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Abstract—Several successful approaches to software verifica-
tion are based on the construction and analysis of an abstract
reachability tree (ART). The ART represents unwindings of the
control-flow graph of the program. Traditionally, a transition
of the ART represents a single block of the program, and
therefore, we call this approach single-block encoding (SBE).
SBE may result in a huge number of program paths to be
explored, which constitutes a fundamental source of inefficiency.
We propose a generalization of the approach, in which transitions
of the ART represent larger portions of the program; we call
this approach large-block encoding (LBE). LBE may reduce the
number of paths to be explored up to exponentially. Within
this framework, we also investigate symbolic representations: for
representing abstract states, in addition to conjunctions as used
in SBE, we investigate the use of arbitrary Boolean formulas;
for computing abstract-successor states, in addition to Cartesian
predicate abstraction as used in SBE, we investigate the use of
Boolean predicate abstraction. The new encoding leverages the
efficiency of state-of-the-art SMT solvers, which can symbolically
compute abstract large-block successors. Our experiments on
benchmark C programs show that the large-block encoding
outperforms the single-block encoding.

I. INTRODUCTION

Software model checking is an effective technique for
software verification. Several advances in the field have lead
to tools that are able to verify programs of considerable size,
and show significant advantages over traditional techniques
in terms of precision of the analysis (e.g., SLAM [3] and
BLAST [6]). However, efficiency and scalability remain major
concerns in software model checking and hamper the adapta-
tion of the techniques in industrial practice. Several successful
tools for software model checking are based on the construc-
tion and analysis of an abstract reachability tree (ART), and
predicate abstraction is one of the favorite abstract domains.
The ART represents unwindings of the control-flow graph
of the program. The search is usually guided by the control
flow of the program. Nodes of the ART typically consist of
the control-flow location, the call stack, and formulas that
represent the data states. During the refinement process, the
ART nodes are incrementally refined.

In the traditional ART approach, each program operation
(assignment operation, assume operation, function call, func-
tion return) is represented by a single edge in the ART.
Therefore, we call this approach single-block encoding (SBE).
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A fundamental source of inefficiency of this approach is the
fact that the control-flow of the program can induce a huge
number of paths (and nodes) in the ART, which are explored
independently of each other.

We propose a novel, broader view on ART-based software
model checking, where a much more compact abstract space
is used, resulting thus in a much smaller number of paths
to be enumerated by the ART. Instead of using edges that
represent single program operations, we encode entire parts
of the program in one edge. In contrast to SBE, we call our
new approach large-block encoding (LBE). In general, the new
encoding may result in an exponential reduction of the number
of ART nodes.

The generalization from SBE to LBE has two main con-
sequences. First, LBE requires a more general representation
of abstract states than SBE. SBE is typically based on mere
conjunctions of predicates. Because the LBE approach sum-
marizes large portions of the control flow, conjunctions are not
sufficient, and we need to use arbitrary Boolean combinations
of predicates to represent the abstract states. Second, LBE
requires a more accurate abstraction in the abstract-successor
computations. Intuitively, an abstract edge represents many
different paths of the program, and therefore it is necessary
that the abstract-successor computations take the relationships
between the predicates into account.

In order to make this generalization practical, we rely on
efficient solvers for satisfiability modulo theories (SMT). In
particular, enabling factors are the capability of performing
Boolean reasoning efficiently (e.g., [21]), the availability of
effective algorithms for abstraction computation (e.g., [11],
[18]), and interpolation procedures to extract new predi-
cates [9], [12].

Considering Boolean abstraction and large-block encod-
ing in addition to the traditional techniques, we obtain the
following interesting observations: (i) whilst the SBE ap-
proach requires a large number of successor computations, the
LBE approach reduces the number of successor computations
dramatically (possibly exponentially); (ii) whilst Cartesian
abstraction can be efficiently computed with a linear number
of SMT solver queries, Boolean abstraction is expensive to
compute because it requires an enumeration of all satisfiable
assignments for the predicates. Therefore, two combinations of
the above strategies provide an interesting tradeoff: The com-
bination of SBE with Cartesian abstraction was successfully
implemented by tools like BLAST and SLAM. We investigate
the combination of LBE with Boolean abstraction, by first
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formally defining LBE in terms of a summarization of the
control-flow automaton for the program, and then implement-
ing this LBE approach together with a Boolean predicate
abstraction. We evaluate the performance and precision by
comparing it with the model checker BLAST and with an
own implementation of the traditional approach. Our own
implementation of the SBE and LBE approach is integrated
as a new component into CPACHECKER [8]1. The experiments
show that, despite the simplicity of the idea underlying LBE,
our new approach outperforms the previous approach.

Example. We illustrate the advantage of LBE over SBE on the
example program in Fig. 1 (a). In SBE, each program location
is modeled explicitly, and an abstract-successor computation is
performed for each program operation. Figure 1 (b) shows the
structure of the resulting ART. In the figure, abstract states are
drawn as ellipses, and labeled with the location of the abstract
state; the arrows indicate that there exists an edge from the
source location to the target location in the control-flow. The
ART represents all feasible program paths. For example, the
leftmost program path is taking the ‘then’ branch of every ‘if’
statement. For every edge in the ART, an abstract-successor
computation is performed, which potentially includes several
SMT solver queries. The problems given to the SMT solver
are usually very small, and the runtime sums up over a large
amount of simple queries. Therefore, model checkers that are
based on SBE (like BLAST) experience serious performance
problems on programs with such an exploding structure (cf. the
test_locks examples in Table I). In LBE, the control-flow
graph is summarized, such that control-flow edges represent
entire subgraphs of the original control-flow. In our example,
most of the program is summarized into one control-flow edge.
Figure 1 (c) shows the structure of the resulting ART, in which
all feasible paths of the program are represented by one single
edge. The exponential growth of the ART does not occur. �

Related Work. The model checkers SLAM and BLAST are
typical examples for the SBE approach [3], [6], both based on
counterexample-guided abstraction refinement (CEGAR) [13].
The tool SATABS is also based on CEGAR, but it performs
a fully symbolic search in the abstract space [15]. In contrast,
our approach still follows the lazy-abstraction paradigm [17],
i.e., it abstracts and refines chunks of the program “on-the-
fly”. The work of McMillan is also based on lazy abstraction,
but instead of using predicate abstraction as abstract domain,
he directly uses Craig interpolants from infeasible error paths,
thus avoiding abstract-successor computations [19]. A differ-
ent approach to software model checking is bounded model
checking (BMC), with the most prominent example CBMC
[14]. Programs are unrolled up to a given depth, and a formula
is constructed which is satisfiable iff one of the considered
program executions reaches a certain error location. The BMC
approaches are targeted towards discovering bugs, and can not
be used to prove program safety. Finally, the summarizations
performed in our large-block encoding bear some similarities

1Available at http://www.sosy-lab.org/∼dbeyer/CPAchecker

with the generation of verification conditions as performed by
static program verifiers like SPEC# [4] or CALYSTO [1].

Structure. Section II provides the necessary background. Sec-
tion III explains our contribution in detail. We experimentally
evaluate our novel approach in Sect. IV. In Sect. V, we draw
some conclusions and outline directions for future research.

II. BACKGROUND

A. Programs and Control-Flow Automata

We restrict the presentation to a simple imperative program-
ming language, where all operations are either assignments or
assume operations, and all variables range over integers.2 We
represent a program by a control-flow automaton (CFA). A
CFA A = (L, G) consists of a set L of program locations,
which model the program counter l , and a set G ⊆ L×Ops×L

of control-flow edges, which model the operations that are
executed when control flows from one program location to
another. The set of variables that occur in operations from Ops

is denoted by X . A program P = (A, l0, lE) consists of a CFA
A = (L, G) (which models the control flow of the program),
an initial program location l0 ∈ L (which models the program
entry) such that G does not contain any edge (·, ·, l0), and
a target program location lE ∈ L (which models the error
location).

A concrete data state of a program is a variable assignment
c : X → Z that assigns to each variable an integer value. The
set of all concrete data states of a program is denoted by C. A
set r ⊆ C of concrete data states is called region. We represent
regions using first-order formulas (with free variables from
X): a formula ϕ represents the set S of all data states c that
imply ϕ (i.e., S = {c | c |= ϕ}). A concrete state of a program
is a pair (l, c), where l ∈ L is a program location and c is a
concrete data state. A pair (l, ϕ) represents the following set of
all concrete states: {(l, c) | c |= ϕ}. The concrete semantics of
an operation op ∈ Ops is defined by the strongest postcondi-
tion operator SPop : for a formula ϕ, SPop(ϕ) represents the
set of data states that are reachable from any of the states
in the region represented by ϕ after the execution of op.
Given a formula ϕ that represents a set of concrete data
states, for an assignment operation s := e, we have
SPs:=e(ϕ) = ∃ŝ : ϕ

[s�→ŝ]
∧ (s = e

[s�→ŝ]
); and for an assume

operation assume(p), we have SPassume(p)(ϕ) = ϕ ∧ p.
A path σ is a sequence 〈(op1, l1), ..., (opn, ln)〉 of pairs

of operations and locations. The path σ is called program
path if for every i with 1 ≤ i ≤ n there exists a
CFA edge g = (li−1, opi, li), i.e., σ represents a syntac-
tical walk through the CFA. The concrete semantics for a
program path σ = 〈(op1, l1), ..., (opn, ln)〉 is defined as
the successive application of the strongest postoperator for
each operation: SPσ(ϕ) = SPop

n
(...SPop

1
(ϕ)...). The set

of concrete states that result from running σ is represented
by the pair (ln, SPσ(true)). A program path σ is feasible if

2Our implementation is based on CPACHECKER, which operates on
C programs that are given in the CIL intermediate language [20]; function
calls are supported.
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L1: if(p1) {
L2: x1 = 1;

}
L3: if(p2) {
L4: x2 = 2;

}
L5: if(p3) {
L6: x3 = 3;

}
L7: if(p1) {
L8: if (x1 != 1) goto ERR;

}
L9: if (p2) {
L10: if (x2 != 2) goto ERR;

}
L11: if (p3) {
L12: if (x3 != 3) goto ERR;

}
L13: return EXIT_SUCCESS;
ERR: return EXIT_FAILURE;
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(a) Example C program (b) ART for SBE (c) ART for LBE

Fig. 1. Example program and corresponding ARTs for SBE and LBE; this example was considered as verification challenge for ART-based approaches

SPσ(true) is satisfiable. A concrete state (ln, cn) is called
reachable if there exists a feasible program path σ whose final
location is ln and such that cn |= SPσ(true). A location l is
reachable if there exists a concrete state c such that (l, c) is
reachable. A program is safe if lE is not reachable.

B. Predicate Abstraction

Let P be a set of predicates over program variables in a
quantifier-free theory T . A formula ϕ is a Boolean combina-
tion of predicates from P . A precision for a formula is a finite
subset π ⊂ P of predicates.

Cartesian Predicate Abstraction. Let π be a precision. The
Cartesian predicate abstraction ϕπ

C
of a formula ϕ is the

strongest conjunction of predicates from π that is entailed by
ϕ: ϕπ

C
:=

∧
{p ∈ π | ϕ ⇒ p}. Such a predicate abstraction of

a formula ϕ, which represents a region of concrete program
states, is used as an abstract state (i.e., an abstract representa-
tion of the region) in program verification. For a formula ϕ and
a precision π, the Cartesian predicate abstraction ϕπ

C
of ϕ can

be computed by |π| SMT-solver queries. The abstract strongest
postoperator SP

π for a predicate abstraction with precision π

transforms the abstract state ϕπ
C

into its successor ϕ′
π
C for

a program operation op, written as ϕ′
π
C = SP

π
op(ϕπ

C
), if

ϕ′
π
C is the Cartesian predicate abstraction of SPop(ϕπ

C
), i.e.,

ϕ′
π
C = (SPop(ϕπ

C
))π

C
. For more details, we refer the reader to

the work of Ball et al. [2].

Boolean Predicate Abstraction. Let π be a precision. The
Boolean predicate abstraction ϕπ

B
of a formula ϕ is the

strongest Boolean combination of predicates from π that is
entailed by ϕ. For a formula ϕ and a precision π, the Boolean
predicate abstraction ϕπ

B
of ϕ can be computed by querying an

SMT solver in the following way: For each predicate pi ∈ π,
we introduce a propositional variable vi. Now we ask an SMT
solver to enumerate all satisfying assignments of v1, ..., v|π|
in the formula ϕ ∧

∧
pi∈π(pi ⇔ vi). For each satisfying as-

signment, we construct a conjunction of all predicates from π

whose corresponding propositional variable occurs positive in
the assignment. The disjunction of all such conjunctions is
the Boolean predicate abstraction for ϕ. The abstract strongest
postoperator SP

π for a predicate abstraction with precision π

transforms the abstract state ϕπ
B

into its successor ϕ′
π
B for

a program operation op, written as ϕ′
π
B = SP

π
op(ϕπ

B
), if

ϕ′
π
B is the Boolean predicate abstraction of SPop(ϕπ

B
), i.e.,

ϕ′
π
B = (SPop(ϕπ

B
))π

B
. For more details, we refer the reader to

the work of Lahiri et al. [18].

C. ART-based Software Model Checking with SBE

The precision for a program is a function Π : L → 2P ,
which assigns to each program location a precision for a for-
mula. An ART-based algorithm for software model checking
takes an initial precision Π (which is typically very coarse) for
the predicate abstraction, and constructs an ART for the input
program and Π. An ART is a tree whose nodes are labeled
with program locations and abstract states [6] (i.e., n = (l, ϕ)).
For a given ART node, all children nodes are labeled with
successor locations and abstract successor states, according
to the strongest postoperator and the predicate abstraction. A
node n = (l, ϕ) is called covered if there exists another ART
node n′ = (l, ϕ′) that entails n (i.e., s.t. ϕ′ |= ϕ). An ART is
called complete if every node is either covered or all possible
abstract successor states are present in the ART as children of
the node. If a complete ART is constructed and the ART does
not contain any error node, then the program is considered
correct [6]. If the algorithm adds an error node to the ART,
then the corresponding path σ is checked to determine if σ

is feasible (i.e., if the corresponding concrete program path
is executable) or infeasible (i.e., if there is no corresponding
program execution). In the former case the path represents
a witness for a program bug. In the latter case the path is
analyzed, and a refinement Π′ of Π is generated, such that the
same path cannot occur again during the ART exploration. The
concept of using an infeasible error path for abstraction refine-
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ment is called counterexample-guided abstraction refinement
(CEGAR) [13]. The concept of iteratively constructing an ART
and refining only the precisions along the considered path is
called lazy abstraction [17]. Craig interpolation is a successful
approach to predicate extraction during refinement [16]. After
refining the precision, the algorithm continues with the next
iteration, using Π′ instead of Π to construct the ART, until
either a complete error-free ART is obtained, or an error is
found (note that the procedure might not terminate). For more
details and a more in-depth illustration of the overall ART
algorithm, we refer the reader to the BLAST article [6].

In order to make the algorithm scale on practical examples,
implementations such as BLAST or SLAM use the simple
but coarse Cartesian abstraction, instead of the expensive
but precise Boolean abstraction. Despite its potential impre-
cision, Cartesian abstraction has been proved successful for
the verification of many real-world programs. In the SBE
approach, given the large number of successor computations,
the computation of the Boolean predicate abstraction is in fact
too expensive, as it may require an SMT solver to enumerate
an exponential number of assignments on the predicates in
the precision, for each single successor computation. The
reason for the success of Cartesian abstraction if used together
with SBE, is that for a given program path, state over-
approximations that are expressible as conjunctions of atomic
predicates —for which Boolean and Cartesian abstractions are
equivalent— are often good enough to prove that the error
location is not reachable in the abstract space.

III. LARGE-BLOCK ENCODING

A. Summarization of Control-Flow Automata

The large-block encoding is achieved by a summarization
of the program CFA, in which each loop-free subgraph of the
CFA is replaced by a single control-flow edge with a large
formula that represents the removed subgraph. This process,
which we call CFA-summarization, consists of the fixpoint
application of the three rewriting rules that we describe below:
first we apply Rule 0 once, and then we repeatedly apply Rules
1 and 2, until no rule is applicable anymore.

Let P = (A, l0, lE) be a program with CFA A = (L, G).

Rule 0 (Error Sink). We remove all edges (lE , ·, ·) from G, s.t.,
the target location lE is a sink node with no outgoing edges.

Rule 1 (Sequence). If G contains an edge (l1, op1, l2)
with l1 = l2 and no other incoming edges for l2

l2

l1

l3 l4

l1

l3 l4

op1 ; op3

op1 ; op2

op1

op2 op3

(i.e. edges (·, ·, l2)), and G→l2 is
the subset of G of outgoing edges
for l2, then we change the CFA A

in the following way: (1) we re-
move location l2 from L, and (2)
we remove the edge (l1, op1, l2)
and all edges in G→l2 from G, and
for each edge (l2, opi, li) ∈ G→l2 ,
we add the edge (l1, op1 ; opi, li)
to G, where SPop

1
; op

i
(ϕ) = SPop

i
(SPop

1
(ϕ)). (Note that

G→l2 might contain an edge (l2, ·, l1).)

6

[i > 0]
[i ≤ 0]

[x = 1][x == 1]

z = 0 z = 1

5

7

1: while

2: if

4: else3: then

i = i − 1

[i > 0]
[i ≤ 0]

[x = 1][x == 1]

z = 0 z = 1

i = i − 1
5

7

1: while

2: if

4: else3: then

[i > 0]
[i ≤ 0]

i = i − 1

[x == 1]
z = 0

[x = 1]
z = 1

2: if

5

7

1: while

[i ≤ 0]

[x == 1]
z = 0

[x = 1]
z = 1

i = i − 1

[i > 0] 7

1: while

[i > 0]
[i ≤ 0]

i = i − 1

[x == 1]
z = 0

[x = 1]
z = 1

2: if

5

7

1: while

L1: while (i>0) {
L2: if (x==1) {
L3: z = 0;

} else {
L4: z = 1;

}
L5: i = i-1;
L6: }

Fig. 2. CFA Transformation: a) Program, b) CFA, c)–e) Intermediate CFAs,
f) CFA-Summary. In the CFAs, assume(p) is represented as [p], op

1
; op

2

is represented by drawing op
2

below op
1

, and op
1
‖ op

2
by drawing op

2

beside op
1

Rule 2 (Choice). If L2 = {l1, l2} and A|L2
= (L2, G2)

l2

l1

op1
op2

l2

l1

op1 ‖ op2

is the subgraph of A with nodes
from L2 and the set G2 of
edges contains the two edges
(l1, op1, l2) and (l1, op2, l2),
then we change the CFA A in
the following way: (1) we remove the two edges (l1, op1, l2)
and (l1, op2, l2) from G and add the edge (l1, op1 ‖ op2, l2)
to G, where SPop

1
‖op

2
(ϕ) = SPop

1
(ϕ) ∨ SPop

2
(ϕ). (Note

that there might be a backwards edge (l2, ·, l1).)
Let P = (A, l0, lE) be a program and let A′ be a CFA. The

CFA A′ is a CFA-summary of A if A′ is obtained from A via
application of Rule 1 and then stepwise application of Rules 1
and 2, and no rule can be further applied.

Example. Figure 2 shows a program (a) and its corresponding
CFA (b). The control-flow automaton (CFA) is iteratively
transformed to a CFA-summary (f) as follows: Rule 1 elimi-
nates location 6 to (c), Rule 1 eliminates location 3 and then
location 4 to (d), Rule 2 replaces the two edges 2–5 to (e),
Rule 1 eliminates location 2 and then location 5 to (f). �

In the context of this article, we use the CFA-summary for
program analysis, i.e., we want to verify if the error location
of the program is reachable. The following theorem states that
our summarization of a CFA is correct in this sense. (The proof
can be found in our extended technical report [5].)

Theorem 3.1 (Correctness of Summarization): Let P =
(A, l0, lE) be a program and let A′ = (L′, G′) be a CFA-
summary of A. Then: (i) {l0, lE} ⊆ L′, and (ii) lE is reachable
in (A′, l0, lE) if and only if lE is reachable in P .

The summarization can be performed in polynomial time.
The time taken by Rule 0 is proportional to the number
of outgoing edges for lE . Since each application of Rule 1
or Rule 2 removes at least one edge, there can be at most
|G| − 1 such applications. A naive way to determine the set
of locations and edges to which to apply each rule requires
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O(|V | · k) time, where k is the maximum out-degree of
locations. Finally, each application of Rule 2 requires O(1)
time, and each application of Rule 1 O(k) time. Therefore, a
naive summarization algorithm requires O(|G| · |V | · k) time,
which reduces to O(|G|·|V |) if k is bounded (i.e., if we rewrite
a priori all switches into nested ifs).3

B. LBE versus SBE for Software Model Checking

The use of LBE instead of the standard SBE requires
no modification to the general model-checking algorithm,
which is still based on ART construction with CEGAR-based
refinement. The main difference is that in LBE, there is no
one-to-one correspondence between ART paths and syntactical
program paths. A single CFA edge corresponds to a set of
paths between its source and target location, and a single
ART path corresponds to a set of program paths. An ART
node represents an overapproximation of the data region that
is reachable by following any of the program paths represented
by the ART path that leads to it. This difference leads to two
observations.

First, LBE can lead to exponentially-smaller ARTs than
SBE, and thus it can drastically reduce the number of suc-
cessor computations (cf. example in Sect. I) and the number
of abstraction-refinement steps for infeasible error paths. Each
of these operations, however, is typically more expensive than
with SBE, because more complex formulas are involved.

Second, LBE requires a more general representation of ab-
stract states. When using SBE, abstract states are typically rep-
resented as sets/conjunctions of predicates. This is sufficient
for practical examples because each abstract state represents
a data region reachable by a single program path, which can
be encoded essentially as a conjunction of atomic formulas.
With LBE, such representation would be too coarse, since
each abstract state represents a data region that is reachable on
several different program paths. Therefore, we need to use a
representation for arbitrary (and larger) Boolean combinations
of predicates. This generalization of the representation of
abstract states requires a generalization of the representation
of the transfers, i.e., replacing the Cartesian abstraction with
a more precise form of abstraction. In this paper, we evaluate
the use of the Boolean abstraction, which allows for a precise
representation of arbitrary Boolean combinations of predicates.

With respect to the traditional SBE approach, LBE allows
us to trade part of the cost of the explicit enumeration of pro-
gram paths with that of the symbolic computation of abstract
successor states: rather than having to build large ARTs via
SBE by performing a substantial amount of relatively cheap
operations (Cartesian abstract postoperator applications along
single-block edges and counterexample analysis of individual
program paths), we build smaller ARTs via LBE by perform-
ing more expensive symbolic operations (Boolean abstract
postoperator applications along large portions of the control
flow and counterexample analysis of multiple program paths),

3In our implementation, we use a more efficient algorithm, which we do
not describe here for lack of space.

involving formulas with a complex Boolean structure. With
LBE, the cost of each symbolic operation, rather than their
number, becomes a critical performance factor.

To this extent, LBE makes it possible to fully exploit the
power and functionality of modern SMT solvers: First, the
capability of modern SMT solvers to perform large amounts of
Boolean reasoning allows for handling large Boolean combi-
nations of atomic expressions, instead of simple conjunctions.
Second, the capability of some SMT solvers (e.g., [10]) to
perform All-SMT and interpolation allows for efficient com-
putation of Boolean abstractions and interpolants, respectively.
SMT-based Boolean abstraction and interpolation were shown
to outperform previous approaches [11], [12], [18], especially
when dealing with complex formulas. With SBE, instead, the
use of modern SMT technology does not lead to significant
improvements of the overall ART-based algorithm, because
each SMT query involves only simple conjunctions. 4

IV. PERFORMANCE EVALUATION

Implementation. In order to evaluate the proposed verification
method, we integrate our algorithm as a new component into
the configurable software verification toolkit CPACHECKER [8].
This implementation is written in JAVA. All example programs
are preprocessed and transformed into the simple intermediate
language CIL [20]. For parsing C programs, CPACHECKER

uses a library from the Eclipse C/C++ Development Kit. For
efficient querying of formulas in the quantifier-free theory
of rational linear arithmetic and equality with uninterpreted
function symbols, we use the SMT solver MATHSAT [10],
which is integrated as a library (written in C++). We use BDDs
for representing abstract-state formulas.

Our benchmark programs, the source code, and an ex-
ecutable of our LBE implementation are available on
the supplementary web site on Large-Block Encoding
(http://www.sosy-lab.org/∼dbeyer/cpa-lbe). We ran all
experiments on a 1.8 GHz Intel Core2 machine with 2 GB of
RAM and 2 MB of cache, running GNU/Linux. We used a
timeout of 1 800 s and a memory limit of 1.8 GB.

Example Programs. We use three categories of benchmark
programs. First, we experiment with programs that are specif-
ically designed to cause an exponential blowup of the ART
when using SBE (test_locks*, in the style of the example in
Sect. I). Second, we use the device-driver programs that were
previously used as benchmarks in the BLAST project. 5 Third,
we solve various verification problems for the SSH client

4For example, BLAST uses SIMPLIFY, version 1.5.4, as of October 2001, for
computing abstract successor states. Experiments have shown that replacing
this old SIMPLIFY version by a highly-tuned modern SMT solver does
not significantly improve the performance, because BLAST does not use
much power of the SMT solver. Moreover, it was shown that although the
MATHSAT SMT solver outperformed other tools in the computation of Craig
interpolants for general formulas, the difference in performance is negligible
on formulas generated by a standard SBE ART-based algorithm [12].

5The BLAST distribution contains 8 Windows driver benchmarks. How-
ever, we could not run three of them (parclass.i, mouclass.i, and
serial.i), because CIL fails to parse them, making both CPACHECKER
and BLAST fail.
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TABLE I
PERFORMANCE RESULTS

BLAST CPACHECKER
Program (best result) SBE LBE
test locks 5.c 4.50 4.01 0.29
test locks 6.c 7.81 7.22 0.32
test locks 7.c 13.91 12.63 0.34
test locks 8.c 25.00 23.93 0.57
test locks 9.c 46.84 52.04 0.38
test locks 10.c 94.57 131.39 0.40
test locks 11.c 204.55 MO 0.70
test locks 12.c 529.16 MO 0.46
test locks 13.c 1229.27 MO 0.49
test locks 14.c >1800.00 MO 0.50
test locks 15.c >1800.00 MO 0.56
cdaudio.i.cil.c 175.76 MO 53.55
diskperf.i.cil.c >1800.00 MO 232.00
floppy.i.cil.c 218.26 MO 56.36
kbfiltr.i.cil.c 23.55 41.12 7.82
parport.i.cil.c 738.82 MO 378.04
s3 clnt.blast.01.i.cil.c 33.01 755.81 19.51
s3 clnt.blast.02.i.cil.c 62.65 1075.45 16.00
s3 clnt.blast.03.i.cil.c 60.62 746.31 49.50
s3 clnt.blast.04.i.cil.c 63.96 730.80 25.45
s3 srvr.blast.01.i.cil.c 811.27 >1800.00 125.33
s3 srvr.blast.02.i.cil.c 360.47 >1800.00 122.83
s3 srvr.blast.03.i.cil.c 276.19 >1800.00 98.47
s3 srvr.blast.04.i.cil.c 175.64 >1800.00 71.77
s3 srvr.blast.06.i.cil.c 304.63 >1800.00 59.70
s3 srvr.blast.07.i.cil.c 478.05 >1800.00 85.82
s3 srvr.blast.08.i.cil.c 115.76 >1800.00 61.29
s3 srvr.blast.09.i.cil.c 445.21 >1800.00 126.47
s3 srvr.blast.10.i.cil.c 115.10 >1800.00 63.36
s3 srvr.blast.11.i.cil.c 367.98 >1800.00 162.76
s3 srvr.blast.12.i.cil.c 304.05 >1800.00 170.33
s3 srvr.blast.13.i.cil.c 580.33 >1800.00 74.49
s3 srvr.blast.14.i.cil.c 303.21 >1800.00 50.38
s3 srvr.blast.15.i.cil.c 115.88 >1800.00 21.01
s3 srvr.blast.16.i.cil.c 305.11 >1800.00 127.82
TOTAL (solved/time) 32 / 8591.12 11 / 3580.71 35 / 2265.07
TOTAL w/o test_locks* 23 / 6435.51 5 / 3349.48 24 / 2260.07

and server software (s3_clnt* and s3_srvr*), which share
the same program logic, but check different safety properties.
The safety property is encoded as conditional call of a failure
location and therefore reduces to the reachability of a certain
error location. All benchmark programs from the BLAST web
page are preprocessed with CIL. For the second and third
groups of programs, we also performed experiments with
artificial defects introduced.

Experimental Configurations. For a careful and fair perfor-
mance comparison, we performed experiments using three
different configurations. First, we use BLAST, version 2.5,
which is a highly optimized state-of-the-art software model
checker. BLAST is implemented in the programming language
OCAML. We ran BLAST using all four combinations of
breadth-first search (-bfs) versus depth-first search (-dfs),
both with and without heuristics for improving the predicate
discovery. BLAST provides five different levels of heuristics
for predicate discovery, and we use only the lowest (-predH
0) and the highest option (-predH 7). Interestingly, every com-
bination is best for some particular example programs, with
considerable differences in runtime and memory consumption.

TABLE II
PERFORMANCE RESULTS, PROGRAMS WITH ARTIFICIAL BUGS

BLAST CPACHECKER
Program (best result) SBE LBE
cdaudio.BUG.i.cil.c 18.79 74.39 9.85
diskperf.BUG.i.cil.c 889.79 26.53 6.78
floppy.BUG.i.cil.c 119.60 36.49 4.30
kbfiltr.BUG.i.cil.c 46.80 75.45 11.52
parport.BUG.i.cil.c 1.67 14.62 2.64
s3 clnt.blast.01.BUG.i.cil.c 8.84 1514.90 3.33
s3 clnt.blast.02.BUG.i.cil.c 9.02 843.42 3.27
s3 clnt.blast.03.BUG.i.cil.c 6.64 780.72 2.61
s3 clnt.blast.04.BUG.i.cil.c 9.78 724.04 3.18
s3 srvr.blast.01.BUG.i.cil.c 7.59 MO 2.09
s3 srvr.blast.02.BUG.i.cil.c 7.16 >1800.00 2.10
s3 srvr.blast.03.BUG.i.cil.c 7.42 >1800.00 2.08
s3 srvr.blast.04.BUG.i.cil.c 7.33 >1800.00 1.93
s3 srvr.blast.06.BUG.i.cil.c 39.81 MO 5.08
s3 srvr.blast.07.BUG.i.cil.c 310.84 >1800.00 28.35
s3 srvr.blast.08.BUG.i.cil.c 40.51 >1800.00 36.47
s3 srvr.blast.09.BUG.i.cil.c 265.48 >1800.00 4.94
s3 srvr.blast.10.BUG.i.cil.c 40.24 >1800.00 12.01
s3 srvr.blast.11.BUG.i.cil.c 49.05 >1800.00 4.80
s3 srvr.blast.12.BUG.i.cil.c 38.66 >1800.00 6.11
s3 srvr.blast.13.BUG.i.cil.c 251.56 >1800.00 15.20
s3 srvr.blast.14.BUG.i.cil.c 39.94 1656.54 4.63
s3 srvr.blast.15.BUG.i.cil.c 40.19 >1800.00 10.19
s3 srvr.blast.16.BUG.i.cil.c 39.54 >1800.00 5.21
TOTAL (solved/time) 24 / 2296.25 10 / 5747.10 24 / 188.67

The configuration using -dfs -predH 7 is the winner (in terms
of solved problems and total runtime) for the programs without
defects, but is not able to verify four example programs
(timeout) [5]. For the unsafe programs, -bfs -predH 7 per-
forms best. All four configurations use the command-line op-
tions -craig 2 -nosimplemem -alias "", which specify that
BLAST runs with lazy, Craig-interpolation-based refinement,
no CIL preprocessing for memory access, and without pointer
analysis. In all experiments with BLAST, we use the same
interpolation procedure (MATHSAT) as in our CPACHECKER-
based implementation. 6 In the performance tables, we show
the best result among the four configurations for every single
instance (column best result). (The results of all four con-
figurations are provided in our extended technical report [5].)

Second, in order to separate the optimization efforts in
BLAST from the conceptual essence of the traditional lazy-
abstraction algorithm, we developed a re-implementation of
the traditional algorithms (column ’SBE’), as described in the
BLAST tool article [6]. This re-implementation is integrated as
component into CPACHECKER, so that the difference between
SBE and LBE is only in the algorithms, not in the environment
(same parser, same BDD package, same query optimization,
etc.). Our SBE implementation uses a DFS algorithm.

Third, we ran the experiments using our new LBE algo-
rithm, which is also implemented within CPACHECKER (col-
umn LBE). Our LBE implementation uses a DFS algorithm.
Note that the purpose of our experiments is to give evidence
of the performance difference between SBE and LBE, because
these two settings are closest to each other, since SBE and LBE

6We tried also to use MATHSAT instead of SIMPLIFY for computing
abstract successor states, but this did not improve the performance of BLAST.
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TABLE III
DETAILED COMPARISON BETWEEN SBE AND LBE; ENTRIES MARKED WITH (*) DENOTE PARTIAL STATISTICS FOR ANALYSES THAT TERMINATED

UNSUCCESSFULLY (IF AVAILABLE)

SBE LBE
ART # ref # predicates ART # ref # predicates

Program size steps Tot Avg Max size steps Tot Avg Max
test locks 5.c 1344 50 10 3 10 4 0 0 0 0
test locks 6.c 2301 72 12 4 12 4 0 0 0 0
test locks 7.c 3845 98 14 5 14 4 0 0 0 0
test locks 8.c 6426 128 16 6 16 4 0 0 0 0
test locks 9.c 10926 162 18 7 18 4 0 0 0 0
test locks 10.c 19091 200 20 8 20 4 0 0 0 0
test locks 11.c 24779(*) 242(*) 22(*) 9(*) 22(*) 4 0 0 0 0
test locks 12.c 28119(*) 288(*) 24(*) 10(*) 24(*) 4 0 0 0 0
test locks 13.c 31739(*) 338(*) 26(*) 10(*) 26(*) 4 0 0 0 0
test locks 14.c 35178(*) 392(*) 28(*) 11(*) 28(*) 4 0 0 0 0
test locks 15.c 38777(*) 450(*) 30(*) 12(*) 30(*) 4 0 0 0 0
cdaudio.i.cil.c 53323(*) 445(*) 147(*) 9(*) 78(*) 6909 140 79 5 16
diskperf.i.cil.c – – – – – 4890 145 56 6 21
floppy.i.cil.c 31079(*) 301(*) 79(*) 7(*) 35(*) 9668 176 58 4 13
kbfiltr.i.cil.c 19640 153 53 5 27 1577 47 18 2 6
parport.i.cil.c 26188(*) 360(*) 143(*) 4(*) 41(*) 38488 474 168 4 17
s3 clnt.blast.01.i.cil.c 122678 557 59 20 59 36 5 47 11 47
s3 clnt.blast.02.i.cil.c 354132 532 55 19 55 36 5 51 12 51
s3 clnt.blast.03.i.cil.c 196599 534 55 19 55 39 5 75 18 75
s3 clnt.blast.04.i.cil.c 172444 538 55 19 55 36 5 47 11 47
s3 srvr.blast.01.i.cil.c 232195(*) 774(*) 70(*) 20(*) 70(*) 101 6 88 22 88
s3 srvr.blast.02.i.cil.c 254667(*) 745(*) 79(*) 19(*) 78(*) 109 7 75 18 75
s3 srvr.blast.03.i.cil.c – – – – – 91 6 85 21 85
s3 srvr.blast.04.i.cil.c – – – – – 103 7 82 20 82
s3 srvr.blast.06.i.cil.c 295698(*) 576(*) 63(*) 14(*) 63(*) 94 6 84 21 84
s3 srvr.blast.07.i.cil.c – – – – – 92 5 85 21 85
s3 srvr.blast.08.i.cil.c 279991(*) 549(*) 57(*) 15(*) 57(*) 89 5 88 22 88
s3 srvr.blast.09.i.cil.c 189541(*) 720(*) 72(*) 16(*) 71(*) 193 4 72 18 72
s3 srvr.blast.10.i.cil.c 307671(*) 597(*) 55(*) 16(*) 55(*) 91 5 79 19 79
s3 srvr.blast.11.i.cil.c – – – – – 48 6 69 17 69
s3 srvr.blast.12.i.cil.c 258546(*) 563(*) 57(*) 15(*) 57(*) 99 6 94 23 94
s3 srvr.blast.13.i.cil.c 167333(*) 682(*) 70(*) 18(*) 69(*) 90 5 81 20 81
s3 srvr.blast.14.i.cil.c 318982(*) 643(*) 65(*) 13(*) 64(*) 92 6 83 20 83
s3 srvr.blast.15.i.cil.c 279319(*) 579(*) 58(*) 15(*) 58(*) 71 4 71 17 71
s3 srvr.blast.16.i.cil.c 346185(*) 596(*) 59(*) 12(*) 58(*) 98 6 86 21 86

differ only in the CFA summarization and Boolean abstraction.
The first column is provided in Tables I and II to give evidence
that the new approach beats the highly-optimized traditional
implementation BLAST.

We actually configured and ran experiments with all four
combinations: SBE versus LBE, and Cartesian versus Boolean
abstraction. The experimentation clearly showed that SBE
does not benefit from Boolean abstraction in terms of pre-
cision, with substantial degrade in performance: the only pro-
grams for which it terminated successfully were the first five
instances of the test_locks group. Similarly, the combination
of LBE with Cartesian abstraction fails to solve any of the
experiments, due to loss of precision. Thus, we report only
on the two successful configurations, i.e., SBE in combination
with Cartesian abstraction, and LBE with Boolean abstraction.

Discussion of Evaluation Results. Tables I and II present
performance results of our experiments, for the safe and unsafe
programs respectively. All runtimes are given in seconds of
processor time, ‘>1800.00’ indicates a timeout, ‘MO’ indi-
cates an out-of-memory. Table III shows statistics about the
algorithms for SBE and LBE only.

The first group of experiments in Table I shows that the time
complexity of SBE (and BLAST) can grow exponentially in
the number of nested conditional statements, as expected. Ta-
ble III explains why the SBE approach exhausts the memory:
the number of abstract nodes in the reachability tree grows
exponentially in the number of nested conditional statements.
Therefore, SBE does not scale. The LBE approach reduces
the loop-free part of the branching control-flow structure to a
few edges (cf. example in the introduction), and the size of
the ART is constant for this example program, because only
the structure inside the body of the loop changes. There are
no refinement steps necessary in the LBE approach, because
the edges to the error location are infeasible. Therefore, no
predicates are used. The runtime of the LBE approach slightly
increases with the size of the program, because the size of the
formulas that are sent to the SMT solver is slightly increasing.
Although in principle the complexity of the SMT problem
grows exponentially in the size of the formulas, the heuristics
used by SMT solvers avoid the exponential enumeration that
we observe in the case of SBE.
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For the two other classes of experiments, we see that LBE
is able to successfully complete all benchmarks, and shows
significant performance gains over SBE. SBE is able to solve
only about one third of all benchmarks, and for the ones that
complete, it is clearly outperformed by LBE. In Table III, we
see that SBE has in general a much larger ART. In Table I
we observe that LBE performs significantly better than any
BLAST configuration. LBE performed best also in finding the
error paths (cf. Table II), outperforming both SBE and BLAST.

In summary, the experiments show that the LBE approach
outperforms the SBE approach, both for correct and defective
programs. This provides evidence of the benefits of a “more
symbolic” analysis as performed in the LBE approach. One
might argue that our CPACHECKER-based SBE implementa-
tion might be sub-optimal although it uses the same imple-
mentation and execution environment as LBE; in fact, both
implementations currently suffer from some inefficiencies and
have room for several optimizations. Therefore, we compare
also with BLAST. By looking at Tables I and II, we see that
LBE outperforms also BLAST, despite the fact that the latter
is the result of several years of fine-tuning. BLAST in turn is
much more efficient than SBE. However, the performance gap
between BLAST and SBE highly depends on the command-
line options used for BLAST.

We conclude the section by discussing the scope of the
experimental evaluation. The LBE techniques proposed in this
paper bear substantial similarities to the SSA-based encodings
used in tools like SATABS [15], CALYSTO [1] or SPEC# [4].
For lack of space, we chose to not include a comparison with
such tools; rather, we focussed on the more relevant issue of
the impact of LBE on ART-based model checking.

V. CONCLUSION AND FUTURE WORK

We have proposed LBE as an alternative to the SBE model-
checking approach, based on the idea that transitions in the ab-
stract space should represent larger fragments of the program.
Our novel approach results in significantly smaller ARTs,
where abstract successor computations are more involved, and
thus trading cost of many explicit enumerations of program
paths with the cost of symbolic successor computations. A
thorough experimental evaluation shows the advantages of
LBE against both our implementation of SBE and the state-
of-the-art BLAST system.

The existing experimental results can now be summarized as
follows: (i) the combination of Cartesian predicate abstraction
with SBE is successful on many practical programs [3], [6],
but is not efficient on programs with nested conditional branch-
ing, (ii) the combination of Boolean predicate abstraction
with SBE is intractably expensive [2], (iii) the combination
of Cartesian predicate abstraction with joining paths is too
imprecise [7], and (iv) the combination of Boolean predicate
abstraction with LBE is the most promising combination for
ART-based predicate abstraction (Tables I and II).

In our future work, we plan to implement McMillan’s
interpolation-based lazy-abstraction approach [19], and ex-
periment with SBE versus LBE versions of his algorithm.

Furthermore, we plan to investigate the use of adjustable
precision-based techniques for the construction of the large
blocks on-the-fly (instead of the current preprocessing step).
This would enable a dynamic adjustment of the size of the
large blocks, and thus we could fine-tune the amount of work
that is delegated to the SMT solver. Also, we plan to explore
other techniques for computing abstract successors which are
more precise than Cartesian abstraction but less expensive than
Boolean abstraction.

Acknowledgments. We thank Roman Manevich for interesting
discussions about BLAST’s performance bottlenecks.
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