
Simple and Efficient Relational Querying of Software Structures

Dirk Beyer, Andreas Noack, Claus Lewerentz
Software Systems Engineering Research Group

Brandenburg Technical University at Cottbus, Germany
�db,an,cl�@informatik.tu-cottbus.de

Abstract

Many analyses of software systems can be formalized as
relational queries, for example the detection of design pat-
terns, of patterns of problematic design, of code clones, of
dead code, and of differences between the as-built and the
as-designed architecture. This paper describes the concepts
of CrocoPat, a tool for querying and manipulating relations.
CrocoPat is easy to use, because of its simple query and
manipulation language based on predicate calculus, and its
simple file format for relations. CrocoPat is efficient, be-
cause it internally represents relations as binary decision
diagrams, a data structure that is well-known as a compact
representation of large relations in computer-aided verifica-
tion. CrocoPat is general, because it manipulates not only
graphs (i.e. binary relations), but �-ary relations.

1. Introduction

Querying and manipulating graphs or relations has many
applications in reverse engineering:

� The importance of the detection of design patterns [17]
in understanding and redocumenting object-oriented
programs is increasingly recognized. Many tools have
been developed (Pat [26], the tool of Antoniol et al. [1],
VizzAnalyzer [19]) or extended (SPOOL [25], FU-
JABA [32]) for this purpose.

� The detection of patterns of problematic design helps
in assessing the design quality of programs, and is a
first step towards the improvement of the design qual-
ity. The tools Hy+[29], Pattern-Lint [33], RPA [16],
IAPR [23], Goose [11], and Grok [14] were used to
detect structures like cyclic dependencies and irregu-
lar inheritance.

� Graph pattern matching was also applied to extract sce-
narios from models of source code [39].

� The detection of repeated subgraphs supports the iden-
tification of code clones [27] and the inductive infer-
ence of design patterns [34, 36].

� The forward traversal of call and inheritance graphs is
used to detect dead code, and the backward traversal is
applied for change impact analysis [10, 16].

� As software systems evolve, the as-built architecture
often diverges from the as-designed architecture. The
detection of inconsistencies between the as-built and
the as-designed architecture, and the transformation of
the as-built or the as-designed architecture to achieve
consistency support the comprehension and modifica-
tion of software [33, 16, 30, 14, 31].

� In the reverse engineering of large software systems,
multiple views on different abstraction levels are gen-
erated. The combination of several views to create
new views [24], the lifting and lowering of relations
between program entities to create views on higher or
lower abstraction levels, and the hiding of parts of a
view [16, 14] can be formalized as operations on rela-
tions.

A general purpose tool for querying and manipulating
relations in reverse engineering should provide a simple but
expressive query and manipulation language, and efficiency
for large relations. This paper addresses these requirements.
In Section 2.2, we introduce a variant of predicate calculus
for the manipulation of �-ary relations. It is sufficiently ex-
pressive to specify graph patterns of arbitrary size, and thus
resolves a problem that was identified as the main loss of
(binary) relational algebra by Fahmy, Holt and Cordy [15].
In Section 2.3, we propose to use the data structure binary
decision diagram (BDD, [6]) for the internal representation
and manipulation of relations. To evaluate these concepts,
we implemented them in a tool called CrocoPat, and ap-
plied this tool to detect design patterns and design problems
in object-oriented software systems. Section 3 reports the
results of this evaluation. Finally, Section 4 compares our
approach to related work.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

2. Querying and Manipulating Relations

Querying and manipulating relations requires a database
for relations, a query and manipulation language, and data
structures and algorithms for the manipulation of relations.
The three subsections of this section describe our choices
for these parameters.

2.1. Database for Relations

A lightweight calculator for relations should facilitate
data exchange with other tools, and it should not require
the installation of other programs like database management
systems. Reading and writing relations from and to plain
text files in Rigi Standard Format (RSF, [38, Section 4.7.1])
fulfills these requirements.

Originally, an RSF file represents binary relations. It is
a sequence of triples, one triple on a line. The first ele-
ment of each triple gives the name of a relation variable,
and the second and the third element give the related en-
tities. For example, the following RSF file assigns the
value ���� ��� ��� ��� to the relation variable CALL and
the value ���� ��� to the relation variable INHERIT:

CALL A B
CALL C A
INHERIT C A

The RSF is easily generalized from binary relations to
�-ary relations (� � �) by allowing not only triples, but
arbitrary tuples in each line. For each relation, all tuples
must have the same number of elements. For example, the
following file is not allowed:

REL A B
REL A B C

2.2. Query and Manipulation Language

First-order predicate calculus is a well-known, reason-
ably simple, precise and powerful language. In contrast to
the languages used by calculators for binary relations (like
Grok [20], RPA [16], and RelView [2]), it is sufficiently ex-
pressive to specify graph patterns of arbitrary size. Thus
predicate calculus, augmented with statements for the out-
put of relations, is a suitable basis of a language for mani-
pulating and querying relations in reverse engineering.

Such a language could be purely declarative, but we de-
cided to give the user the option to control the order of the
calculations. For example, the user can explicitly store and
reuse a frequently needed intermediate result, to avoid its re-
peated calculation and to structure the program. However,
the user is not required to do so, because the implemen-
tation avoids repeated calculations automatically (in most
cases) through the use of caches.

Programs of our language are sequences of semicolon-
separated statements. (Syntactic elements are italicized.)
There are only two kinds of statements: assignment state-
ments and output statements. Statements for the input of
relations are unnecessary, because input RSF files can be
specified as command line parameters and automatically
loaded before the execution of the program.

2.2.1 Context-Free Syntax of Assignment Statements

Assignment statements have the form
atomic expression := expression. The syntax of ex-
pressions conforms to first-order predicate calculus, with
three major exceptions:

� Terms can only be variables or constants, there are no
functions.

� There is a special operator for the transitive closure.

� There is a built-in binary relation =.

The following grammar specifies the context-free syntax
of expressions including atomic expressions:

expression ::= (expression)
� TRUE
� FALSE
� atomic expression
� term = term
� ! expression
� expression ˆ expression
� expression + expression
� expression -> expression
� EX(variable, expression)
� FA(variable, expression)
� TC(expression, variable, variable)

atomic expression ::= relation variable(term list)

term list ::= term � term list, term

term ::= "constant" � variable

Variables and relation variables are strings of letters, digits,
and the underscore, starting with a letter or the underscore.
Constants are strings of arbitrary characters excluding dou-
ble quotes.

2.2.2 Semantics and Context Conditions
of Assignment Statements

Like the syntax, the semantics of expressions of our lan-
guage conforms to the semantics of expressions in predi-
cate calculus. So the reader will be able to understand the
example programs in Section 3 and to write simple pro-
grams without explicit knowledge of the technical details

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

described in this subsection. The following definition pro-
ceeds bottom-up (i.e. from variables to assignment state-
ments) and is kept concise through references to the well-
known semantics of predicate calculus.

The domain of the variables is the set of all tuple ele-
ments of the input database (except the first tuple elements,
which give the names of the relation variables) and all con-
stants in the program. We call this set ��� . For the ex-
ample input database

CALL A B
CALL C A

we have ��� � ��� �� �� (when no additional constants
appear in the program). The scope of each variable is lim-
ited to one statement, so variables with same name are con-
sidered different if they appear in different statements.

For each relation variable, the number of elements of its
input RSF tuples (without the first element) and the num-
ber of terms in its atomic expressions have to be equal and
determine its arity. The domain of each relation variable
is the set of all relations over ��� with this arity. For
the above input database, the domain of the relation vari-
able CALL is ���������������� (i.e. the set of all binary rela-
tions over ��� �� ��) and CALL can only be used in atomic
expressions of the form CALL(term, term).

The semantics of atomic expressions is the same as
in predicate calculus. The symbols !, ˆ , +, ->, EX,
and FA mean negation, conjunction, disjunction, impli-
cation, existential quantification, and universal quantifica-
tion, respectively. The binary relation = is predefined
as ���� �� � �� � � ��� � � � ��. We preferred the
more familiar notation term = term to the more consistent
=(term, term).

To define the context conditions for the transitive clo-
sure operator TC, we need the notion of a free variable.
A variable is free in an expression if it occurs outside the
scope of a quantifier with this variable. The semantics of
TC(�, x, y) is only defined if the variables x and y
are free in the expression �, and no other variables are free
in �. Because � contains exactly two free variables, it rep-
resents a binary relation. The expression TC(�, x, y)
represents the transitive closure of this binary relation.

An assignment statement has to fulfill two context con-
ditions. Firstly, all relation variables that occur in the right
hand side must be defined either in the input database or
in the left hand side of an earlier assignment statement.
Secondly, the set of variables in the term list of the left
hand side must be equal to the set of free variables of
the right hand side. (So the relations at both sides have
the same arity.) The semantics of an assignment statement
R(��) := � (where �� is a term list and � is an expression)
is that a relation is assigned to the relation variable R such
that the expression R(��) (after the assignment) is equiv-
alent to the expression � (before the assignment).

2.2.3 Output Statements

There are two output statements:

output statement ::= PRINT "text"
� SAVE atomic expression

The PRINT statement prints text to the standard output.
The SAVE statement writes the relation given by the atomic
expression into an RSF file whose name can be specified
as command line parameter. As in the right hand sides of
assignment statements, the relation variable in the atomic
expression has to be defined in the input database or as left
hand side of an assignment statement before it appears in a
SAVE statement.

2.3. Representation of Relations
with Binary Decision Diagrams

An important problem in querying graphs and relations
is efficiency. For many related problems no polynomial-
time algorithm is known. For example, the decision if there
is a subgraph of one graph which is isomorphic to another
graph is NP-complete [18]. Besides time, memory is also a
problem: For a set � with ���� elements, �-ary relations
over � can have ���� elements.

Experience in computer-aided verification shows that the
data structure binary decision diagram (BDD) can repre-
sent even huge relations efficiently [8]. BDDs and an as-
sociated set of manipulation algorithms were introduced by
Bryant [6]. The worst-case time required for the BDD oper-
ations is bounded by polynomials of the sizes of the operand
BDDs. So when BDDs are small, their manipulation is effi-
cient, even if they represent huge relations. In the following,
we will shortly introduce BDDs and give an example how
they represent large relations efficiently. For a more detailed
introduction to BDDs see e.g. [7].

A BDD is a rooted directed acyclic graph. It has de-
cision nodes, and two terminal nodes called 0-terminal and
1-terminal. Each decision node is labeled by a Boolean vari-
able and has two children called low child and high child.
We only use ordered BDDs which means that the variables
occur in the same order on every path from the root to a ter-
minal node. A BDD is maximally reduced with respect to
two rules: Merge any isomorphic subgraphs, and eliminate
any node whose two children are isomorphic.

A BDD represents a relation over ��� ��, i.e. a set of
bit vectors. Relations over other sets than ��� �� can be
easily transformed to relations over ��� �� by binary encod-
ing. The bit vectors represented by a BDD correspond to
the paths from the root node to the 1-terminal. The vector
element that corresponds to a node has the value � if the
path descends to the low child and the value � if the path
descends to the high child.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

As an example, consider a program with three classes
�, � and �, where � calls � and �, � calls �, and �

calls �. This can be formalized as a binary relation ����
over �������:

���� � ������� ������ ������ ������

To represent this relation as BDD, it must be transformed
into a relation����� over ��� ��. Encoding � by ��� ��, �
by ��� ��, and � by ��� �� results in:

����
� � ���� �� �� ��� ��� �� �� ��� ��� �� �� ��� ��� �� �� ���

The BDD representation of the relation����� (and thus
of����) is shown in the left part of Figure 1. Edges to low
children are represented as dotted lines, and edges to the 0-
terminal are omitted to avoid clutter. The four bit vectors
in the relation ����� correspond to the four paths from the
root node to the 1-terminal in the BDD. For example, the
bit vector ��� �� �� �� corresponds to the leftmost path �� -
dotted line - �� - dotted line - �� - dotted line - �� - solid
line - �-terminal.

An extension of this example shows how BDDs can
stay small even for large relations. Consider all chains of
� calls, i.e. all tuples of ��� classes ���� ��� ���� ����� with
���� ���������� for all � � ��� ���� ��. For ���, the set of
these tuples is ���� � ������� ������ ������ ������,
for ��� it is ��������� �������� �������� ��������
�������� ��������, for ��� there are � such tuples, etc.
In general, there are �������� such tuples for odd � � �, so
the size of the relation grows exponentially with �.

However, the BDD representation grows only linearly
with �. To see this, compare the two BDDs in Figure 1.
The left BDD represents the relation for � � �, the right
BDD for � � �. The increase of � from � (by �) to � has
added the �� nodes labeled with ��, ��, ��, and ��, which
are in fact two copies of the subgraph induced by the nodes
labeled with �� and ��. Each further increase of � by � will
again add one copy of this subgraph, i.e. only five nodes.

The simple example illustrates a general problem: The
size of intermediate results obtained in searching graph pat-
terns often grows exponentially with the size of the pattern.
This problem is well known from joining tables in relational
databases. BDDs represent many of these large relations ef-
ficiently.

3. Evaluation

In the previous section, we proposed a language and a
data structure for querying and manipulating relations. We
argued that they have the following benefits:

� The language is sufficiently powerful to express many
analyses of software structures.

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
	

�
	

Figure 1. Left: BDD representation of the re-
lation ����; Right: BDD representation of
all chains of three ����s

� The programs of the language are reasonably easy to
understand and to write.

� The BDD representation of relations scales well to the
analysis of large software systems.

To validate the concepts empirically, we implemented them
in the tool CrocoPat, and used this tool to analyze object-
oriented software systems. For each analysis, we present the
program and performance results for CrocoPat, and com-
pare them to the corresponding data for Grok. Grok [20] is a
calculator for binary relations that has been applied to many
reverse engineering problems (see [15]), and “has been op-
timized to handle large factbases” [21].

3.1. Method

Evaluation of the language. The analyses performed
in our experiments should have proven to be useful in re-
verse engineering. Therefore we chose analyses that were
reported to yield useful results in the reverse engineering lit-

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

erature. We excluded analyses that are easy to formulate us-
ing software measures, like “Classes should not have more
than seven attributes.”, because our concepts are meant to
complement software measurement. For each analysis, we
compare the programs for CrocoPat and Grok.

Evaluation of efficiency. The scaling behavior of the
BDD representation is best illustrated by contrasting per-
formance data for software systems of different sizes, in-
cluding large systems. We chose the well-known Java sys-
tems JHotDraw 5.2, the AWT of the Java 2 Platform Stan-
dard Edition 1.4.0 (JDK 1.4.0 AWT), JWAM 1.6, the com-
plete Java 2 Platform Standard Edition 1.4.0 (JDK 1.4.0),
and Eclipse 2.02. Table 1 shows their characteristics. Here
LOC is the total number of carriage returns in the source
code, and RSF lines is the number of tuples in the extracted
RSF file.

System Classes LOC RSF lines
JHotDraw 5.2 168 17 819 878
JDK 1.4.0 AWT 384 141 267 1 504
JWAM 1.6 2 397 284 818 12 298
JDK 1.4.0 5 312 1 179 576 28 699
Eclipse 2.02 8 925 1 181 270 63 121

Table 1. Example systems for performance
evaluation

We used the tool SNiFF+ [37] to extract RSF files from
the source code of these systems. We extracted the call, con-
tainment, and inheritance relations between classes. (Here
containment means that a class contains an attribute whose
type is another class. Inheritance includes extends and
implements relations.) For example, from the source
code
class ContainedClass {}
class SuperClass {}
class SubClass extends SuperClass {

ContainedClass c;
}

the following RSF file is extracted:
INHERIT SubClass SuperClass
CONTAIN SubClass ContainedClass

For each analysis, we report the computation times of
CrocoPat (version 1.2) and Grok (version R15.0). (This
publicly available version of Grok does not include graph
pattern matching as described in [39]. The times for Grok
are only given when the analysis could be expressed in
Grok’s language.) The computation times are given in sec-
onds of processor time on a Linux PC with 1 GHz AMD
Athlon processor and 1280 MB memory. For CrocoPat we
restricted the memory usage to 12 MB for the first three
systems, and to 50 MB for JDK 1.4.0 and Eclipse 2.02. For
Grok we report memory overflow (MO) when it uses more
than 400 MB.

3.2. Experimental Results

Design pattern. It has often been argued that the know-
ledge of design pattern instances helps in understanding
object-oriented programs. Many tools have been developed
or extended for the automatic detection of design patterns
instances, e.g. Pat [26], the tool of Antoniol et al. [1], Vizz-
Analyzer [19]), SPOOL [25], and FUJABA [32].

� � � � � � � � �

� � � � � � � � �	 �
 �

Figure 2. Composite design pattern [17]

Figure 2 shows the class diagram of the Composite de-
sign pattern [17]. To identify possible instances of this pat-
tern we compute all triples of a Component class, a Com-
posite class, and a Leaf class, such that (1) the Composite
and the Leaf are subclasses of the Component, (2) the Com-
posite contains the Component, and (3) the Leaf does not
contain the Component.

CompPat(Component, Composite, Leaf) :=
INHERIT(Composite, Component)

ˆ CONTAIN(Composite, Component)
ˆ INHERIT(Leaf, Component)
ˆ ! CONTAIN(Leaf, Component);

SAVE CompPat(Component, Composite, Leaf);

Figure 3. Composite (CrocoPat program)

The translation of these conditions to a CrocoPat pro-
gram is straightforward, and the resulting program is shown
in Figure 3. The relations INHERIT and CONTAIN are
loaded automatically from an RSF file specified as com-
mand line parameter. The final statement saves the tuples
into an RSF file whose name is also specified as command
line parameter. Because the set of all Composite pattern
instances is a ternary relation, there is no natural way to de-
scribe it in Grok, which is restricted to binary relations.

Table 2 reports the number of detected Composite pat-
tern instances and the computation times of CrocoPat.

System # Composites CrocoPat
JHotDraw 5.2 0 0.26
JDK 1.4.0 AWT 15 0.46
JWAM 1.6 21 2.90
JDK 1.4.0 104 24.9
Eclipse 2.02 152 64.7

Table 2. Composite (results)

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Cycles. To understand an undocumented class, one has
to understand all classes it uses. If one of the (directly
or indirectly) used classes is the class itself, understand-
ing it is difficult. Many tools were applied to detect such
cyclic structures, e.g. Hy+[29], Pattern-Lint [33], RPA [16],
IAPR [23], Goose [11], and Grok [14].

The CrocoPat program in Figure 4 detects cyclic uses
of classes, where uses include calls, containment (from the
containing to the contained class), and inheritance (from
subclass to superclass). In the first statement, the use re-
lation is computed as union of the call, the containment,
and the inheritance relation. In the second statement, the
transitive closure of the use relation is computed, yielding
a relation that also includes all indirect uses. Classes that
are related to itself in this transitive closure participate in a
cycle of the use relation. The set of these classes is assigned
to the relation variable InCycle in the second statement,
and written to the output RSF file in the third statement.

Use(x,y) := CALL(x,y)
+ CONTAIN(x,y)
+ INHERIT(x,y);

InCycle(x) := EX(y, TC(Use(x,y),x,y) ˆ (x = y));
SAVE InCycle(x);

Figure 4. Classes in cycles (CrocoPat pro-
gram)

Figure 5 shows the corresponding Grok program. The
first statement loads the relations from the RSF file. Use+
is the transitive closure of Use, dom computes the do-
main (i.e. the set of all first tuple elements) of a given rela-
tion, id is the identity relation over a given set, and ENT
is the set of all entities occurring in the input RSF file.

getdb $1
Use := CALL + CONTAIN + INHERIT
InCycle := dom (Use+ ˆ id ENT)
putset InCycle $2
q

Figure 5. Classes in cycles (Grok program)

Table 3 reports the results of applying these programs to
the example systems. The column CIC shows how many
classes participate in cycles.

System CIC Grok CrocoPat
JHotDraw 5.2 16 0.21 0.27
JDK 1.4.0 AWT 120 0.44 0.46
JWAM 1.6 38 1.20 2.43
JDK 1.4.0 1304 115 8.75
Eclipse 2.02 2465 MO 38.5

Table 3. Classes in cycles (results)

It is very tedious for a human analyst to find the actual
cycles in a list of hundreds of classes which are part of a
cycle. With CrocoPat it is possible to compute all cycles of
some fixed length. Our program detects the cycles in the or-
der of ascending length. After the detection of all cycles of
length �, all edges (except inheritance edges, which cannot
be cyclic) that participate in these cycles are deleted. This
ensures that the computed cycles of lengths greater than �
are not just chains of shorter cycles. The CrocoPat program
is simple but rather long and repetitive, so we omit it. Ta-
ble 4 reports the numbers of cycles of the lengths 2 to 5.

Because the set of all cycles of length � is an �-ary rela-
tion, it cannot be computed with the binary relational alge-
bra of Grok for ���.

System 2 3 4 5 CrocoPat
JHotDraw 5.2 10 0 0 0 1.49
JDK 1.4.0 AWT 61 5 3 0 2.05
JWAM 1.6 14 2 1 0 8.34
JDK 1.4.0 389 81 27 3 70.4
Eclipse 2.02 920 262 41 29 219

Table 4. Cycles of fixed length (results)

Similar classes. Many approaches to code clone detec-
tion focus on the lexical or syntactic level (see [9] for an
overview). These algorithms can be complemented by the
detection of similar classes at the design level.

Figure 6 shows a Grok program that detects all pairs
of classes that call the same classes, contain instances of
the same classes, and inherit from the same classes. The
term (ENT X ENT) - R is used to compute the com-
plement of the relation R, * is the composition opera-
tor, and inv swaps the first and the second element of
all tuples of a relation. Figure 7 shows the corresponding
CrocoPat program.

getdb $1

Rleft1 := CALL * ((ENT X ENT) - inv CALL)
Rleft2 := ((ENT X ENT) - CALL) * inv CALL
Rleft := Rleft1 + Rleft2
IdCall := (ENT X ENT) - Rleft

Rleft1 := CONTAIN * ((ENT X ENT) - inv CONTAIN)
Rleft2 := ((ENT X ENT) - CONTAIN) * inv CONTAIN
Rleft := Rleft1 + Rleft2
IdCont := (ENT X ENT) - Rleft

Rleft1 := INHERIT * ((ENT X ENT) - inv INHERIT)
Rleft2 := ((ENT X ENT) - INHERIT) * inv INHERIT
Rleft := Rleft1 + Rleft2
IdInh := (ENT X ENT) - Rleft

Ident := IdCall ˆ IdCont ˆ IdInh
appendRelToFile Ident $2
q

Figure 6. Similar classes (Grok program)

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

IdCall(x,z):=
! (EX(y, CALL(x,y) ˆ (! CALL(z,y)))

+ EX(y, (! CALL(x,y)) ˆ CALL(z,y)));

IdCont(x,z):=
! (EX(y, CONTAIN(x,y) ˆ (! CONTAIN(z,y)))

+ EX(y, (! CONTAIN(x,y)) ˆ CONTAIN(z,y)));

IdInh(x,z):=
! (EX(y, INHERIT(x,y) ˆ (! INHERIT(z,y)))

+ EX(y, (! INHERIT(x,y)) ˆ INHERIT(z,y)));

Ident(x,z) := IdCall(x,z)ˆIdCont(x,z)ˆIdInh(x,z);
SAVE Ident(x,z);

Figure 7. Similar classes (CrocoPat program)

We feel that both programs are unnecessarily difficult to
understand and to develop. Intuitively, two classes are sim-
ilar if all classes that are called by the first class are also
called by the second class, and all classes that are called
by the second are also called by the first, and analogous
conditions hold for containment and inheritance. With the
“for all” quantifier of predicate calculus we can express
these conditions directly. Figure 8 shows the correspond-
ing CrocoPat program. In fact, this program was our first
formalization of the similar classes, and we developed the
programs in the Figures 6 and 7 only because we had to use
the composition operator * instead of quantifiers in Grok.

IdCall(x,z) :=
FA(y, (CALL(x,y) -> CALL(z,y))

ˆ (CALL(z,y) -> CALL(x,y)));

IdCont(x,z) :=
FA(y, (CONTAIN(x,y) -> CONTAIN(z,y))

ˆ (CONTAIN(z,y) -> CONTAIN(x,y)));

IdInh(x,z) :=
FA(y, (INHERIT(x,y) -> INHERIT(z,y))

ˆ (INHERIT(z,y) -> INHERIT(x,y)));

Ident(x,z) := IdCall(x,z)ˆIdCont(x,z)ˆIdInh(x,z);
SAVE Ident(x,z);

Figure 8. Similar classes (CrocoPat program
with FA operator)

Table 5 reports not the number of pairs of similar classes,
but the number of different classes in these pairs. The set
of classes in similar pairs was obtained through a postpro-
cessing step. We preferred the number of similar classes to
the number of pairs of similar classes because the latter is
large and hard to interpret: For � classes that are pair-wise
similar, the number of pairs is ��.

Degenerate inheritance. When a class inherits from an-
other class directly and indirectly, the direct inheritance is
probably redundant or even misleading. In a measurement-
based quality assessment of the JWAM framework (see [5]
for an overview), one of the restructuring recommendations

System # sim. cls. Grok CrocoPat
JHotDraw 5.2 59 1.54 0.29
JDK 1.4.0 AWT 139 5.72 0.42
JWAM 1.6 481 MO 2.61
JDK 1.4.0 1 663 MO 7.34
Eclipse 2.02 1 784 MO 18.1

Table 5. Similar classes (results)

was to avoid such inheritance structures. In this original as-
sessment, one instance of the pattern was found indirectly.
Our structural analyses reveal that there exist much more
instances.

A degenerate inheritance structure consists of three
classes, where the first and the second class are direct su-
perclasses of the third class, and the first class is a (not
necessarily direct) superclass of the second class. Figure 9
shows the straightforward CrocoPat program for this pat-
tern. Again, there is no natural way to describe the pattern
in Grok, because it is restricted to binary relations.

DegInh(a,b,c) := INHERIT(c,b)
ˆ INHERIT(c,a)
ˆ TC(INHERIT(b,a), b, a);

SAVE DegInh(a,b,c);

Figure 9. Degenerate inheritance (CrocoPat
program)

Table 6 reports the number of detected pattern instances
and the computation times of CrocoPat.

System # degenerate triples CrocoPat
JHotDraw 5.2 1 0.23
JDK 1.4.0 AWT 4 0.32
JWAM 1.6 161 2.60
JDK 1.4.0 1 233 52.3
Eclipse 2.02 334 38.9

Table 6. Degenerate inheritance (results)

Subclass knowledge. Superclasses should not know
their subclasses, because superclasses should be under-
standable and reusable independently of their subclasses,
and modifying subclasses should not affect the superclass.
Subclass knowledge is a special case of the cyclic usage
structures discussed earlier, and was detected e.g. with the
tools Pattern-Lint [33] and Goose [11].

A basic version of this pattern is a pair of classes, such
that the second class is a (not necessarily direct) subclass
of the first class and the first class (possibly indirectly) calls
or contains the second class. The corresponding Grok and
CrocoPat programs are shown in Figure 10 and Figure 11,
respectively.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Table 7 reports the number of detected instances of sub-
class knowledge and the computation times of Grok and
CrocoPat.

getdb $1
Know := (CALL + CONTAIN)+ ˆ (inv INHERIT)+
appendRelToFile Know $2
q

Figure 10. Subclass knowledge (Grok)

Know(super,sub) :=
TC(CALL(super,sub) | CONTAIN(super,sub),

super, sub)
& TC(INHERIT(sub,super), sub, super);

SAVE Know(super,sub);

Figure 11. Subclass knowledge (CrocoPat)

System # instances Grok CrocoPat
JHotDraw 5.2 0 0.21 0.19
JDK 1.4.0 AWT 74 0.43 0.45
JWAM 1.6 11 1.10 2.74
JDK 1.4.0 2720 75.6 24.8
Eclipse 2.02 2295 MO 83.9

Table 7. Subclass knowledge (results)

3.3. Discussion

Three of the six analyses could be naturally expressed in
Grok and CrocoPat, because the results were unary or bi-
nary relations. In two of these cases (classes in cycles and
subclass knowledge), the programs of Grok and of CrocoPat
were quite similar, and it is probably a matter of taste which
to prefer. Compared to Grok, CrocoPat has the quanti-
fiers as additional syntactic elements, which are well-known
from predicate calculus and add much expressiveness. Con-
versely, we had to use several syntactic elements of Grok
that are unnecessary in CrocoPat (*, inv, dom, ENT). In
one case (similar classes), we felt that the availability of
quantifiers in CrocoPat made the development and under-
standing of the program much easier.

As noted in [15], graph patterns with more than two
nodes generally cannot be expressed in binary relational al-
gebra. The examples of the Composite design pattern and
degenerate inheritance show that such patterns can be spec-
ified easily in the language of CrocoPat.

Concerning efficiency, no analyses with CrocoPat re-
quired more than four minutes of time and 50 MB of mem-
ory. Grok outperformed CrocoPat for some small problems,
but CrocoPat scaled much better to large systems. In partic-
ular, Grok could not complete any analysis of Eclipse be-
cause it required too much memory, and took much more
time for all analyses of JDK.

It is worth noting that the greater generality of CrocoPat
(compared to Grok) does not lead to an increased need for
resources. We could not compare the performance for re-
lations of arity greater than two. However, as indicated in
Section 2.3, we expect that the full superiority of BDDs over
other data structures shows only for these relations.

3.4. Comparison with SQL

Relational databases and SQL are used in several re-
verse engineering toolsets for querying and manipulating
relations (e.g. in the Dali workbench [24], CppSpec [35],
Sotograph [3]). In this subsection we briefly compare the
performance of the database management system MySQL
3.23.48 and CrocoPat in the computation of transitive clo-
sures, which appear frequently in structural analyses.

We computed the transitive closure of the USE rela-
tion, i.e. the union of CALL, CONTAIN, and INHERIT.
The CrocoPat program is simply
Closure(x,y) := TC(USE(x,y),x,y);

Because the transitive closure is not directly expressible in
SQL, we developed the SQL script in Figure 12, and exe-
cuted it repeatedly until the fixed point was reached. To im-
prove the performance of MySQL, we used heap tables (i.e.
tables stored in main memory, not on hard disc), INT(4)
as type of all table columns, and indexes where appropriate.

The computation times are shown in Table 8. For the last
two systems, MySQL needs more than 400 MB of mem-
ory. When normal tables instead of heap tables are used, the
computation time explodes and we interrupted the compu-
tations after one hour. Even if other database management
systems were an order of magnitude faster, the performance
would still not be satisfactory.

INSERT INTO ClosureNew (x,y)
SELECT * FROM Closure;

INSERT INTO ClosureNew (x,y)
SELECT l.x, r.y
FROM Closure l, Closure r WHERE l.y = r.x;

DELETE FROM Closure;

INSERT INTO Closure (x,y)
SELECT DISTINCT * FROM ClosureNew;

DELETE FROM ClosureNew;

Figure 12. Transitive Closure (SQL)

System MySQL CrocoPat
JHotDraw 5.2 0.35 0.18
JDK 1.4.0 AWT 29.5 0.27
JWAM 1.6 16.8 2.24
JDK 1.4.0 MO 8.37
Eclipse 2.02 MO 37.7

Table 8. Transitive closure (results)

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

4. Related Work

SQL is a well-known language for querying and mani-
pulating relations. The lack of a transitive closure operator
and the insufficient performance of relational databases for
large graphs were already discussed in Section 3.4. Fur-
thermore, CrocoPat facilitates data exchange because of its
simple file format for relations, and is easier to install and
maintain than relational database management systems.

The logic programming language Prolog [12] is quite
similar to the language of CrocoPat. Prolog has been used
to detect design patterns and design problems in the tools
Pat [26], Pattern-Lint [33] and Goose [11]. CrocoPat differs
from Prolog interpreters in that it is tailored for the use in re-
verse engineering: It has a much smaller language, efficient
algorithms that are optimized for this reduced language, and
it uses a standard file format of reverse engineering.

Calculators for binary relational algebra that have been
used in reverse engineering include Grok [20], RPA [16],
and RelView [2]. However, there are some practically im-
portant queries that cannot be expressed with binary rela-
tions. A graph pattern with � nodes, for example, is an �-
tuple. Grok was extended to support graph pattern match-
ing [39], but this resulted in a more complex language that
still does not support other operations on �-ary relations.

The program understanding toolset GUPRO [13] pro-
vides the textual graph querying language GReQL [28].
The approach differs from CrocoPat in several respects:
GReQL focusses on querying, while CrocoPat can also cre-
ate and modify relations. GReQL focusses on graphs (bi-
nary relations), CrocoPat on �-ary relations. GReQL re-
quires the specification of a graph class, while CrocoPat
can manipulate directed, attributed graphs without such
a specification. Visual graph querying languages in-
clude GraphLog in the tool Hy+ [29], annotated graphs in
IAPR [23], and a subset of UML in FUJABA [32].

The graph rewriting rule based specification and rapid
prototyping language PROGRES [4] has a purely textual
and a combination of visual and textual notation. It is ex-
pressive, but also much more complicated than CrocoPat.

As input and output format for relations CrocoPat uses
the tuple notation of the Rigi Standard Format (RSF, [38,
Section 4.7.1]), which facilitates data exchange with other
tools. CrocoPat does not yet support the XML-based Graph
Exchange Language (GXL, [22]) because the additional
features of GXL are not needed.

Querying graphs and relations is related to NP-hard
problems like subgraph isomorphism, and therefore effi-
ciency is a central problem. Binary decision diagrams are
successfully applied in computer-aided verification for the
efficient representation and manipulation of huge relations
(see e.g. [8]). However, no BDD-based calculator for re-
lations was available in reverse engineering (with the ex-

ception of RelView [2], which is limited to binary relations
where the potential of BDDs is not fully exploited). The
experimental results in Section 3 confirm the excellent per-
formance of our BDD-based implementation.

5. Conclusion

Querying and manipulating relations has many applica-
tions in reverse engineering. However, existing tools for
calculating with relations are not powerful enough to detect
graph patterns with more than two nodes, or difficult to use
and integrate with other tools, or inefficient for some prac-
tically important operations.

We proposed to use the well-known language of pred-
icate calculus for the manipulation, and the data structure
BDD for the efficient internal representation of �-ary rela-
tions. We implemented these concepts in the tool CrocoPat,
and evaluated this tool in structural analyses of five object-
oriented software systems. The experiments confirmed that
the language of CrocoPat is sufficiently expressive and rea-
sonably easy to use, and that CrocoPat scales well to the
analysis of large software systems.

Recently, CrocoPat was integrated into the commer-
cial software analysis and visualization workbench Soto-
graph [3]. Sotograph is based on relational databases, and
its users demanded CrocoPat for efficient graph pattern
matching. Through the use of RSF as input and output for-
mat the integration was easy and inexpensive.

The tool CrocoPat is publicly available via Internet from
http://www.software-systemtechnik.de/CrocoPat.

References

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern
recovery in object-oriented software. In Proceedings of the
6th IEEE International Workshop on Program Understand-
ing (IWPC 1998), pages 153–160, 1998.

[2] R. Behnke, R. Berghammer, E. Meyer, and P. Schneider.
RELVIEW – a system for calculating with relations and
relational programming. In E. Astesiano, editor, Proceed-
ings of the 1st International Conference on Fundamental
Approaches to Software Engineering (FASE 1998), LNCS
1382, pages 318–321, Berlin, 1998. Springer-Verlag.

[3] W. R. Bischofberger. Sotograph: User’s Guide
and Reference Manual. Software Tomography GmbH,
http://www.software-tomography.com, 2003.

[4] D. Blostein and A. Schürr. Computing with graphs and
graph transformations. Software: Practice & Experience,
29(3):197–217, 1999.

[5] H. Breitling, C. Lewerentz, C. Lilienthal, M. Lippert,
F. Simon, and F. Steinbrückner. External validation of
a metrics-based quality assessment of the JWAM frame-
work. In Tagungsband des Workshops der GI-Fachgruppe
2.1.10.: Software – Messung und Bewertung, pages 32–49.
Deutscher Universitätsverlag, Wiesbaden, 2002.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

[6] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transaction on Computers, C-
35(8):677–691, 1986.

[7] R. E. Bryant. Symbolic boolean manipulation with or-
dered binary decision diagrams. ACM Computing Surveys,
24(3):293–318, 1992.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: ���� states and be-
yond. Information and Computation, 98(2):142–170, 1992.

[9] E. Burd and J. Bailey. Evaluating clone detection tools for
use during preventative maintenance. In Proceedings of the
2nd IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM 2002), pages 36–43, 2002.

[10] Y.-F. Chen, E. R. Gansner, and E. Koutsofios. A C++
data model supporting reachability analysis and dead code
detection. IEEE Transactions On Software Engineering,
24(9):682–694, 1998.

[11] O. Ciupke. Automatic detection of design problems in
object-oriented reengineering. In Proceedings of Technology
of Object-Oriented Languages and Systems (TOOLS 1999),
pages 18–32, 1999.

[12] W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, Berlin, 3rd edition, 1987.

[13] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. GUPRO
– generic understanding of programs. Electronic Notes in
Theoretical Computer Science, 72(2), 2002.

[14] H. Fahmy and R. C. Holt. Software architecture transfor-
mations. In Proceedings of the International Conference on
Software Maintenance (ICSM 2000), pages 88–96, 2000.

[15] H. Fahmy, R. C. Holt, and J. R. Cordy. Wins and losses
of algebraic transformations of software architectures. In
Proceedings of the 16th IEEE International Conference on
Automated Software Engineering (ASE 2001), pages 51–60,
2001.

[16] L. M. G. Feijs, R. L. Krikhaar, and R. C. van Ommering. A
relational approach to support software architecture analy-
sis. Software: Practice & Experience, 28(4):371–400, 1998.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, Reading, MA, 1995.

[18] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man, New York, 1979.

[19] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe. Auto-
matic design pattern detection. In Proceedings of the 11th
International Workshop on Program Comprehension (IWPC
2003), pages 94–103, 2003.

[20] R. C. Holt. Structural manipulations of software architecture
using Tarski relational algebra. In Proceedings of the 5th
Working Conference on Reverse Engineering (WCRE 1998),
pages 210–219, 1998.

[21] R. C. Holt. Introduction to the Grok language, 2002.
http://plg.uwaterloo.ca/ holt/papers/grok-intro.html.

[22] R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a stan-
dard exchange format. In Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE 2000), pages
162–171, 2000.

[23] R. Kazman and M. Burth. Assessing architectural com-
plexity. In Proceedings of the 2nd Euromicro Conference
on Software Maintenance and Reengineering (CSMR 1998),
pages 104–112, 1998.

[24] R. Kazman and S. J. Carrière. View extraction and view
fusion in architectural understanding. In Proceedings of
the 5th International Conference on Software Reuse (ICSR
1998), pages 290–299, 1998.

[25] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé. Pattern-
based reverse-engineering of design components. In Pro-
ceedings of the 21st International Conference on Software
Engineering (ICSE 1999), pages 226–235. ACM, 1999.

[26] C. Krämer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. In Proceedings of the 3rd Working Conference on Re-
verse Engineering (WCRE 1996), pages 208–215, 1996.

[27] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proceedings of the 8th Working Confer-
ence on Reverse Engineering (WCRE 2001), pages 301–309,
2001.

[28] B. Kullbach and A. Winter. Querying as an enabling technol-
ogy in software reengineering. In Proceedings of the 3rd Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR 1999), pages 42–50, 1999.

[29] A. O. Mendelzon and J. Sametinger. Reverse engineering
by visualizing and querying. Software – Concepts & Tools,
16(4):170–182, 1995.

[30] K. Mens and R. Wuyts. Declarative codifying software ar-
chitectures using virtual software classifications. In Pro-
ceedings of Technology of Object-Oriented Languages and
Systems Europe 1999, pages 33–45, 1999.

[31] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software re-
flexion models: Bridging the gap between design and im-
plementation. IEEE Transactions On Software Engineering,
27(4):364–380, 2001.

[32] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In Pro-
ceedings of the 24th International Conference on Software
Engineering (ICSE 2002), pages 338–348, 2002.

[33] M. Sefika, A. Sane, and R. H. Campbell. Monitoring com-
pliance of a software system with its high-level design mod-
els. In Proceedings of the 18th International Conference on
Software Engineering (ICSE 1996), pages 387–396, 1996.

[34] F. Shull, W. L. Melo, and V. R. Basili. An inductive method
for discovering design patterns from object-oriented soft-
ware systems. Technical Report CS-TR-3597, Computer
Science Department, University of Maryland, 1996.

[35] H. M. Sneed and T. Dombovari. Comprehending a complex,
distributed, object-oriented software system: A report from
the field. In Proceedings of the 7th International Workshop
on Program Understanding (IWPC 1999), pages 218–225,
1999.

[36] P. Tonella and G. Antoniol. Object oriented design pat-
tern inference. In Proceedings of the International Con-
ference on Software Maintenance (ICSM 1999), pages 230–
238, 1999.

[37] Wind River Systems, Inc. Sniff+.
http://www.windriver.com/products/sniff plus/.

[38] K. Wong. Rigi User’s Manual, Version 5.4.4, 1998.
http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/.

[39] J. Wu, A. E. Hassan, and R. C. Holt. Using graph patterns to
extract scenarios. In Proceedings of the 10th International
Workshop on Program Comprehension (IWPC 2002), pages
239–247, 2002.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

