
CCVisu: Automatic Visual Software Decomposition ∗

Dirk Beyer
School of Computing Science

Simon Fraser University
B.C., Canada

Download: http://ccvisu.googlecode.com
Project: http://www.cs.sfu.ca/∼dbeyer/CCVisu

ABSTRACT
Understanding the structure of large existing (and evolving) soft-
ware systems is a major challenge for software engineers. In re-
verse engineering, we aim to compute, for a given software sys-
tem, a decomposition of the system into its subsystems. CCVISU
is a lightweight tool that takes as input a software graph model
and computes a visual representation of the system’s structure, i.e.,
it structures the system into separated groups of artifacts that are
strongly related, and places them in a 2- or 3-dimensional space.
Besides the decomposition into subsystems, it reveals the related-
ness between the subsystems via interpretable distances. The tool
reads a software graph from a simple text file in RSF format, e.g.,
call, inheritance, containment, or co-change graphs. The resulting
system structure is currently either directly presented on the screen,
or written to an output file in SVG, VRML, or plain text format.
The tool is designed as a reusable software component, easy to use,
and easy to integrate into other tools; it is based on efficient algo-
rithms and supports several formats for data interchange.

Categories and Subject Descriptors: D.2.7 [Distribution, Main-
tenance, and Enhancement]: Restructuring, reverse engineering,
and reengineering; D.2.11 [Software Architectures]: Data abstrac-
tion; D.2.13 [Reusable Software]: Reusable libraries; D.2.2 [De-
sign Tools and Techniques]: Modules and interfaces; E.1.c [Data
Structures]: Graphs and networks; G.2.2 [Graph Theory]: Graph
algorithms;

General Terms: Algorithms, Design, Documentation

Keywords: Reverse engineering, Software decomposition,
Clustering, Software visualization, Software quality assurance,
Force-directed graph layout

1. OVERVIEW
Many maintenance tasks (corrective, adaptive, perfective main-

tenance) require the software engineer to understand the structure
of the system. A top-level structure is necessary to locate the mod-
ule that needs to be changed. Once the module is located, a more
fine-grained structure is necessary to identify the relations of that
module to the rest of its subsystem. Ideally, the structure used for
maintenance purposes is such that everything that the programmer
has to know, in order to perform the change request, can be lo-
cated inside one subsystem or component. In a graph model for

∗This research was supported in part by the NSERC grant RGPIN
341819-07.

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

the software system, where nodes represent software artifacts and
edges represent dependencies between the artifacts, the subsystems
that we are looking for correspond to subgraphs that are strongly
intra-connected (high cohesion) and loosely inter-connected (low
coupling). CCVISU is a tool for such a decomposition of large
software systems. From the graph model of the software system,
it computes a layout that has the following property: artifacts that
are connected by many dependencies are placed at close positions,
and unrelated artifacts have distant positions. In other words, co-
hesive parts of the graph are grouped together and separated from
other cohesive parts. This property of the layout holds on the top
level (grouping of and relations between subsystems) as well as on
the lower levels (relatedness of artifacts within the groups). In con-
trast to other techniques to visualize graphs (e.g., multidimensional
scaling) CCVISU’s layout algorithm is not fed with a similarity
or distance matrix as input, but discovers the information of relat-
edness from the graph and presents these facts as distances in the
computed layout. It not only visualizes information that we already
know, but also reveals new facts about the system. A comprehen-
sive discussion of related work is given in a technical report [2].

Visual Clustering. The tool implementation is based on force-
directed graph layout, which consists of two components: an en-
ergy model that maps a layout to an energy for evaluation —the
smaller the number, the better the layout—, and an algorithm that
computes a layout with minimal energy. A layout of a graph G is a
function p that maps each node of the graph to a position in the 2- or
3-dimensional real space. An energy model is an evaluation func-
tion U that assigns to each layout p a real number. The layout p
is the best layout for G if U(p) is the global minimum of func-
tion U . The energy model encodes the layout goal, i.e., the user’s
choices of what is considered as good layout. For visual clustering,
this means to produce layouts that provide separation of cohesive
subgraphs and interpretable distances. CCVISU uses the clustering
energy model that was introduced and first used in our initial study
on co-change clustering [1]. An energy minimizer is an optimiza-
tion algorithm that searches for a good approximation of the best
layout. The energy minimizer starts with an initial layout, where
the positions of the nodes are randomly assigned. Then, in every
iteration, the algorithm tries to improve the layout according to the
energy model (by using the first derivation of the energy function to
compute a direction and a distance for the new placement of each
node). This framework allows for a flexible tool implementation:
the same efficient algorithm for the minimization of the energy can
be used for different energy models.

Contribution of CCVisu. We provide software engineers and
software-engineering tool designers with a lightweight component
for the task of computing clustering layouts for software graphs.
Some characteristics of CCVISU are: (1) The input graph is given

967



CCVisu

RSF file

User
Data

SVN log

LAY

VRML

SVN
Reposit

RSF
Converter

SVN
Client

DISPLAY

DISPLAY

VRML
Viewer

SVG

DISPLAY

SVG
Viewer

Dep Rel

Source
Code Depend.

Extractor

Figure 1: CCVisu’s input/output flow

in the text-based format RSF (Rigi Standard Format), which sim-
plifies data exchange between software tools for different purposes
in the reengineering process. (2) The tool is lightweight and im-
plemented in Java. It has a clean and slim interface to facilitate
integration as reusable component or as external tool into other
reengineering toolkits. (3) The tool is applicable to all kinds of
software graphs, e.g., call graphs, containment graphs, inheritance
graphs, co-change graphs. (4) The tool is easy to use, and easy to
extend because it is designed as an open framework. (5) The layout
algorithm is highly efficient, based on the well-known Barnes-Hut
algorithm. (6) Besides the energy model for visual clustering, the
tool provides several other energy models for different layout goals,
and CCVISU lets the user optionally choose other energy models
via command-line options. Thus, the component can be used for
general force-directed graph layout.
Availability. CCVISU is the first freely available open-source tool
for force-directed graph layout which implements several energy
models for different layout goals, in particular for visual cluster-
ing. It is released under the GNU LGPL, and we hope that other
researchers and engineers can ease their work by using CCVISU,
and that developers find it easy to integrate the component into their
applications. Example layouts (together with their input graphs) are
available on the project web page.
Input and Output Formats. Figure 1 shows the more general
usage of the tool. The input is a textual representation of a graph in
Rigi Standard Format (RSF), a standard format for relations in the
reengineering community. The input graph needs to be undirected,
irreflexive, and connected. As example of an application-specific
input reader, the tool can read a CVS or SVN log file to transform
it into a co-change graph. To display a previously computed layout,
the input can also be a text file containing a layout (LAY).

The layout of the artifacts can be produced in four forms. First,
the text file (LAY) can later be read by CCVISU or other tools, such
that the tool can be embedded in different environments over a sim-
ple text-based interface. Second, the VRML format allows the use
of an external VRML viewer (or a web browser with VRML plug-
in) to view the layout (2D as well as 3D). Third, the SVG format
allows the use of external SVG viewers (or a web browser with
SVG plug-in) to view the layout. SVG viewing is more efficient
than VRML viewing and can be used to display much larger lay-
outs (thousands of nodes), but does not support 3D effects. Fourth,
the layout can be directly displayed on the screen. This form is the
preferred output method for huge graphs, when VRML and even
SVG viewers are not able to display the layout.

Types

Constants

Code Generator

Semantic Analyzer

Parser

Pretty Printer

Code Generator

Scanner & Symbol Table

Figure 2: Types and functions of a compiler system

2. APPLICATION EXAMPLES
Call Graphs. If the input of CCVISU is a call graph of a software
system, the generated layout places the software artifacts (methods,
classes, packages) close together if they are coupled by many calls,
and separate, if they rarely interact. Cohesive subsystems appear as
groups and are separated from other cohesive subsystems.
Usage Graphs. Figure 2 shows the resulting layout of applying
CCVISU to a usage graph for a compiler system. The nodes of the
input graph (extracted by Bauhaus) are types and functions, and the
edges represent the usage dependency. The software graph consists
of 205 nodes and 767 edges. The visual decomposition reveals
the different components of the compiler: scanner, parser, types,
constants, semantic analyzer, pretty printer, and code generator.
Co-Change Graphs. Changes of software systems are less expen-
sive and less error-prone if they affect only one subsystem. Thus,
groups of files that frequently change together are subsystem can-
didates [1]. A co-change graph, which represents common changes
in the history of the system, can be easily extracted from the sys-
tem’s version repository.
Non-Software Graphs. CCVISU was applied by several people to
graphs that are different from software graphs, because the cluster-
ing principles behind CCVISU work for many dense graphs, for ex-
ample, social networks, co-author relationship graphs, web-based
document-access graphs, document-relationship graphs extracted
from Google Desktop Search.
Acknowledgements. We thank Damien Zufferey, who helped im-
plementing several feature extensions of the tool as undergraduate
research assistant, and Andreas Noack, for the valuable discussions
during our work on co-change visualization [1].

3. REFERENCES
[1] D. Beyer and A. Noack. Clustering software artifacts based on

frequent common changes. In Proc. IWPC, pages 259–268.
IEEE, 2005.

[2] D. Beyer and A. Noack. Mining co-change clusters from
version repositories. Technical Report IC/2005/003, EPFL
Lausanne, 2005.

968


