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Abstract. Blast is an automatic verification tool for checking tempo-
ral safety properties of C programs. Given a C program and a temporal
safety property, Blast statically proves that either the program sat-
isfies the safety property or the program has an execution trace that
exhibits a violation of the property. Blast constructs, explores, and re-
fines abstractions of the program state space based on lazy predicate
abstraction and interpolation-based predicate discovery. We show how
Blast can be used to statically prove memory safety for C programs.
We take a two-step approach. First, we use CCured, a type-based mem-
ory safety analyzer, to annotate with run-time checks all program points
that cannot be proved memory safe by the type system. Second, we use
Blast to remove as many of the run-time checks as possible (by proving
that these checks never fail), and to generate for the remaining run-time
checks execution traces that witness them fail. Our experience shows
that Blast can remove many of the run-time checks added by CCured
and provide useful information to the programmer about many of the
remaining checks.

1 Introduction

Invalid memory access is a major source of program failures. If a program state-
ment dereferences a pointer that points to an invalid memory cell, the program
is either aborted by the operating system or, often worse, the program con-
tinues to run with an undefined behavior. To avoid the latter, one can perform
checks before every memory access at run time. For some programming languages
(e.g., Java) this is done automatically by the compiler/run-time environment.
For the language C, neither the compiler nor the run-time environment enforces
memory-safety policies. CCured [7, 24] is a program-transformation tool for C
which transforms any given C program to a memory-safe version. CCured uses
a type-based program analysis to prove as many memory accesses as possible
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memory safe, and it inserts run-time checks before the remaining memory ac-
cesses. The resulting, “cured” C program is memory safe in the sense that it
alarms the user if the program was about to execute an unsafe operation. De-
spite the manyfold advantages of this approach, it has two drawbacks: first, the
run-time checks consume additional processor time, and second, the checks give
late feedback, just before the program aborts.

We address these two points by combining CCured with a more powerful,
path-sensitive program analysis. The additional analysis is performed by the
model checker Blast [19]. For each memory access that the type-based analysis
of CCured fails to prove safe, we invoke the more precise, more expensive anal-
ysis of Blast. There are three possible outcomes. First, Blast may be able to
prove that the memory access is safe (even though CCured was not able to prove
this). In this case, no run-time check needs to be inserted, thus reducing the over-
head in the cured program. Second, Blast may be able to generate an execution
trace to an invalid pointer dereference at the considered control location, i.e., an
execution trace along which the run-time check inserted by CCured would fail.
This may expose a program bug, which can, based on the error trace provided
by Blast, then be fixed by the programmer. Third, Blast may time-out at-
tempting to check whether or not a given memory access is always safe. In this
case, the run-time check inserted by CCured remains in the cured program. It is
important to note that Blast, even though often more powerful than CCured,
is not invoked by itself, but only after a type-based pointer analysis fails. This is
because where successful, the CCured analysis is more efficient, and it may also
succeed in cases that overwhelm the model checker. However, the combination
of CCured and Blast guarantees memory-safe programs with less run-time
overhead than the use of CCured alone, and it provides useful compile-time
feedback about memory-safety violations to the programmer.

Blast performs an abstract reachability analysis to check if a given error
location of a C program can be visited during program execution. All paths
of the program are checked symbolically and abstractly, by tracking only some
relevant facts (called predicates) about program variables, instead of the full pro-
gram state. If a path to the error location is found, the path may be due to the
imprecision in the abstraction (a so-called spurious counterexample) or it may
correspond to a feasible program path (a genuine counterexample). In the former
case, additional relevant predicates are discovered automatically to remove the
spurious error trace. The process is repeated, by tracking an increasing number
of predicates, until either a genuine error trace (program bug) is found, or the
abstraction is precise enough to prove the absence of error traces. This scheme of
counterexample-guided predicate abstraction refinement was first implemented
for verifying software by the Slam project [3]. Blast improves on the general
scheme in two main ways. First, relevant predicates are discovered locally and
independently at each program location as interpolants between the past and
the future fragments of a spurious error trace [15]. Second, the discovered new
predicates are added and tracked locally only in those parts of an abstract reach-
ability tree where the spurious error trace occurred (lazy abstraction) [18]. This
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emphasis on parsimonious, nonuniform abstractions renders the analysis scalable
beyond 100,000 lines of code [15].

Much recent interest has focused on the addition of run-time checks to im-
prove the memory safety and security of C programs [2, 12, 21], often coupled with
a static analysis to reduce the run-time overhead by eliminating dynamic checks
[4, 7, 14, 23, 26]. However, to our knowledge, model checking has not been used pre-
viously in the elimination of these run-time checks, even though the model check-
ing of software has been a very active area of research in recent years [1, 3, 6, 8, 11,
13, 20, 22] (for more related work on software model checking, see [17]).

2 The Software Model Checker Blast

We illustrate how Blast combines lazy abstraction and interpolation-based,
localized predicate discovery on the example shown in Figure 1.

Example Program. The program consists of three functions. Function altInit
has three formal parameters: size, pval1, and pval2. It allocates and initializes
a global array a. The size of the allocated array is given by size. The array is
initialized with an alternating sequence of two values, pointed to by the pointers
pval1 and pval2. After the initialization is completed, the last value of the
sequence is the value returned to the caller. Function main is a test driver for
function altInit. It reads in an integer number from standard input and ensures
that it gets a value greater than zero. Then it calls function altInit with the
read value as parameter for the size as well as for the two initial values. Finally,
the stub function myscanf models the behavior of the C library function scanf,
which reads input values. The stub myscanf models arbitrary user input by
returning a random integer value.

Control-Flow Automata. Internally, this program is represented by control-
flow automata (CFA), one for each function of the program. A CFA is a directed
graph, with locations corresponding to control points of the program (program-
counter values), and edges corresponding to program operations. An edge be-
tween two locations is labeled by the instruction that executes when control
moves from the source to the destination; an instruction is either a basic block of
assignments, an assume predicate corresponding to the condition that must hold
for control to go across the edge, a function call with call-by-value parameters
(Blast also handles call-by-reference, but this is omitted from this exposition
for simplicity), or a return instruction. Figures 2 and 3 show the control-flow
automata for the functions main and altInit, respectively.

Memory Safety. We wish to prove that our program is memory safe, in partic-
ular, that there is no null-pointer dereference. In our example, we focus on one
particular pointer dereference in the program: the dereference of the pointer ptr
at the end of the function altInit (on line 19). We wish to prove that along
all executions of the program, this pointer dereference is valid, that is, the value
of ptr is not null. Notice that this property holds for our program: along every
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#include <stdio.h>
#include <stdlib.h>
int *a;

void myscanf(const char* format, int* arg) {
*arg = rand();

}

int altInit(int size, int *pval1, int *pval2){
1: int i, *ptr;
2: a = (int *) malloc(sizeof(int) * size);
3: if (a == 0) {
4: printf("Memory exhausted.");
5: exit(1);
6: }
7: i = 0;
8: while(i < size) {
9: i = i + 1;
10: if (i % 2 == 0) {
11: ptr = pval1;
12: } else {
13: ptr = pval2;
14: }
15: a[i] = *ptr;
16: printf("%d. iteration", i);
17: }
18: if (ptr == 0) ERR: ;
19: return *ptr;
}

int main(int argc, char *argv []){
20: int *pval = (int *) malloc(sizeof(int));
21: if (pval == 0) {
22: printf("Memory exhausted.");
23: exit(1);
24: }
25: *pval = 0;
26: while(*pval <= 0) {
27: printf("Give a number greater zero: ");
28: myscanf("%d", pval);
29: }
30: return altInit(*pval, pval, pval);
}

Fig. 1. The example C program

execution path to line 19, the pointer ptr equals either pval1 or pval2. More-
over, when altInit is called from main, the actual arguments passed to pval1
and pval2 are both pval (line 30). We have allocated space for pval in main
(line 20), and we have already checked that the allocation succeeded (the test
on line 21 and the code on lines 22–23 ensures that the program exits if pval is
null). While the actual reason for correctness is simple, the example shows that
the analysis to prove safety must be interprocedural and path-sensitive.

We have instrumented the program to check for this property (line 18), by
checking whether the pointer ptr is null immediately before the dereference.
In the next section, we will describe how such instrumentations are inserted
automatically by a memory-safety analysis. With the instrumentation, the label
ERR on line 18 is reached if and only if the pointer ptr is null and about to be
dereferenced at line 19. In Figure 3 the error location with label 1#22 is depicted
by a filled ellipse. We now describe how Blast checks that the label ERR (or
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Fig. 2. Control-flow automaton for function main

Fig. 3. Control-flow automaton for function altInit

equivalently, the location 1#22 of the CFA) is not reached along any execution
of the program, and thus proves that the dereference on line 19 never fails.

2#3

2#6

pval = malloc(sizeof(int));

2#8

Pred(pval!=0)

2#7

Pred(pval == 0)

2#14

*pval = 0;

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

2#21

tmp = altInit(*pval, pval, pval);

2#0

return tmp;

2#17

printf("Give...");

2#19

myscanf("%d", pval);

Skip

2#9

printf("Mem...");

2#11

exit(1);

1#1

1#3

a = malloc(sizeof(int) * size);

1#5

Pred(a != 0)

1#4

Pred(a == 0)

1#11

i = 0;

1#13

Pred(i >= size)

1#12

Pred(i < size)

1#24

Pred(ptr != 0) 1#22

Pred(ptr == 0)

1#0

return *ptr;

Skip

1#14

i = i + 1;

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#17

ptr = pval2;

1#18

*(a + i) = *ptr;

1#19

printf("%d. iter...", i);

Skip

ptr = pval1;

1#6

printf("Mem...");

1#8

exit(1);
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Abstract Reachability Trees. In order to prove that the label ERR is never
reached, Blast constructs an abstract reachability tree (ART). An ART is a
labeled tree that represents a portion of the reachable state space of the program.
Each node of the ART is labeled with a location of a CFA, the current call stack
(a sequence of CFA nodes representing return addresses), and a boolean formula
(called the reachable region) representing a set of data states. We denote a labeled
tree node as n : (q, s, ϕ), where n is the tree node, q is the CFA node, s is the
call stack, and ϕ is the reachable region. Each edge of the tree is marked with
a basic block, an assume predicate, a function call, or a return. A path in the
reachability tree corresponds to a program execution. The reachable region of
a node describes an overapproximation of the reachable states of the program
assuming execution follows the sequence of operations labeling the path from
the root of the tree to the node.

Given a region (set of data states) ϕ and program operation (basic block
or assume predicate) op, let post(ϕ, op) be the set of states reachable from ϕ
by executing the operation op. For a function call op, let post(ϕ, op) be the set
of states reachable from ϕ by assigning the actual parameters to the formal
parameters of the called function. For a return instruction op and variable x, let
post(ϕ, op, x) be the set of states reachable from ϕ by assigning the return value
to x. An ART is complete if (1) the root is labeled with the initial states of the
program; (2) the tree is closed under postconditions, that is, for every internal
node n : (q, s, ϕ) of the tree with ϕ �= ∅,

(2a) if q
op−→ q′ is an edge in the CFA of q and op is a basic block or assume

predicate, then there is a successor node n′ : (q′, s, ϕ′) of n in the tree such
that the edge (n, n′) is marked with op and post(ϕ, op) ⊆ ϕ′,

(2b) if q
op−→ q′ is a CFA edge and op is a function call, then there is an op-

successor n′ : (q′′, s′, ϕ′) in the tree such that q′′ is the initial location of
the called function, the call stack s′ results from pushing the return location
q′ together with the left-hand-side variable of the function call onto s, and
post(ϕ, op) ⊆ ϕ′,

(2c) if q
op−→ q′ is a CFA edge and op is a return instruction, then there is an

op-successor n′ : (q′′, s′, ϕ′) in the tree such that (q′′, x) is the top of the
call stack s, the new call stack s′ results from popping the top of s, and
post(ϕ, op, x) ⊆ ϕ′;

and (3) for every leaf node n : (q, s, ϕ) of the tree, either q has no outgoing edge
in its CFA, or ϕ = ∅, or there exists an internal tree node n′ : (q, s, ϕ′) such
that ϕ ⊆ ϕ′. In the last case, we say that n is covered by n′, as every program
execution from n is also possible from n′. A complete ART overapproximates the
set of reachable states of a program. A complete ART is safe with respect to a
CFA location q (the error location) if for every node n : (q, ·, ϕ) in the tree, we
have ϕ = ∅. A complete ART that is safe for q serves as a certificate (proof)
that q cannot be reached by any execution of the program [16].

Figure 4 shows a complete ART for our example program. We omit the call
stack for clarity. Each node of the tree is labeled with a CFA node, and the
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Fig. 4. Complete abstract reachability tree

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

pval != 0

2#14

*pval = 0;

pval == 0

2#9

printf("Mem...");

pval == 0

2#11

exit(1);

pval == 0

pval != 0, *pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false pval != 0, *pval < 1

2#17

printf("Give...");

pval != 0, *pval < 1

2#19

myscanf("%d", pval);

pval != 0

2#14’

Skip

pval != 0

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

pval != 0, *pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

pval != 0, *pval < 1
 COVERED

pval1 != 0, pval2 != 0, size >= 1

1#3

a = malloc(sizeof(int) * size);

pval1 != 0, pval2 != 0, size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

pval1 != 0, pval2 != 0, size >= 1

1#11

i = 0;

pval1 != 0, pval2 != 0, size >= 1

1#6

printf("Mem...");

pval1 != 0, pval2 != 0, size >= 1, i == 0

1#8

exit(1);

pval1 != 0, pval2 != 0, size >= 1, i == 0

pval1 != 0, pval2 != 0, size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false pval1 != 0, pval2 != 0, size >= 1, i == 0

1#14

i = i + 1;

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#14’ pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#16’

Pred(i % 2 != 0)

1#15’

Pred(i % 2 == 0)

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#17

ptr = pval2;

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

 COVERED

ptr != 0, pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#18

*(a + i) = *pval;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#19

printf("%d. iter...", i);

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#11’

Skip

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#14’

i = i + 1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

2#21

return *ptr;

false

pval != 0, *pval < 1

2#0

return tmp;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#17’

ptr = pval2;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#17’’

ptr = pval1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#18’

*(a + i) = *pval;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#19’

printf("%d. iter...", i);

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#11’’

Skip

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#13’’

Pred(i >= size)

1#12’’

Pred(i < size)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

 COVERED

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#14’’

i = i + 1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

 COVERED

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

 COVERED
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reachable region is depicted in the associated rectangular box. The reachable re-
gion is the conjunction of the list of predicates in each box. Notice that some leaf
nodes in the tree are marked “COVERED”. Since this ART is safe for the error
location 1#22, this proves that ERR cannot be reached in the program. Notice
that the reachable region at a node is an overapproximation of the concretely
reachable states in terms of some suitably chosen set of predicates. For example,
consider the edge 1#16

ptr=pval2−−−−−−→ 1#17 in the CFA. Starting from the region

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0,

the set of states that can be reached by the assignment ptr=pval2 is

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0 ∧ ptr = pval2.

However, the tree maintains an overapproximation of this set of states, namely,

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0 ∧ ptr �= 0,

which loses the fact that ptr now contains the same address as pval2. This over-
approximation is precise enough to show that the ART is safe for the location
1#22. Overapproximating is crucial in making the analysis scale, as the cost of
the analysis grows rapidly with increased precision. Thus, the safety-verification
algorithm must (1) find an abstraction (a mapping of control locations to pred-
icates) which is precise enough to prove the property of interest, yet coarse
enough to allow the model checker to succeed, and (2) efficiently explore (i.e.,
model check) the abstract state space of the program.

Counterexample-Guided Abstraction Refinement. Blast solves these
problems in the following way. It starts with a coarse abstraction of the state
space and attempts to construct a complete ART with the coarse abstraction. If
this complete ART is safe for the error location, then the program is safe. How-
ever, the imprecision of the abstraction may result in the analysis finding paths
in the ART leading to the error location which are infeasible during the execu-
tion of the program. We call such paths spurious counterexamples. In this case,
Blast refines the current abstraction by running a counterexample-analysis al-
gorithm that determines whether the path to the error location is genuine (that
is, there is a bug) or spurious. The counterexample-analysis algorithm uses an
interpolation-based predicate-discovery algorithm which adds predicates locally
to rule out spurious counterexamples [15]. For a given abstraction (mapping of
control locations to predicates), Blast constructs the ART on-the-fly, stopping
and running the counterexample analysis whenever a path to the error location is
found in the ART. The refinement procedure refines the abstraction locally, and
the search is resumed on the nodes of the ART where the abstraction has been
refined. The parts of the ART that have not been affected by the refinement are
left intact. This algorithm is called lazy abstraction [18]; we now describe how it
works on our example.

Constructing the ART. Initially, Blast starts with no predicates, and at-
tempts to construct an ART. The ART construction proceeds by unrolling the
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Fig. 5. Abstract reachability tree when the first spurious error path is found

CFAs and keeping track of the reachable region at each CFA node. We start with
the initial location of main, with the reachable region true (which represents an
arbitrary initial data state). For a tree node n : (q, s, ϕ), we construct successor
nodes of n in the tree for all edges q

op−→q′ in the CFA of q. The successor nodes
are labeled with overapproximations of the set of states reachable from (q, s, ϕ)
when the corresponding operations op are performed. To handle function calls
and returns, Blast implements a context-free reachability algorithm [25]. For
our first iteration, since we do not track any facts (predicates) about variable
values, all reachable regions are overapproximated by true (that is, the abstrac-
tion assumes that every data state is possible). With this abstraction, Blast
finds that the error location may be reachable. Figure 5 shows the ART when
Blast finds the first path to the error location. This ART is not complete,
because some nodes have not been processed yet. In the figure, all nodes with
incoming dotted edges (e.g., the node 2#7) have not been processed. However,
the incomplete ART already contains an error path from node 2#3 to 1#22 (the
error node is depicted as a filled ellipse).

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

true

2#14

*pval = 0;

true

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

true

1#1

tmp = altInit(*pval, pval, pval);

true

1#3

a = malloc(sizeof(int) * size);

true

1#5

Pred(a != 0)

1#4

Pred(a == 0)

true

1#11

i = 0;

true

1#13

Pred(i >= size)

1#12

Pred(i < size)

true

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

true

2#21

return *ptr;

2#0

return tmp;
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〈pval, 1〉 = malloc0 ∧ 〈pval, 1〉 �= 0 ∧
〈∗(〈pval, 1〉), 1〉 = 0 ∧ 〈∗(〈pval, 1〉), 1〉 > 0 ∧

}
function main

〈size, 1〉 = 〈∗(〈pval, 1〉), 1〉 ∧
〈pval1, 1〉 = 〈pval, 1〉 ∧
〈pval2, 1〉 = 〈pval, 1〉 ∧

⎫⎬
⎭ formals assigned actuals

〈a, 1〉 = malloc1 ∧ 〈a, 1〉 �= 0 ∧
〈i, 1〉 = 0 ∧ 〈i, 1〉 ≥ 〈size, 1〉 ∧
〈ptr, 1〉 = 0

⎫⎬
⎭ function altInit

Fig. 6. Trace formula for the error path of Figure 5

Counterexample Analysis. At this point, Blast invokes the counterexample-
analysis algorithm which checks if the error path is feasible in the concrete
program (i.e., the program has a bug), or whether it arises because the current
abstraction is too coarse. To analyze the error path, Blast creates a set of
constraints (called the trace formula) which is satisfiable if and only if the path
is feasible in the concrete program. The trace formula is built by transforming
the error path to single-assignment form [10] (every variable is assigned a value at
most once, which is achieved by introducing new variables) and then generating
constraints for each operation along the path. For the error path of the example,
the trace formula is given in Figure 6. Note that in this example, each program
variable occurs only once at the left-hand-side of an assignment; if, for instance,
the program variable pval were assigned a value twice along the path, then the
result of the first assignment would be denoted by the new variable 〈pval, 1〉
and the result of the second assignment would be denoted by the new variable
〈pval, 2〉. The trace formula is unsatisfiable, and hence the error path is not
feasible. There are several reasons why this path is not feasible. First, we set
∗pval to 0 in main, and then take the branch where ∗pval > 0. Further, we
check in main that ∗pval > 0, and pass ∗pval as the argument size to altInit.
Hence, size > 0. Now, we set i to 0, and then check that i ≥ size. This check
cannot succeed, because i is zero, while size is greater than 0. Thus, the path
cannot be executed and represents a spurious counterexample.

Predicate Discovery. The predicate-discovery algorithm takes the trace for-
mula and finds new predicates that must be added to the abstraction in order to
rule out the spurious counterexample. New predicates are obtained at each loca-
tion along the spurious error path using an interpolation procedure. For a pair
of formulas ϕ− and ϕ+ such that ϕ− ∧ϕ+ is unsatisfiable, a Craig interpolant ψ
is a formula such that (1) the implication ϕ− ⇒ ψ is valid, (2) the conjunction
ψ ∧ ϕ+ is unsatisfiable, and (3) ψ only contains symbols that are common to
both ϕ− and ϕ+. Given an appropriate logical theory, such interpolants always
exist [9]. Blast cuts the infeasible path at every location. At each cut point, the
part of the trace formula corresponding to the path fragment up to the cut point
is ϕ−, and the part of the formula corresponding to the path fragment after the
cut point is ϕ+. Then, the interpolant at the cut point represents a formula over
the live program variables that contains the reachable region after the path up
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to the cut point is executed (by property (1)), and is sufficient to show that the
rest of the path is unfeasible (by property (2)). The live program variables are
represented by those new variables which occur both up to and after the cut
point (by property (3)).

For example, consider the cut at location 2#16. For this cut, ϕ− is

〈pval, 1〉 = malloc0∧〈pval, 1〉 �= 0∧〈∗(〈pval, 1〉), 1〉 = 0∧〈∗(〈pval, 1〉), 1〉 > 0,

and ϕ+ is

〈size, 1〉 = 〈∗(〈pval, 1〉), 1〉 ∧ 〈pval1, 1〉 = 〈pval, 1〉 ∧ 〈pval2, 1〉 = 〈pval, 1〉 ∧
〈a, 1〉 = malloc1 ∧ 〈a, 1〉 �= 0 ∧ 〈i, 1〉 = 0 ∧ 〈i, 1〉 ≥ 〈size, 1〉 ∧ 〈ptr, 1〉 = 0.

The only common symbol across the cut is 〈∗(〈pval, 1〉), 1〉, and the interpolant is
〈∗(pval, 1), 1〉 ≥ 1. Relating the new variable 〈∗(pval, 1), 1〉 back to the program
variable ∗pval, this suggests that the fact ∗pval ≥ 1 suffices to prove the error
path infeasible. This predicate is henceforth tracked at location 2#16. Similarly,
at nodes 1#1, 1#3, and 1#5, Blast discovers that the predicate size ≥ 1 is
useful, and at location 1#11, the predicates size ≥ 1 and i = 0 are found.
After adding these predicates, Blast refines the ART, now tracking the truth
or falsehood of the newly found predicates at the locations where they are useful.

Refining the ART. When Blast refines the ART with the new abstraction, it
only reconstructs subtrees that are rooted at nodes where new predicates have
been added. In the example, a second error path is found; Figure 7 shows the
ART when this happens. Notice that this time, the reachable regions are not
all true; instead they are overapproximations, at each node of the ART, of the
reachable data states in terms of the predicates that are tracked at the node. For
example, the reachable region at the first occurrence of location 2#14 in the ART
is ∗pval < 1 (the negation of the tracked predicate ∗pval ≥ 1), because ∗pval
is set to 0 when going from 2#8 to 2#14, and ∗pval < 1 is the abstraction of
∗pval = 0 in terms of the tracked predicates. This more precise reachable region
disallows certain CFA paths from being explored. For example, again at the first
occurrence of location 2#14, the ART has no left successor with location 2#16,
because no data state in the reachable region ∗pval < 1 can take the program
branch with the condition ∗pval > 0 (recall that ∗pval is an integer).

On the second error path, the counterexample analysis discovers the new
predicates pval = 0, pval2 = 0, and ptr = 0. In the next iteration, Blast finds
a third error path, shown in Figure 8, for which it finds the predicate pval1 = 0.

With these predicates, Blast constructs the complete ART shown in Fig-
ure 4. Since this tree is safe for the error location 1#22, this proves that ERR
can never be reached by executing the program. Note that some leaf nodes in
the tree are covered: as no new states can be reached by exploring states from
covered nodes, Blast stops the ART construction at such nodes, and the whole
process terminates.
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Fig. 7. Abstract reachability tree when the second spurious error path is found
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Fig. 8. Abstract reachability tree when the third spurious error path is found
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3 Checking Memory Safety

A program is memory safe if it only accesses memory addresses within the bounds
of the objects it has allocated or to which it has been granted access. Memory
safety is a fundamental correctness requirement for most applications. We con-
sider one particular aspect of memory safety: null-pointer dereferencing. Pointers
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in C programs can be null (i.e., not pointing to a valid address), or point to an
allocated object. Dereferencing a null pointer can cause an arbitrary value to be
read, or the program to crash with a segmentation fault.

The absence of null-pointer dereferences is a safety property. In principle, we
can annotate every dereference operation in the program with a check that the
dereferenced pointer is not null, and run Blast on the annotated program to
verify that no such check fails. However, this strategy does not scale well. First,
many accesses can be proved memory safe using an inexpensive type-based ap-
proach, and using an expensive analysis like Blast is overkill. Second, each an-
notation should be checked independently, so that the abstractions required to
prove each annotation do not interfere and result in a large state space. There-
fore, we use CCured [7, 24], a type-based memory-safety analysis, to classify
the pointers according to usage and annotate the program with run-time checks.
CCured analyzes C programs with respect to a sound type system which en-
sures that well-typed programs are memory safe. When the type system cannot
prove that a pointer variable is always used safely, CCured inserts run-time
checks in the program which monitor correct pointer usage at execution time.
In particular, each dereference of a potentially unsafe (i.e., not proved safe by
the type system) pointer is annotated with a check that the pointer is non-null.
The run-time checks abort the program safely, instead of running into undefined
configurations. However, each run-time check constitutes overhead at execution
time, and CCured implements many optimizations that remove redundant run-
time checks based on simple data-flow analyses. Typically, the CCured opti-
mizations remove over 50% of the run-time checks inserted by the type system,
and the optimized programs run within a factor of two of their original execu-
tion time. We wish to check how many of the remaining run-time checks can be
removed by the more sophisticated analysis implemented in Blast.

Specifically, for each potentially unsafe pointer dereference ∗p in the program,
CCured introduces a call CHECK NULL(p) which checks that the pointer p is
non-null. The function CHECK NULL terminates the program if its argument is
null, and simply returns if the argument is non-null. Thus, if the actual argument
p at a call site is non-null along all execution paths, then this function call can
be removed without affecting the behavior of the program. To check if a call
to CHECK NULL can be removed from the program, Blast does the following.
First, it replaces the call to CHECK NULL with a call to BLAST CHECK NULL
with the same argument, where BLAST CHECK NULL is the following function:

void __BLAST__CHECK_NULL(void *p) {

if (!p) { __BLAST_ERROR: ; }

}

Second, Blast checks if the location labeled with BLAST ERROR is reachable.
Both steps are performed independently for each call to CHECK NULL in the
program body. Each call of Blast has three possible outcomes.
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The second possible outcome is that Blast produces an error trace that
gives a program execution in which BLAST CHECK NULL is called with a null
argument, which indicates a situation where the run-time check fails. In this case,
the check must remain in the program to terminate the program safely should
the check fail. This may also indicate a program error, in which case the feedback
provided by Blast (the error trace) provides useful information for fixing the
bug. We often encountered error traces of the form that the programmer forgot
to check the return value of malloc: if the memory allocation fails, then the next
dereference of the pointer is unsafe. Blast assumes that malloc may return a
null pointer and discovers the problem. However, not every error trace found by
Blast necessarily indicates a program error, because Blast makes conservative
assumptions about library functions.

There is a third possible outcome, namely, that Blast fails to declare whether
the considered run-time check is superfluous or necessary, due to time or space
limitations. In this case, we say that Blast fails, and we will provide the failure
rate for the experiments below. If Blast fails on a run-time check, then the
check must of course remain in the program. Notice that by changing each call
to CHECK NULL separately, Blast checks if a run-time check is necessary inde-
pendently from all other checks. These checks can be run in parallel and often
lead to different program abstractions.

We ran our method on several examples. The first seven programs are from
the Olden v1.0 benchmark suite [5]. We included the programs for the Bitonic
Sort algorithm (bisort), the Electromagnetic Problem in Three Dimensions (em3d),
the Power Pricing problem (power), the Tree Add example (treeadd), the Trav-
eling Salesman problem (tsp), the Perimeters algorithm (perimeter), and the
Minimum Spanning Tree problem (mst). Finally, we processed the scheduler for
Unix systems fcron, version 2.9.5, and the Lisp interpreter (li) from the Spec95
benchmark suite. We ran Blast on each run-time check inserted by CCured
separately, and fixed a time-out of 200 s for each check; that is, a run of the
model checker is stopped after 200 s with failure, and the studied run-time check
is conservatively declared necessary.

Table 1 presents the results of our experiments. The first column lists the pro-
gram name, the second and third columns give the number of lines of the origi-
nal program (“LOC orig.”) and of the instrumented program after preprocessing
and CCured instrumentation (“LOC cured”). The three columns of “run-time
checks” lists the number of run-time checks inserted by the CCured type sys-
tem (column “inserted”), the number of remaining checks after the CCured
optimizer removes redundant checks (column “optim.”), and finally the num-
ber of remaining checks after Blast is used to remove run-time checks (column

The first outcome is that Blast reports that the label BLAST ERROR is not
reachable. In this case, the function call can be removed, since the corresponding
check will not fail at run time.

“Blast”). The column “proved safe by Blast” is the difference between the
“optim.” and “Blast” columns: it shows the number of checks remaining after
the CCured optimizer which Blast proves will never fail.
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Table 1. Verification of run-time checks

Program LOC run-time checks proved safe potential
orig. cured inserted optim. Blast by Blast errors found

bisort 684 2,510 51 21 6 15 6
em3d 561 2,831 33 20 9 11 9
power 763 2,891 149 24 24 0 24
power-fixed 763 2,901 149 24 24 12 12
treeadd 370 2,246 11 7 6 1 6
tsp 565 2,560 93 59 44 15 4
perimeter 395 2,292 49 18 8 10 5
mst 582 2,932 54 34 19 15 18

fcron 2.9.5 11,994 38,080 877 455 222 233 74
li 6,343 39,289 1,715 915 361 554 11

The remaining checks, which cannot be removed by Blast, fall into two
categories. First, the column “potential errors found” lists the number of checks
for which Blast found an error trace leading to a violation of the run-time
check; those are potential bugs and the error traces give useful information to
the programmer. For example, we took the program with the most potential
errors found, namely power, and analyzed its error traces. In many of them, a
call to malloc occurs without a check whether there is enough memory available.
So we inserted after each call to malloc a null-pointer check to ensure that the
program execution does not proceed in such a case. Analyzing the fixed program
(with null-pointer checks inserted after each malloc), we can remove 12 more
run-time checks. To give an example of the performance of Blast, in the case
of power-fixed, the cured program was checked in 15.6 s of processor time on a
3 GHz Linux machine.

Second, the difference between the columns “Blast” and “potential errors
found” gives the number of run-time checks on which the model checker fails
(times out) without an answer. The number of these failures is not shown ex-
plicitly in the table; it is zero for the first five programs. Since Blast gives no
information about these checks, they must remain in the program.

Acknowledgments. We thank George Necula and Matt Harren for help with
CCured.
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