
guards for which a common update is not possible.

2.7 Hybrid Compositions

We define hybrid compositions as parallel composition of hybrid modules.

Definition 11. (Hybrid compositions) A hybrid composition is a tuple � �b���W�	�� , where �
is the finite set of signals, � is the finite set of variables and � is a compatible set of hybrid
modules.

The definitions for hybrid compositions contain some of the most important of the concepts
we introduce in this work. They allow to structure a system into subsystems, and they contain
the core of the concepts used to differentiate between different kinds of signals and variables.

What is missing is the possibility to define hierarchical systems. We allow this by defining
a hybrid module which is equivalent to a given hybrid composition. The component modules
in a hybrid composition can be combined to a hybrid automaton. This yields a hybrid module
corresponding to the hybrid composition:

Definition 12. Let � be a hybrid composition. The hybrid module described by the function
hymod(�) corresponding to � is a flattened version of this hybrid composition � . We define the
function hymod ���h in the following way:

– hymod ���h �	 � �!� def �?	 � �
– hymod ���h �	 ��� � def �?	 � �
– hymod ���h �	 ��� � def �?	 ���
– hymod ���h �	 ���>� def �?	 �����\� � � 1�� � � �\	 �� =Q¤���?	 � �����?	 ��� ���?	 ����
– hymod ���h �	 ��� def hymod ���h �	 � ��� hymod ���h �	 � ��� hymod ���h �	 ���i� hymod ���h �	 ���
– hymod ���h �	 � �!� def �?	 � �
– hymod ���h �	 � ��� def �?	 � �
– hymod ���h �	 � � � def �?	 ���
– hymod ���h �	 � ��� def �?	 ���%�O� � � 1�� � � �\	 �� qQ¤���?	 � � ���?	 ���¤���?	 ����
– hymod ���h �	 �M� def hymod ���h �	 � � � hymod ���h �	 � �¤� hymod ���h �	 ���i� hymod ���h �	 � �
– hymod ���h �	 �(� def �� 1�� � � �\	 �

12

Note. The local signals and variables of the hybrid module corresponding to a given hybrid
composition consist of the local signals and variables of the hybrid composition itself and of all
signals resp. variables of component modules which do not occur as interface signals resp. vari-
ables of the hybrid composition.

To get the product automaton for the whole composition we have to generate the product of
all the sets of automata contained in the component modules.

Proposition 5. (hymod defines a hybrid module for a hybrid composition)
Let � be a hybrid composition. Then hymod ���h is a hybrid module.

Proof. We have to show that the function ��_��e���h��&� produces a hybrid automaton which fulfills
the axioms in Definition 9. The first and the third axioms are fulfilled by the construction of the
partitioned sets of signals and variables. The second axiom requires that the construction of
the product automaton guarantees completeness of the guards for input signals. It is fulfilled
by the compatibility of the hybrid modules in the composition: Item 7 of Definition 10, which
ensures that no transition is avoided by an empty ’update’ set, makes it possible to construct the
product automaton ��_��e���h��&� �	 � . The fourth axiom requires that an input variable is restricted
by neither the derivative function nor the ’update’ set. This is fulfilled because if some ’deriv’
sets (resp. some ’update’ sets) do not restrict the input variable � then the composition of these
sets also does not restrict � . Thus the constructed sets for derivations and value changes fulfill
the conditions of Definition 9. ��
2.8 Instantiation of Hybrid Modules

Often it is helpful to use several similar hybrid modules as components in a hybrid composition.
For this, we will use instantiations of an existing hybrid module.

Definition 13. (Hybrid instantiations) Let � and �¤j be hybrid modules with disjoint sets of
signals and variables. A hybrid instantiation of module � for use in module � j consists of the
following components:

– � : The instantiated hybrid module.
– � j : The context module in which � is instantiated.
– ident: An identification function assigning to each element of a subset of the signals and

variables of � a signal or a variable of � j . ’ident’ has to fulfill the following conditions:� Signals are mapped to signals and variables are mapped to variables.� The function’s domain does not contain local signals or variables of the instantiated
hybrid module:

dom � ident k ����	 �*Q��§	 ���� ?�\���§	 � Q��§	 ���� � The function identifies different signals and variables of the context module � j with
different signals and variables of the instantiated hybrid module:

ident is injective� Output signals and variables of the instantiated module may at most be identified with
local or output signals resp. variables of the containing module:

range � ident [� � ��� �k�� j 	 ���%�	� j 	 � �
range � ident [� � � � �k
� j 	 ���%��� j 	 � �

13

� Multiply restricted signals and variables of the instantiated module may not be identified
with input signals resp. input variables of the containing module:

range � ident [� � � � ct�� j 	 � �!���7�
range � ident [� � � � ct�� j 	 � �b���7�

If ��� and � 9 are both instantiated in a module � j , different output signals of �*� and � 9
may not be identified with the same signal in �¤j , because this would mean that the signals are
in fact multiply restricted. The same holds for variables. Outputs may only be identified with
inputs of parallel modules. We encapsulate this observation in another definition.

Definition 14. (Consistency of sets of hybrid instantiations) A set H�� of hybrid instantiations
for which the context module is identical is said to be consistent if for different elements

� � and
� 9 of H�� , the following two properties hold:

range � � ��	 ident [�
 � � � ��� t range � � 9�	 ident [� � � � � � k range � � 9�	 ident [� � � � � ���
and

range � � ��	 ident [�
 � � � � � t range � � 9�	 ident [� � � � � � k range � � 9�	 ident [� � � � � � �
Notation. (Renaming signals and variables of a hybrid automaton) Let � be a hybrid

automaton and � be a hybrid module. Let the signals and variables of � and of � be disjoint.
Let N be a function from a subset of ��	 � ����	 � to �§	 �¤�	�§	 � .

We denote the renaming of � by N by � .rename �IN? . This is the hybrid automaton resulting
from � by replacing each signal and variable in the domain of N by the value N yields for it.

Note. Regarding Definition 10 (different modules have different local signals and variables)
we do not need to rename the local signals and variables. Note that we speak about the signals
and variables but not about their identification strings in the notation.

Definition 15. (The hybrid module for a hybrid instantiation) Let
�

denote a hybrid instan-
tiation. We define the hybrid module corresponding to

�
, hymod � � , in the following way:

– hymod � � �	 � �!� def range � � 	 ident [� � � � ���
– hymod � � �	 ����� def range � � 	 ident [� � � � ���
– hymod � � �	 ��� � def range � � 	 ident [� � � � � �
– hymod � � �	 ����� def

� 	 �§	 �§Q¤� � 	 �§	 � � � � 	 �§	 � � � � 	 �§	 ����
– hymod � � �	 � �b� def range � � 	 ident [� � � � � �
– hymod � � �	 � � � def range � � 	 ident [� � � � � �
– hymod � � �	 � � � def range � � 	 ident [� � � � � �
– hymod � � �	 � �>� def

� 	 �§	 ��Q¤� � 	 �§	 � � � � 	 �§	 � � � � 	 ��	 � ��
– hymod � � �	 �(� def �+	 rename � � 	 ident

Note. The function ’hymod’ interprets hybrid instantiations as hybrid modules. With the
help of this interpretation function, we can use consistent sets of hybrid instantiations as the
components of a hybrid composition.

If the function ’ident’ is not total then the variables and signals which are not in the domain
of ’ident’ are considered to be local.

Proposition 6. (’hymod’ defines a hybrid module for a hybrid instantiation)
Let

�
denote a hybrid instantiation. Then hymod � � is a hybrid module.

Proof. Because ’ident’ is injective, the sets � � , � � , ��� , � � , � � and ��� are constructed
as disjoint sets. To the set of locals (��� and ���) we only add components which are not in the
domain of ’ident’. The renaming of automata does not violate any condition of Definition 9. ��

14

’hymod’ is the name of several functions yielding hybrid modules. One of them yields a
hybrid module for a given hybrid composition, and another yields a hybrid module for a hybrid
instantiation. With the help of these functions, we can use a hybrid instantiation or a hybrid
composition in place of an explicitly given hybrid module wherever this is more convenient.

Another use of the hymod-functions is to fix semantics. We interpret hybrid compositions
and hybrid instantiations in terms of hybrid modules. The hybrid automaton component of a
hybrid module is interpreted as a labeled update system via the function ’us’. Thus, the only
irreducible concept we introduced are the partition of the signals and variables of a hybrid au-
tomaton into input, output, multiply restricted and local components.

3 Conclusion

With respect to HyTech, Uppaal and Kronos, we introduced additional concepts into the for-
malism of hybrid automata. We claim that it helps to express some information explicitly in
the formalism which is simple to grasp for a modeller and which can help to simplify formal
analyses. It belongs to what we call “cheap and helpful redundancy”: Classification of signals
and variables as input, output, multiply restricted and local should be easy for the modeller, and
wrong suppositions about the use of a given signal or variable in one module can be checked
syntactically by comparing its declaration with its use.

The CTA formalism is an extension of existing notations for modeling timed and hybrid
systems. It extends the existing notations in order to better model different types of communi-
cation patterns several modules can use for interaction. Thus, we can for example express that a
given variable or signal can never be restricted in a given module, which means that this module
only reads this signal. Nevertheless, we can further use the synchronous semantics of CSP-like
communication. One important consequence of the introduction of the new concepts is that it
is now possible to explicitly specify that a given module only functions as an observer of a set
of other modules. Other extensions with respect to existing notations allow to instantiate several
times a module defined once, they introduce the usage of different name spaces for different
modules, and they explain how interface components of an instantiated module are identified
with components of the enclosing module.

For the newly introduced concepts, formal definitions have been given. These concepts fit
well into the semantics of hybrid systems given as communicating automata which is used in
Uppaal or HyTech, but they extend these concepts considerably with respect to more specific
fixing of properties of the interface signals and variables, and for defining name spaces for dif-
ferent modules and their connection in instantiations. In Uppaal and HyTech all the variables are
global and the set of automata has no hierarchical structure. We do not propose new algorithms,
but we provide better support for modularly modeling large systems.

Another difference to HyTech is that in our semantics we support the following situation:
One automaton sets a variable to some value such that the invariant of a location of another
automaton becomes false. In HyTech this behavior leads to a deadlock and the modeller has
to avoid such a situation. In a CTA, invariants have the meaning that no time can pass if the
invariant is false, but the automaton with the false invariant can take a discrete transition and
thus, the automaton can react on situations with false invariants.

We support our formalism with a tool performing automatical verification by reachability
analysis (Beyer and Rust, 2000), but in the hybrid case only for systems for which the algorithm
terminates (cf. (Alur et al., 1997)). For the special class of Closed Timed Automata our tool
Rabbit supports very efficient BDD-based reachability analysis (Beyer, 2001c). It uses an upper
bound for the transition relation to compute good variable orderings (Beyer, 2001b). To allow
also for modular proof strategies the tool provides refinement checking (Beyer, 2001a).

15

Acknowledgements

We thank Claus Lewerentz for discussions and comments on the work presented in this paper.

References

Alur, Rajeev and Thomas A. Henzinger (1996). Reactive modules. In: Proceedings of the 11th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 1996). pp. 207–218.

Alur, Rajeev and Thomas A. Henzinger (1997). Modularity for timed and hybrid systems. In: Proceedings of the 8th
International Conference on Concurrency Theory (CONCUR’97). LNCS 1243. Springer-Verlag. Berlin. pp. 74–
88.

Alur, Rajeev, Costas Courcoubetis and David Dill (1993). Model-checking in dense real-time. Information and Com-
putation 104, 2–34.

Alur, Rajeev, Thomas A. Henzinger and Howard Wong-Toi (1997). Symbolic analysis of hybrid systems. In: Pro-
ceedings of the 36th International IEEE Conference on Decision and Control (CDC 1997).

Bengtsson, Johan, Kim Larsen, Fredrik Larsson, Paul Petersson and Wang Yi (1996). Uppaal – a tool suite for
automatic verification of real-time systems. In: Hybrid Systems III (Rajeev Alur, Thomas A. Henzinger and
Eduardo D. Sontag, Eds.). LNCS 1066. Springer-Verlag. Berlin. pp. 232–243.

Beyer, Dirk (2001a). Efficient reachability analysis and refinement checking of timed automata using BDDs. In:
Proceedings of the 11th Advanced Research Working Conference on Correct Hardware Design and Verification
Methods (CHARME 2001, Livingston). to appear, LNCS 2144. Springer-Verlag.

Beyer, Dirk (2001b). Improvements in BDD-based reachability analysis of timed automata. In: Proceedings of the
10th International Symposium of Formal Methods Europe (FME 2001, Berlin): Formal Methods for Increasing
Software Productivity (Jose Nuno Oliveira and Pamela Zave, Eds.). LNCS 2021. Springer-Verlag. pp. 318–343.

Beyer, Dirk (2001c). Rabbit: Verification of real-time systems. Technical Report I-05/2001. BTU Cottbus.
Beyer, Dirk and Heinrich Rust (1998). Modeling a production cell as a distributed real-time system with Cottbus

Timed Automata. In: Tagungsband Formale Beschreibungstechniken für verteilte Systeme (FBT’98, Cottbus)
(Hartmut König and Peter Langendörfer, Eds.). Shaker Verlag, Aachen. pp. 148–159.

Beyer, Dirk and Heinrich Rust (2000). A tool for modular modelling and verification of hybrid systems. In: Proceed-
ings of the 25th IFAC/IFIP Workshop on Real-Time Programming 2000 (WRTP 2000, Palma) (Alfons Crespo
and Joan Vila, Eds.). Elsevier Science, Oxford. pp. 169–174.

Daws, C., A. Olivero, S. Tripakis and S. Yovine (1996). The tool KRONOS. In: Hybrid Systems III (Rajeev Alur,
Thomas A. Henzinger and Eduardo D. Sontag, Eds.). LNCS 1066. Springer-Verlag. pp. 208–219.

Henzinger, Thomas A. (1996). The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium
on Logic in Computer Science (LICS 1996). pp. 278–292.

Henzinger, Thomas A., Pei-Hsin Ho and Howard Wong-Toi (1995). A user guide to HyTech. In: Proceedings of the
1st Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’95). LNCS 1019.
Springer-Verlag. pp. 41–71.

Henzinger, Thomas A., Xavier Nicollin, Joseph Sifakis and Sergio Yovine (1994). Symbolic model-checking for
real-time systems. Information and Computation 111, 193–244.

Hoare, C.A.R. (1985). Communicating Sequential Processes. Prentice Hall. Hemel Hempstead.
Lamport, Leslie (1987). A fast mutual exclusion algorithm. ACM Transactions on Computer Systems 5(1), 1–11.
Lynch, N., R. Segala, F. Vaandrager and H.B. Weinberg (1996). Hybrid I/O automata. In: Hybrid Systems III (Rajeev

Alur, Thomas A. Henzinger and Eduardo D. Sontag, Eds.). LNCS 1066. Springer-Verlag. Berlin. pp. 496–510.
Lynch, Nancy A. and Mark R. Tuttle (1987). Hierarchical correctness proofs for distributed algorithms. In: Proceed-

ings of the 6th Annual ACM Symposium on Principles of Distributed Computing. ACM. pp. 137–151.
Rust, Heinrich (1994). Zuverlässigkeit und Verantwortung. Vieweg. Braunschweig, Wiesbaden.

16

