
Relational Programming with CrocoPat

Dirk Beyer
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

ABSTRACT
Many structural analyses of software systems are naturally
formalized as relational queries, for example, the detection of
design patterns, patterns of problematic design, code clones,
dead code, and differences between the as-built and the
as-designed architecture. This paper describes CrocoPat,
an application-independent tool for relational programming.
Through its efficiency and its expressive language, CrocoPat
enables practically important analyses of real-world software
systems that are not possible with other graph analysis tools,
in particular analyses that involve transitive closures and the
detection of patterns in graphs. The language is easy to use,
because it is based on the well-known first-order predicate
logic. The tool is easy to integrate into other software sys-
tems, because it is a small command-line tool that uses a
simple text format for input and output of relations.

Categories and Subject Descriptors: D.1.6 [Pro-
gramming Techniques]: Logic Programming; G.2.2.a
[Discrete Mathematics]: Graph Theory—Graph algo-
rithms; E.1.d [Data Structures]: Graphs and networks;
D.2.7.m [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering; D.2.11 [Software Architectures]: Data ab-
straction; D.2.13 [Reusable Software]: Reusable libraries;
G.4 [Mathematical Software]: Algorithm design; Efficiency;

General Terms: Algorithms, Design, Languages

Keywords: Software analysis, Predicate logic, Relational
algebra, BDD, Graph models, Pattern matching, Transitive
closure

1. INTRODUCTION
Graphs and other relations are often used to define ab-

stract models of software systems (e.g., control-flow, depen-
dency, call, and inheritance graphs), and many structural
software analyses involve complex computations on these re-
lational models (e.g., impact analysis, design pattern match-
ing, detection of cyclic dependencies). Particularly com-
plex operations on software graphs are pattern matching
and transitive closure computation.

CrocoPat1 is a tool for efficient relational calculation. Its
relational manipulation language (RML) is a simple but ex-

1Project web site: http://mtc.epfl.ch/∼beyer/CrocoPat
Download: http://directory.fsf.org/CrocoPat.html

Copyright is held by the author/owner.
ICSE’06,May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

pressive language. It provides the usual control flow struc-
tures of an imperative programming language, and the ex-
pressions over relations are those of predicate logic. The tool
implementation represents relations as binary decision dia-
grams (BDD) [9], which are well-known as a data structure
for compact representation of large relations [10].

Relational Programming. The language RML is based
on predicate logic and is therefore similar to Prolog. How-
ever, RML does not follow the paradigm of logic program-
ming, it is rather an imperative programming language. In-
stead of being declarative and inference-based, it is oper-
ational and executes the program statement by statement.
This is why we prefer the term relational programming.

The idea of an imperative relational programming lan-
guage is old [26], but such a language could not be used
in practice so far because the approach was lacking an ef-
ficient interpreter (cf. [34] for a discussion on SETL). Al-
though many software analysis tools are based on relational
methods, there was no effort so far to provide a general pur-
pose tool and application-independent language. CrocoPat
is such an interpreter for a general purpose relational pro-
gramming language, which is efficient especially for the kind
of computations that are needed in software analyses.

Relational programming has many applications in soft-
ware analysis, (e.g., relation lifting, checking of design rules,
cycle analysis, impact analysis, detecting unused compo-
nents and dead code, detecting similar code and simi-
lar classes, points-to analysis), in theory (e.g., minimiza-
tion of deterministic automata, Gaussian elimination), and
for graph algorithms in general (e.g., reachability analysis,
graph pattern matching, transitive closure, shortest paths,
SCC analysis). Some of the more software-analysis related
applications were thoroughly examined in our case studies to
show the usability (in terms of expressiveness, performance,
and easiness of use) of CrocoPat [8].

Example. Let us examine a small pattern-matching ex-
ample. Consider a software system that is modeled by its
inheritance and containment graphs, and the task is to an-
alyze how many instances of the design pattern Composite
are used in the design of the system. Figure 1 shows the
class diagram of the Composite design pattern. To identify
all possible instances of the pattern, we have to compute all
triples of three classes (Component, Composite, Leaf), such
that (1) Composite and Leaf are subclasses of Component,
(2) Composite contains Component, and (3) Leaf does not
contain Component.

If the inheritance and containment graphs are represented
by the two binary predicates Inherit and Contain, we can

807

http://mtc.epfl.ch/~beyer/CrocoPat/
http://directory.fsf.org/CrocoPat.html

� � � � � � � � �

� � � � � � � � �	 �
 �

Figure 1: Composite design pattern, simplified

naturally encode the problem as a first-order expression with
three free attributes component, composite, and leaf:
Inherit(composite, component) ∧ Inherit(leaf, component) ∧
Contain(composite, component)∧¬Contain(leaf,component).
We can translate this expression one-to-one into an RML ex-
pression (cf. Section 2). Then we can feed CrocoPat with
the two input graphs and an RML program that prints the
result of the above expression, to output all instances of the
pattern in the software model.

Related Work. There are three alternatives to relational
programming: relational algebra with SQL as query lan-
guage and database management systems as interpreter
(cf. [1, 13, 39]), first-order predicate logic with Prolog as
programming language and Prolog systems as interpreter
(cf. [31, 37]), and graph manipulation, supported by sev-
eral tools, each with its own language (most prominently
Grok [18], RPA [15], and RelView [4]). The latter ap-
proaches are restricted to graphs (binary relations), and
cannot be applied to relations of arbitrary arity in a natural
way. SQL servers and Prolog interpreters are not efficient
enough for the kind of relational computations that occur
in software analyses2. (They are designed for different ob-
jectives for which they are efficient, e.g., for data retrieval
or logical deduction, respectively.) Aho and Ullman argued
that an operator for transitive closure is needed for many
database applications, which is not supported in relational
algebra and calculus [1]. An imperative relational program-
ming language for the purpose of writing abstract algorithms
based on relations was proposed by MacLennan [26] (also cf.
SETL [34]). CrocoPat provides a language that is as power-
ful as the previous approaches, but adds a convenient oper-
ator for transitive closure; and the interpreter is efficient for
general purpose relational computation, because it is based
on BDD technology.

2. CROCOPAT — OVERVIEW
CrocoPat is a command-line tool, designed as a filter (in

the sense of the pipes-and-filters architecture, which is typ-
ical for Unix tools). It takes as input a program file and
a stream of input relations, and outputs user messages and
a stream of output relations. In the following we highlight
some of the most important features of the tool and its lan-
guage (cf. [7, 8] for more details).

Language. A simple relational program is a sequence of
statements, where each statement is either an assignment or
a print statement. There are two types of variables: string
and relation variables.3 The relation variables range over

2A performance comparison of CrocoPat with Quintus
Prolog 3.5 [37] and MySQL 4.0.15 [39], but also with
Grok 83 [18] and RelView 7.0.2 [4], shows that CrocoPat
outperforms the others [8].
3RML supports numerical variables as well, for convenient
calculation with numbers. But this is not of conceptual
interest.

Statement: RelVar ’(’ StrExp ’,’ StrExp ’)’

’:=’ RelExp ’;’

| ’PRINT’ RelExp ’;’

RelExp: RelVar ’(’ StrExp ’,’ StrExp ’)’

| ’TRUE’ ’(’ StrExp ’)’

| ’FALSE’ ’(’ StrExp ’)’

| RelExp ’&’ RelExp // conjunction

| RelExp ’|’ RelExp // disjunction

| ’!’ RelExp // negation

| ’EX’ ’(’ Attr ’,’ RelExp ’)’

| ’FA’ ’(’ Attr ’,’ RelExp ’)’

| ’@’regex ’(’ StrExp ’)’ // matching

StrExp: StrLit | Attr

Figure 2: Partial syntax of RML

sets of tuples of strings, and have an arbitrary arity (rela-
tions of arity 0 are the Boolean values true and false, unary
relations are sets, and binary relations are graphs). There
is no need to declare the type of a variable; it is determined
by the value of the first assignment to the variable. For
the convenient and structured expression of more complex
programs, RML also has constructs (IF, WHILE, FOR) for the
conditional execution and iteration of statements.

The core construct of the language is the relational expres-
sion, which is similar to an expression in first-order predicate
logic. However, RML provides in addition an operator for
transitive closure, an operator for regular-expression match-
ing, and operators for comparison of relations, but does not
include functions.

In the right-hand side expression of an assignment, every
identifier must either be a relation variable and have been
previously assigned a relation, or it must be a string variable
and have been previously assigned a string, or it must be an
attribute that is quantified or occurs free. RML allows rela-
tions of arbitrary arity, but for simplicity, let us restrict this
discussion to binary relation variables. Also, let us write x
and y for the values of the attributes x and y, and R for the
set of pairs denoted by the binary relation variable R. Then
the expression R(x,y) evaluates to true iff (x, y) ∈ R. To as-
sign a new value to the relation variable R we write “R(x,y)
:= e” short for “for all x,y let R(x,y) := e,” where e is
a relational expression that must contain free occurrences
of x and y. The expression “@regex(x)” evaluates to true
iff x matches the regular expression regex (i.e., @regex de-
notes the set of all strings that match the regular expression
regex).

Each print statement has as argument a relational ex-
pression, with possibly some free occurrences of attributes.
The result is a print-out of all value assignments to the
free attributes that make the expression true. For exam-
ple, “PRINT R(x,y)” outputs all pairs (x, y) of strings such
that (x, y) ∈ R. The output of user messages is also possible.

The grammar for a simple subset of RML is shown in
Figure 2. The nonterminals Attr and RelVar refer to any
RML identifier; StrLit is a string literal; and regex is a
Unix regular expression. A complete definition of the syntax
and semantics of RML is given in the reference manual [7].

Input/Output. Besides the RML file containing the pro-
gram, CrocoPat expects input relations from the standard
input stream (if not switched off by a command-line option).
To enable easy data exchange and integration of CrocoPat

808

into other tools, the format for input relations is the Rigi
Standard Format (RSF) [40]. RSF is a simple text for-
mat where each line represents one tuple of a relation (as
whitespace-separated list of strings). The first string of a
line is the relation variable that denotes the relation in the
RML program; all other strings are elements of the tuple,
and their number is the arity of the relation. One RSF
stream can define an arbitrary number of relations.

The output of an RML program can be printed to the
standard (or error) output stream, or written to a file. The
user messages of an RML program are usually printed to
standard output and output relations are redirected to files
(determined by the programmer in the PRINT statement).

Examples. Let us consider the design pattern example
from the introduction. The following RML program com-
putes all triples for which the relational expression evaluates
to true in the first statement. The second statement prints
these triples to the standard output (i.e., on the screen).

CompPat(component, composite, leaf) :=

Inherit(composite, component)

& Inherit(leaf, component)

& Contain(composite, component)

& ! Contain(leaf, component);

PRINT CompPat(component, composite, leaf);

The above RML program expects as input two relations
Inherit and Contain. An example for such an RSF input
(which contains pattern instance (C,A,B)) is the following:

Inherit A C

Inherit B C

Contain A C

As a second example, let us consider the following RML
program for computing the transitive closure4 using an al-
gorithm called iterative squaring [10]:

Result(x,y) := R(x,y);

PrevResult(x,y) := FALSE(x,y);

WHILE (PrevResult(x,y) != Result(x,y)) {

PrevResult(x,y) := Result(x,y);

Result(x,z) := PrevResult(x,z)

| EX(y, PrevResult(x,y) & PrevResult(y,z));

}

The program expects a relation R as input. The program
contains only relation variables (R, Result, and PrevResult)
and attributes (x, y, z), no string variables. Result repre-
sents always the current intermediate result of the compu-
tation, and PrevResult the result of the previous iteration.
(This is why Result is initialized with the given relation and
PrevResult with the empty relation.) The iteration in the
body of the WHILE loop is executed until the fixed point is
reached, i.e., the result of the current result equals the pre-
vious result. The forward step in the second statement of
the body can be read as (we write x, y, z for concrete values
of the attributes x, y, z, again) “for all x and z, it holds
that (x, z) ∈ Result iff (x, z) ∈ PrevResult or there exists
a y such that (x, y) ∈ PrevResult and (y, z) ∈ PrevResult”.

4Although this is not necessary in practice because RML
provides an operator for transitive closure (TC). CrocoPat’s
built-in operator uses a variant of Warshall’s algorithm as
standard implementation because it consumes much less
memory, and therefore is more robust in extreme cases.

Architecture. CrocoPat’s architecture consists of three
layers. The bottom layer is an own implementation of a stan-
dard package for binary decision diagrams (BDDs), which
implements operations for the intersection, union, comple-
ment, comparison, and quantification on the bit level. BDDs
represent relations symbolically, i.e., the BDD representa-
tion of a large relation can be very small, and the complexity
of the operations depends on the size of the operand BDDs,
not on the size of the represented relations [9, 10].

The middle layer implements the abstraction from the bit
level to the string level, e.g., the encoding of strings to as-
signments over Boolean variables, quantification of entire
attributes, and the computation of the predefined relations
for lexicographical ordering.

The top layer is the actual interpreter. It consists of a
parser front-end, and an evaluation unit for relational ex-
pressions that translates the operation symbols in the syn-
tax tree into executions of (compound) operations from the
middle layer. Besides this, it implements the transitive clo-
sure operator.

Availability. The relational calculator CrocoPat is free
software, released under the GNU LGPL license. The
current stable version (release 2.1.3) is available online at
http://directory.fsf.org/CrocoPat.html. The web site
provides the tool (source code and binaries), example pro-
grams (RML files), and data (RSF files). The user’s guide
and reference manual is also provided on the web site. An
API description is included directly in the header files, to
enable reuse of the tool on library level and for extensions.

3. APPLICATIONS
Computing with relations is part of many software anal-

ysis tools. However, some of them are limited in their func-
tionality and performance because the tools are lacking an
efficient computation machinery for actually performing the
tasks. We propose, for future development of such tools,
to out-source the relational queries to a tool (or library)
like CrocoPat, which can perform these queries more effi-
ciently, due to its highly optimized engine. The tool devel-
opers of software reengineering and analysis tools can then
focus more on implementing their core functionality, instead
of struggling with the low-level details of improving perfor-
mance for the relational calculations. In the following we
list some applications that we are aware of. More references
to the literature are given in the technical report [7].

Graph pattern detection is widely applied to detect good
design (design patterns) and design problems (anti-patterns)
of software systems. This was also the first application of
CrocoPat [6], because existing tools were either limited to
binary relations (e.g., Grok [18], RPA [15], and RelView [4]),
or consumed too much time (relational database servers and
Prolog interpreters). Many researchers applied relational
methods to automatic detection of implementation patterns,
object-oriented design patterns, architectural styles, poten-
tial design problems, code clones, inductive inference of de-
sign patterns [2, 12, 14–18, 21–24, 27, 30, 32–33, 35–36, 38].

Transitive closure computation is ingredient of some of the
above analyses, but is also crucial for dead code and change
impact analysis [11, 15]. Computing the difference between
two graphs is necessary for checking the conformance of the
as-built architecture to the as-designed architecture [14, 15,
28, 29, 35]. Another straightforward application of relational

809

http://directory.fsf.org/CrocoPat.html
http://mtc.epfl.ch/~beyer/CrocoPat/manual-html/index.html
http://mtc.epfl.ch/~beyer/CrocoPat/manual-html/index.html

methods is the lifting and lowering of relations [14, 15] to
get new abstraction levels, and the calculation of software
metrics (e.g., [25, 27]).

Efficient calculators for relations are important for pro-
gram analyses like points-to analysis [5], and for the imple-
mentation of general graph algorithms. Also software mod-
eling languages like Alloy heavily rely on efficient relational
computation [19, 20].

Since relational programming is an efficient way of proto-
typing relation-intensive algorithms, especially verification
algorithms, CrocoPat was recently used to prototype algo-
rithms for symbolic invariant verification [3].

4. SUMMARY
CrocoPat’s programming language is a simple but general

and expressive language for relational computations. It en-
ables to write algorithms over relations of arbitrary arity in a
concise way, and it is easy to understand and learn because it
is based on first-order predicate logic. The tool CrocoPat is
an efficient interpreter for that language, because it is based
on a fine-tuned library for relational operations. It is easy
to use and install, because it consists of only one executable
file and provides only a few command-line options.

CrocoPat was developed in the hope that it improves the
productivity of other software engineers, especially those
whose task is to analyze software. Besides using CrocoPat
directly as a tool for analyses, developers of reengineering
and analysis tools can out-source subtasks that involve com-
putation with relations to CrocoPat. They can reduce their
burden of implementing the algorithms by formulating them
as abstract relational programs.

Due to its simple user interface it is easy to integrate
CrocoPat into other tools, and its library can serve —
through its well-documented source code interface— as a
high-level library for relational computation. This is a con-
venient alternative to using a standard BDD package di-
rectly, because the developer does not need to take care of
the binary encoding himself.

Acknowledgement. We thank Andreas Noack for helpful
discussions about the language and the tool design, and for
his valuable collaboration on applying CrocoPat to software
design analysis [8].

5. REFERENCES
[1] A. V. Aho and J. D. Ullman. Universality of data retrieval

languages. In Proc. POPL, pages 110–120. ACM, 1979.

[2] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern
recovery in object-oriented software. In Proc. IWPC, pages
153–160. IEEE, 1998.

[3] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling.
Symbolic invariant verification for systems with dynamic
structural adaptation. In Proc. ICSE. ACM Press, 2006.

[4] R. Berghammer, B. Leoniuk, and U. Milanese. Implementation
of relational algebra using binary decision diagrams. In Proc.
RelMiCS’01, LNCS 2561, pages 241–257. Springer, 2002.

[5] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and N. Umanee.
Points-to analysis using BDDs. In Proc. PLDI, pages 103–114.
ACM, 2003.

[6] D. Beyer and C. Lewerentz. CrocoPat: Efficient pattern
analysis in object-oriented programs. In Proc. IWPC, pages
294–295. IEEE, 2003.

[7] D. Beyer and A. Noack. Crocopat 2.1 Introduction and
reference manual. Technical Report CSD-04-1338, University of
California, Berkeley, 2004.

[8] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational
calculation for software analysis. IEEE Trans. Software
Engineering, 31(2):137–149, 2005.

[9] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170, 1992.

[11] Y.-F. Chen, E. R. Gansner, and E. Koutsofios. A C++ data
model supporting reachability analysis and dead code detection.
IEEE Trans. Software Engineering, 24(9):682–694, 1998.

[12] O. Ciupke. Automatic detection of design problems in
object-oriented reengineering. In Proc. TOOLS, pages 18–32.
IEEE, 1999.

[13] E. F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, 1970.

[14] H. Fahmy and R. C. Holt. Software architecture
transformations. In Proc. ICSM, pages 88–96. IEEE, 2000.

[15] L. M. G. Feijs, R. L. Krikhaar, and R. C. van Ommering. A
relational approach to support software architecture analysis.
Software: Practice and Experience, 28(4):371–400, 1998.

[16] M. T. Harandi and J. Q. Ning. Knowledge-based program
analysis. IEEE Software, 7(1):74–81, 1990.

[17] J. Hartman. Understanding natural programs using proper
decomposition. In Proc. ICSE, pages 62–73. IEEE, 1991.

[18] R. C. Holt. Structural manipulations of software architecture
using Tarski relational algebra. In Proc. WCRE, pages
210–219. IEEE, 1998.

[19] D. Jackson. Automating first-order relational logic. In Proc.
FSE, pages 130–139. ACM, 2000.

[20] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[21] R. Kazman and M. Burth. Assessing architectural complexity.
In Proc. CSMR, pages 104–112. IEEE, 1998.

[22] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé.
Pattern-based reverse-engineering of design components. In
Proc. ICSE, pages 226–235. ACM, 1999.

[23] C. Krämer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented
software. In Proc. WCRE, pages 208–215. IEEE, 1996.

[24] J. Krinke. Identifying similar code with program dependence
graphs. In Proc. WCRE, pages 301–309. IEEE, 2001.

[25] B. Kullbach and A. Winter. Querying as an enabling technology
in software reengineering. In Proc. CSMR, pages 42–50, 1999.

[26] B. J. MacLennan. Overview of relational programming.
SIGPLAN Notices, 18(3):36–45, 1983.

[27] A. O. Mendelzon and J. Sametinger. Reverse engineering by
visualizing and querying. Software – Concepts and Tools,
16(4):170–182, 1995.

[28] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying
software architectures using virtual software classifications. In
Proc. TOOLS, pages 33–45. IEEE, 1999.

[29] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion
models: Bridging the gap between design and implementation.
IEEE Trans. Software Engineering, 27(4):364–380, 2001.

[30] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In Proc.
ICSE, pages 338–348. ACM, 2002.

[31] R. A. O’Keefe. The Craft of Prolog. MIT Press, Cambridge,
MA, 1990.

[32] A. Quilici. A memory-based approach to recognizing
programming plans. Communications of the ACM,
37(5):84–93, 1994.

[33] C. Rich and L. M. Wills. Recognizing a program’s design: A
graph-parsing approach. IEEE Software, 7(1):82–89, 1990.

[34] J. T. Schwartz. Automatic data structure choice in a language
of very high level. Commun. ACM, 18(12):722–728, 1975.

[35] M. Sefika, A. Sane, and R. H. Campbell. Monitoring
compliance of a software system with its high-level design
models. In Proc. ICSE, pages 387–396. IEEE, 1996.

[36] F. Shull, W. L. Melo, and V. R. Basili. An inductive method
for discovering design patterns from object-oriented software
systems. Technical Report CS-TR-3597, University of
Maryland, 1996.

[37] Swedish Institute of Computer Science. Quintus Prolog User’s
Manual, 2003.

[38] P. Tonella and G. Antoniol. Object oriented design pattern
inference. In Proc. ICSM, pages 230–238. IEEE, 1999.

[39] M. Widenius, D. Axmark, and MySQL AB. MySQL Reference
Manual. O’Reilly, Sebastopol, CA, 2002.

[40] K. Wong. Rigi User’s Manual, Version 5.4.4, 1998.

810

	Introduction
	CrocoPat --- Overview
	Applications
	Summary
	References

