
CrocoPat: A Tool for Efficient Pattern Recognition
in Large Object-Oriented Programs ?

Dirk Beyer and Claus Lewerentz

Software Systems Engineering Research Group
Technical University Cottbus

D-03013 Cottbus, Postfach 10 13 44, Germany
Computer Science Reports I-04/2003, January 2003

{db | cl}@informatik.tu-cottbus.de

Abstract. Nowadays, software systems are too large to be understandable by reading the source code. For
reengineering activities, methods and tools for automated design recovery are needed.CrocoPatis a tool
for efficient pattern-based design analysis of object-oriented programs. Patterns can be flexibly specified
by expressions based on standard mathematics. The software meta model is interpreted in terms of rela-
tions, and the patterns are described by relational expressions over these relations. The tool represents the
abstract model of the program using a data structure based on binary decision diagrams for performance
improvement. The representation is proved to allow for an efficient recognition also for large systems up
to 10’000 classes comprising several MLOC source code.

Keywords. Software comprehension, Quality assessment, Pattern recognition, BDD

1 Motivation

The engineer in a design analysis process has two major objectives: he has to comprehend the archi-
tecture and the design of the system, and he has to assess the quality of the software system. Both
tasks need effective tool support for todays large software systems.

In thecomprehensionprocess, the engineer has to identify structures which are important for the
understanding of the design. These structures can be described by patterns. The most famous example
for such patterns are the object-oriented design patterns [GHJV93], which represent good design
solutions on a more abstract level, or anti-patterns, describing problematic program structures (cf. bad
smells [Fow00]). The detection of such structures considerably supports design comprehension.

In the context of this paper, the notionpattern is used for a specification of a piece of design for
which the engineer wants to know whether instances exist in the program.

Patterns can be helpful also forquality assessmentof the design. By defining anti-patterns which
represent problematic pieces of design and by identifying the instances of such patterns automat-
ically, the process of assessment can be accelerated. Patterns for design weakness which should
be inspected are e.g. cycles in the call graph, role identity of classes, degenerate inheritance, and
”curious” superclasses. From recognized design weaknesses the engineer can derive hints for the
improvement of the quality in a restructuring phase.

Automatic pattern-based recognition of design weakness is a research topic since almost 10 years.
Reports about experiments with existing approaches reveal two major problems: A notation foreasy
and flexible specificationof the pattern is missing; only a restricted set of patterns is applicable be-
cause of the limitations of the specification language.Performance improvementis needed, because
the computation time of existing tools is to high to be acceptable for large real-world systems.

? This paper is the extented version of [BL03], which is published in the proceedings of the 11th IEEE International
Workshop on Program Comprehension (IWPC 2003, Portland).

 v i s i b i l i t y

b e n u t z t

 n a m e
 a b s t r a c t ?

 n a m e
 v i s i b i l i t y
 n a m e

 a b s t r a c t ?

(0 , *)

b e n u t z t
(0 , *)(0 , *)

h a v e

M e t h o d s

C l a s s e s

A t t r i b u t e s

a c c e s s

c a l l

(0 , *)

(0 , *)

(1 , 1) (1 , 1)

h a v e

l e n g t h

i n h e r i t
f r o m

(0 , *)

(0 , *)

(0 , *)

P a c k a g e s
c o n s i s t s

o f

i m p l e -
m e n t e d

i n

i m p l e -
m e n t e d

i n

i m p l e -
m e n t e d

i n(0 , *)

(0 , *)

(0 , *)

(1 , 1) (1 , 1)

(1 , 1)

 n a m e

(0 , *)

(0 , *)

Fig. 1.Meta model for object-oriented programs

The rest of the paper is organized as follows: At first we give a short overview of our tool; in
Sect. 3 we define the new pattern specification language. To evaluate our approach, Sect. 4 demon-
strates the method and the performance of the tool implementation on some practical examples. In
Sect. 5 we discuss some existing approaches to the problem, and at the end of the paper we summa-
rize and discuss our approach.

2 Tool Overview

To provide a solution for the problems mentioned in the introduction, the toolCrocoPatsatisfies the
following three requirements:

– The analysis is done automatically by the tool, i.e. without user interaction.
– The properties of a system are specified in an easy and flexible way because the patterns are

described by relational expressions. On demand the user is able to define new patterns he is
interested in, or to change existing patterns to solve specific problems.

– The tool is able to analyze large object-oriented programs (1’000 to 10’000 classes) in acceptable
time.

In terms of graph theory, the toolCrocoPatdoes subgraph search. In terms of relational algebra,
the tool searches for tuples fulfilling a given predicative expression. The approach is not bound to a
specific meta model of the program: the expressions are based on standard operators and so the tool
does not use the meaning of the relations for analysis. However, the call relation and the inheritance
relation on the three levels of packages, classes, and methods are often sufficient for the design
recovery (cf. [Ciu99]).

For the structural analysis we have to use an abstract representation of the program. This product
abstraction is defined by a meta model. Figure 1 shows the meta model which we use in our assess-
ment projects. Using this abstraction we can regard the program as a set of relations. Some of them
are a directly included in the abstract representation (e.g. method call, attribute access), other useful
relations we can derive from these relation (e.g. call relation and containment relation on class level).

2

All relations are represented bybinary decision diagrams (BDDs)[Bry86] to achieve a crucial
improvement of the analysis performance. BDDs give canonical and compact representations of
sets and allow for an efficient implementation of operations like intersection, union and existential
quantification.

C r o c o P a t

D a t a P a t t e r n

R e s u l t s

Fig. 2.The tool CrocoPat

The toolCrocoPatworks on two inputs: the abstract product data and the description of analysis
tasks (i.e. mainly the pattern definition) as shown in Fig. 2. After starting the tool no user intervention
is required until the tool returns with notifying about the instances of the pattern it has found. The
procedure of analysis usingCrocoPatconsists of the following steps:

1. Extract data from the source code.A program analysis tool likeSotograph[Bis03] is used to
extract automatically all relevant data regarding to the meta model from the source code and to
store the data in a relation file.

2. Create pattern definition.The pattern of interest has to be defined using the pattern specification
language described in Sect. 3 on the basis of the relations which are stored in the relation file in
step 1.

3. Run analysis. CrocoPatstarts with reading the relations from the relation file and transforming
them to the corresponding BDD representation. Then it applies all expressions specified in the
pattern definition to obtain the pattern instances as result.

The tool introduced in this paper is interesting especially for the analysis of programs regarding
to design guidelines which are not easy to check using a software measurement tool. Guidelines like
’a class should not contain more than 7 attributes’ can be checked comfortably also using existing
measurement tools likeDatrix [ML96], Crocodile[SL97], orSotograph[Bis03]. The toolCrocoPat
is designed especially to recognize patterns for which more complex computations are required to
find all its instances.

3 Pattern Specification withCrocoPat

The language for the specification of patterns is one of the most important parts of a pattern-based
approach to design analysis. The description has to beindependent from technical detailsof the
implementation, i.e. the user does not have to know how the tool works internally. The specification
should beflexible enough to enable changes of the patterns during the assessment phase and the

3

repeated definition of new patterns. The notation has to beeasy to understandto be used not only by
few experts and has to bepowerfulenough to express all patterns the analyst wants the define.

The expressions of the relational algebra are fulfilling these requirements: they are abstract
enough to have no implementation details in it, and they are easy to understand because only ele-
mentary mathematical expressions are allowed. In the following we define the syntax and semantics
of the expressions.

Let the universeU be the set of all values1 andX be a finite set ofattributes (variables). Atuple
t of X (attribute assignment) is a total functiont : X → U. Val(X) is the set of all tuples ofX.
Using a fixed ordering of the attributes inX we can use the vector notation(t(x1), . . . , t(xn)) for a
tuplet ∈ Val(X). R ⊆ U×· · ·×U is arelation. R is a finite set of relations. Anexpression overR
and X is an element from the setΦ(R, X), the set of all expressions overR andX. The setΦ(R, X)
is generated by the following grammar:
ϕ := R(x1, . . . , xn) | qϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | x < x′

| x = x′ | x = c | ∃(x, ϕ) | ϕ[x/x′] | TC(ϕ, x, x′)
with R ∈ R, x, x′, x1, . . . , xn ∈ X andc ∈ U.

The semantics of an expression is given by the interpretation function
[[.]] : Φ(R, X) → 2Val(X), which is defined inductively as follows:

[[R(x1, . . . , xn)]] := {t ∈ Val(X) | (t(x1), . . . , t(xn)) ∈ R}
[[qϕ]] := {t ∈ Val(X) | t 6∈ [[ϕ]]}

[[ϕ ∧ ϕ′]] := [[ϕ]] ∩ [[ϕ′]]
[[ϕ ∨ ϕ′]] := [[ϕ]] ∪ [[ϕ′]]

[[(ϕ)]] := [[ϕ]]
[[x < x′]] := {t ∈ Val(X) | t(x) < t(x′)}
[[x = x′]] := {t ∈ Val(X) | t(x) = t(x′)}
[[x = c]] := {t ∈ Val(X) | t(x) = c}

[[∃(x, ϕ)]] := {t ∈ Val(X) | ∃t′ ∈ [[ϕ]] : ∀x′ ∈ X \ {x} : t(x′) = t′(x′)}
[[ϕ[x/x′]]] := [[∃(x, ϕ ∧ x = x′)]]

[[TC(ϕ, x, x′)]] := {t ∈ Val(X) | ∃t′ ∈ [[ϕ]] : ∃t′′ ∈ [[TC(ϕ, x, x′)]] :
t(x) = t′(x) ∧ t′(x′) = t′′(x) ∧ t′′(x′) = t(x′)}

with R ∈ R, x, x′, x′′, x1, . . . , xn ∈ X andc ∈ U. ϕ is interpreted as the set of all tuples overX
which fulfill the predicateϕ.

Note.We use the notion ’tuple’ corresponding to the theory of relational databases. The concept
of attribute assignments is chosen because the identification of an element of a tuple by the attribute
name (like column names in relational databases) is more convenient than by its position in the tuple.

All relations contained in or derived from the user-specific meta model can be used as base
relation inCrocoPat. The most important relations are the call relation, the inheritance relation and
the containment relation on the class level of abstraction. These relations can be represented by the
following tuple setsCall , Inherit ,Contain ⊆ Val(X) (on the class level of abstractionU is the set
of classes,x ∈ X is the referencing class,y ∈ X is the referenced class):

Call = {t ∈ Val(X) | A method of classt(x) calls a method of classt(y).}
Inherit = {t ∈ Val(X) | Classt(x) inherits from classt(y).}

Contain = {t ∈ Val(X) | Classt(x) contains an instance of classt(y).}

1 For analysis on the class level of abstraction we use unique class identifiers as values.

4

4 Evaluation of the Approach

In the following we explain some example patterns and their definition. We apply them to
three example programs: Mozilla, JWAM, and wxWindows. Mozilla is a large C++ system
(i.e. the code base) for the development of the internet application Netscape Communicator
(4’818 classes, 3’236’875 LOC), JWAM is a Java framework based on the tools and materials ap-
proach (999 classes, 167’178 LOC), and wxWindows is a GUI framework implemented in C++
(378 classes, 217’832 LOC). We report also the performance results by giving a table with compu-
tation times for recognizing all instances of the patterns in these object-oriented programs at the end
of this section.

Fig. 3.Composite pattern [GHJV93]

GoF Design Patterns [GHJV93].The use of design patterns indicate good design because
these pattern are known to support flexible and understandable structures. Thus, to support de-
sign understanding it can be helpful to find instances of design patterns within an object-oriented
program. To give an example, Figure 3 displays the UML diagram of the Composite design pat-
tern [GHJV93]. For identifying all instances of this pattern the computation of all tuples(x, y, z, l)
is necessary, withx is a Client class,y is the Component class,z is a Composite class, and
l is a Leaf class of the pattern, i.e.(x, y) ∈ Call ∧ (z, y) ∈ Inherit ∧ (z, y) ∈ Contain
∧ ((l, y) ∈ Inherit ∧ (l, y) 6∈ Contain). For theCrocoPat tool we have to use the expression
Call ∧ Inherit[x/z] ∧ Contain[x/z] ∧ (Inherit[x/l]∧q(Contain[x/l]) to describe this pattern
(cf. Sect. 3). Table 1 reports the number of instances of the design patterns Composite and Mediator
in the example programs.

Pattern Composite Mediator
Mozilla 15 28
JWAM 14 6
wxWindows 4 5

Table 1.Number of composites and mediators in the analyzed systems

5

Circle. A classx should be understandable independently from the classes which call a method of
classx. To understand a class, we have to understand all classes which it uses directly or indirectly. If
one of those classes is the class itself then the understanding is complicated. Circles can be introduced
during the evolution of a program if further functionality is added. The experience shows that the
number of circles decreases during restructuring activities. Thus, for analyzing the occurrence of
circles in the call relation we have to compute all tuples(x) with classx occurs in a circle using the
CrocoPatexpression∃(y, TC(Call , x, y) ∧ (x = y)).

Measure Classes in circles
Mozilla 792
JWAM 30
wxWindows 63

Table 2.Number of classes which occur in some circle

Circles of length 2 3 4 5
Mozilla 338 40 5 2
JWAM 10 2 0 0
wxWindows 28 2 1 0

Table 3.Number of circles of varying length

With the help of some further specialized pattern expressions it is possible to compute the number
of circles of some fixed length. Table 2 reports the number of classes which occur in some circle, and
Table 3 lists the number of circles of length 2 to length 5 for each of the analyzed systems.

Role Identity. Another interesting design analysis question is whether there exist classes with
identical roles, i.e. two classes use the same classes and are used by the same classes. Classes with
identical roles occur in polymorphic design structures as subclasses or when an old class is replaced
by a new one, but the old class is not removed from the object-oriented program.

For searching pairs of classes(x, z) which are identically embedded we can apply the following
pattern, letCall−1 be the tuple setCall[x/tmp][y/x][tmp/y]:
q

(
∃(y, Call ∧ qCall[x/z]) ∨ ∃(y, qCall ∧ Call[x/z])

)
∧

q
(
∃(y, Call−1 ∧ qCall−1[x/z]) ∨ ∃(y, qCall−1 ∧ Call−1[x/z])

)
Table 4 shows the number of classes which are identically embedded within the three example

systems.

Pattern Rule identity
Mozilla 250
JWAM 9
wxWindows 12

Table 4.Number of identically embedded classes

6

Pattern Rhombus DegenInh CuriousInt
Mozilla 918 39 25
JWAM 676 68 1
wxWindows 8 0 3

Table 5.Degenerate inheritance and curious superclasses

Degenerate Inheritance.The wrong use of inheritance often leads to misunderstandings and bad
design [BLS01]. Let X be a class which implements an interfaceY , and classS ’extends’ classX
and’implements’ interfaceY . We have to pay attention to such design structures becauseS does not
really implement the interfaceY , instead it (potentially) uses the implementation given by classX.
One suggestion would be to omit the ’implements’ relation to interfaceY . The design question is
whether the direct inheritance is redundant or not.

In a measurement-based quality assessment of the Java Framework JWAM (cf. [BLL+02] for an
overview of the assessment project) one of the restructuring recommendation (No. 49) was to avoid
such design structures. Using the measurement-based approach only one instance of this pattern was
found. The pattern-based approach reveals that the number of such design structures is dramatically
higher than assumed.

An interesting question for an object-oriented program is whether there exist such degenerative
inheritance structures: we search for a set of classes{y, x, s} with the condition(x, y) ∈ Inherit+∧
(s, x) ∈ Inherit∧(s, y) ∈ Inherit, i.e. a subclass inherits directly and indirectly from a superclass.
To compute all tuples(y, x, s) fulfilling this condition, we can compute theCrocoPatexpression
TC(Inherit, x, y) ∧ Inherit[x/s][y/x] ∧ Inherit[x/s].

A derived pattern of this kind is therhombus-like inheritance[BLS00,BLS01]. Designs with
such inheritance structures are difficult to understand, because on the UML level it is not decidable
which methods or attributes are visible in the subclass (even if the source code is present it is not
obvious to most C++ programmers). In Java, rhombus-like inheritance means that one of the inher-
itance relations is a real ’extends’ and the other is an ’implements’ relation; so this pattern does
not lead to problems in Java. Searching for rhombus-like inheritance means to identify sets of classes
{y, x, v, u} with the condition(x, y) ∈ Inherit+∧(v, y) ∈ Inherit+∧(u, x) ∈ Inherit∧(u, v) ∈
Inherit ∧ x 6= v. To compute all tuples(y, x, v, u) fulfilling this condition, we have to com-
pute theCrocoPatexpressionTC(Inherit, x, y) ∧ TC(Inherit[x/v], v, y) ∧ Inherit[x/u][y/x] ∧
Inherit[x/u][y/v] ∧ q(x = v). Table 5 reports the number of rhombi and the number of occurrences
of degenerate inheritance (DegenInh) within the inheritance structure.

Curious Superclasses.The goal of separating the interface from its implementation is that the
interface (superclass) should not know anything about their implementation (subclass). Thus, we
have to pay attention to superclasses which call or contain instances of their (direct or indirect)
subclasses.

We can find such pairs of classes using the following pattern expression:
TC(Inherit[x/tmp][y/x][tmp/y], y, x) ∧ (Call ∨ Contain) results in a set of tuples(x, y)
with x is a superclass ofy andx calls or contains an instance ofy. The results are reported in Table 5
(CuriousInt).

Performance Results.Table 6 reports the performance results of computing the transitive closure
– the most complex operation – of the call relation for some example system. Each row of the table
indicates the name of the system, the number of classes of the system, the number of lines of code
(LOC) and the time needed to compute the transitive closure of the call relation (Time Closure). The
computation times are obtained on a Pentium III processor with 850 MHz and 50 MB RAM for the
BDD package. Table 7 indicates the performance of recognizing all instances of the patterns Circle,
Role identity, design pattern Composite, and Rhombus-like inheritance.

7

Measure Classes LOC Tuples in call relation Time Closure
Mozilla 4’818 3’236’875 13’423 73 s
JWAM 999 167’178 3’142 3.0 s
wxWindows 378 217’832 717 1.1 s

Table 6.Characterization of size and performance of transitive closure computation for three example
systems

Pattern Circle Role identity Composite Rhombus
Mozilla 143 129 23 21
JWAM 3.3 5.0 3.1 2.1
wxWindows 1.3 2.1 1.0 1.1

Table 7.Computation times (in seconds) for some example patterns

5 Related Work

Automatic pattern-based recognition of design weakness is a research topic since almost 10 years.
Some of the research results in this area are mentioned in the following.

SPOOL (Uni Montreal) is a tool for design navigation that supports browsing and searching the
elements and relationships of an object-oriented progam [RSK00]. The tool is able to identify design
pattern like the Factory Method.

Goose(FZI Karlsruhe) is a reengineering tool for investigation of the static structure of an object-
oriented program [Ciu99]. A Prolog knowledge base is created from the source code and afterwards
it can help to identify patterns specified in the Prolog query language. The tool has performance
problems with complex operations like transitive closure computation and if a query is not optimized
by a Prolog expert.Pat (Uni Karlsruhe) is a tool similar to Goose. It uses also the Prolog system for
identifying pattern instances [KP96].

VizzAnalyser (Uni Karlsruhe) is an approach which uses not only static, but also dynamic anal-
ysis for searching behavioral patterns [HHL02]. The strategy is to use dynamic analysis for further
restriction of the results of the static analysis to reduce the number of false-positives.

FUJABA (Uni Paderborn) integrates a semi-automatic approach to recognize instances of a spec-
ified pattern [NSW+02]. The recognition algorithm works incrementally and is based on the graph
transformation system of the FUJABA project.

Sotograph (Software Tomography GmbH, Cottbus) is a program analysis workbench [Bis03].
The data of the product model are stored in a relational database. The main application of the tool
is to analyze programs using software measurement techniques. It is also capable to find instances
of patterns which can be defined using SQL statements. However, it is not possible to compute
the complement or transitive closure of some relation, i.e. the class of definable patterns is clearly
restricted.

RelView (Uni Kiel) is a general tool for computations on graphs [BBMS98]. It represents re-
lations by BDDs, but is restricted to binary relations. Algorithms can by specified by operations of
the relational algebra. This approach was inspiring the development of our own BDD-based tool
which supports arbitrary relations and which is optimized for the application area of program design
recovery.

8

6 Conclusion

CrocoPatis a new tool for efficient pattern-based analysis of large object-oriented programs. It can
help to improve the productivity of comprehension and assessment processes by using it in combi-
nation with other tools for program analysis. We use the tool in combination with tools for software
measurement and navigation [Bis03] and software visualization [LN03]. Pattern-based recognition of
design weakness and identification of design structures to support the understanding of large object-
oriented programs are not new. The contribution ofCrocoPatis to provide a veryflexible specifi-
cation languagefor pattern definition and to providehigh performance analysisalgorithms which
are efficient even for large systems by using a BDD-based representation of relations.

Patterns can be flexibly specified by relational algebra expressions. It is easy to specify patterns
in different variants in a compact form, adapted to specific situations. The software system which
is to be analyzed is interpreted in terms of relations, and the patterns are described by relational
expressions over these relations. The tool represents the abstract model of the program using a data
structure based on binary decision diagrams, which enable the efficient recognition also for large
systems comprising several MLOC source code.

As the computation times in Table 7 show, the most complex operations are the computation of
transitive closures (e.g. in patternCircle) and complements (e.g. in patternRole identity) of large
relations. Both operations are not supported by SQL-based approaches (cf.Sotograph[Bis03]) and
can not be computed efficiently using the Prolog-based approaches (cf.Goose[Ciu99]).

To improve the usability of our tool it would be nice to integrate it into other program analysis
tools. It is planned to integrateCrocoPatinto theSotographtool environment.

Further performance improvement is possible by implementing an operation cache to compute
the same results of expensive operations (especially transitive closures) only once. Another inter-
esting extension would be a client/server architecture to store BDDs for relations persistently in an
independent server process. This would reduce the effort for loading the relations into BDDs for
each computation separately, as shown by the Mozilla results: the computation time for computing
CompositeandRhombusconsists mainly of loading the relation (20.5 s).

Acknowledgements

We thank Andreas Noack and Ulf Milanese for applying the tool RelView to software graphs. The
results of their experiments indicated the issues we had to address and to improve.

References

[BBMS98] Ralf Behnke, Rudolf Berghammer, Erich Meyer, and Peter Schneider. RELVIEW – a system for calculating
with relations and relational programming. In Egidio Astesiano, editor,Proceedings of the 1st International
Conference on Fundamental Approaches to Software Engineering (FASE 1998), LNCS 1382, pages 318–321.
Springer-Verlag, 1998.

[Bis03] Walter R. Bischofberger.Sotograph: User’s Guide and Reference Manual. Software Tomography GmbH,
http://www.software-tomography.com, 2003.

[BL03] Dirk Beyer and Claus Lewerentz. CrocoPat: Efficient pattern analysis in object-oriented programs. InPro-
ceedings of the 11th IEEE International Workshop on Program Comprehension (IWPC 2003, Portland). IEEE
Computer Society Press, 2003.

[BLL +02] Holger Breitling, Claus Lewerentz, Carola Lilienthal, Martin Lippert, Frank Simon, and Frank Steinbrückner.
External validation of a metrics-based quality assessment of the JWAM framework. InTagungsband des
Workshops der GI-Fachgruppe 2.1.10.: Software – Messung und Bewertung, pages 32–49. Deutscher Univer-
sitätsverlag, Wiesbaden, 2002.

[BLS00] Dirk Beyer, Claus Lewerentz, and Frank Simon. Flattening inheritance structures - or - getting the right picture
of large oo-systems. Technical Report I-12/2000, BTU Cottbus, 2000.

9

[BLS01] Dirk Beyer, Claus Lewerentz, and Frank Simon. Impact of inheritance on metrics for size, coupling, and
cohesion in object oriented systems. In R. Dumke and A. Abran, editors,Proceedings of the 10th Interna-
tional Workshop on Software Measurement (IWSM 2000, Berlin): New Approaches in Software Measurement,
LNCS 2006, pages 1–17. Springer-Verlag, Berlin, 2001.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transaction on Comput-
ers, C-35(8):677–691, 1986.

[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-oriented reengineering. InProceedings of the
Technology of Object-Oriented Languages and Systems (TOOLS 30), pages 18–32. IEEE Computer Society,
1999.

[Fow00] Martin Fowler.Refactoring: Improving the Design of Existing Code. Addison Wesley, 2000.
[GHJV93] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design patterns: Abstraction and

reuse of object-oriented design. In O. Nierstrasz, editor,Proceedings of the 7th European Conference on
Object-Oriented Programming (ECOOP 1993), LNCS 707, pages 406–431. Springer-Verlag, Berlin, 1993.

[HHL02] Dirk Heuzeroth, Thomas Holl, and Welf Löwe. Combining static and dynamic analyses to detect interaction
patterns. InProceedings of the 6th International Conference on Integrated Design and Process Technology
(IDPT 2002). Society for Design and Process Science, 2002.

[KP96] Christian Kr̈amer and Lutz Prechelt. Design recovery by automated search for structural design pat-
terns in object-oriented software. InProceedings of the 3rd Working Conference on Reverse Engineering
(WCRE 1996), pages 208–215. IEEE Computer Society Press, 1996.

[LN03] Claus Lewerentz and Andreas Noack. CrocoCosmos – 3D-visualization of large object-oriented programs. In
M. Jünger and P. Mutzel, editors,Graph Drawing Software. Springer-Verlag, 2003.

[ML96] Jean Mayrand and Bruno Lagu. Object oriented architecture assessment using metrics. InProceedings of the
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 1996),
1996.

[NSW+02] J̈org Niere, Wilhelm Scḧafer, J̈org P. Wadsack, Lothar Wendehals, and Jim Welsh. Towards pattern-based
design recovery. InProceedings of the 24th International Conference on Software Engineering (ICSE 2002),
pages 338–348, 2002.

[RSK00] Sebastien Robitaille, Reinhard Schauer, and Rudolf K. Keller. Bridging program comprehension tools by
design navigation. InInternational Conference on Software Maintenance (ICSM 2000), pages 22–32. IEEE
Computer Society, 2000.

[SL97] Frank Simon and Claus Lewerentz. Integration of an object-oriented metrics tool into SNiFF+. Technical
Report I-22/1997, BTU Cottbus, 1997.

10

