
A Simple and Effective Measure for Complex Low-Level Dependencies

Dirk Beyer

Simon Fraser University, B.C., Canada

& University of Passau, Germany

Ashgan Fararooy

Simon Fraser University, B.C., Canada

Abstract

The measure dep-degree is a simple indicator for struc-

tural problems and complex dependencies on code-level.

We model low-level dependencies between program oper-

ations as use-def graph, which is generated from reaching

definitions of variables. The more dependencies a program

operation has, the more different program states have to be

considered and the more difficult it is to understand the op-

eration. Dep-degree is simple to compute and interpret,

flexible and scalable in its application, and independently

complementing other indicators. Preliminary experiments

suggest that the measure dep-degree, which simply counts

the number of dependency edges in the use-def graph, is a

good indicator for readability and understandablity.

1. Overview

Software systems, due to the frequency and amount of

changes to their structure, are very different from artifacts

in other engineering disciplines. The frequent changes —

often essentially affecting the stability of the system— re-

quire a continuous effort to prevent the structure from de-

generation. There are several theories why this must hap-

pen (e.g., [12]) and guidelines on how to prevent or fix this

(e.g., Design Patterns, Refactoring, Beautiful Code).

We present a simple but effective idea that contributes in

solving the following subproblem: Given two versions of

a software program that have the same behavior and differ

only in code structure, which version is to prefer in terms of

low-level dependency structure. For example, if the second

version is the result of changing the first version, we would

like to know whether the change actually improves the code

structure, i.e., was a positive ‘refactoring’.

The indicator dep-degree (DD), which we define in the

next section, is based on the notion of reaching definitions,

a well-known concept from compiler optimization and pro-

gram analysis. Dep-degree is defined for single program

operations as well as for program functions. The DD for a

single operation is the total number of reaching definitions

for the variables that it uses. The DD for a set of operations

(or a complete function) is the sum over all dep-degrees for

operations (or the number of edges in the use-def graph,

respectively). For example, consider the assignment oper-

ation x = a− b. The dep-degree for this operation is the

number of different reaching definitions for variable a plus

the number of different reaching definitions for variable b.

In Sect. 3, we compare dep-degree with the two most

widely used —but not necessarily academically accepted—

measures for software programs. The first measure is lines

of code (LOC), an indicator for the size of a program. It

measures the length of a program by a pure syntactical

count of lines, without analyzing the contents in detail. 1

The second measure that we compare with is cyclomatic

complexity (CC) [14], an indicator for the complexity of

the control-flow structure of a program. It measures the

control-flow structure by counting nodes, edges, and con-

nected components (CC(G) = e−n+p, where e, n, and p

are the number of edges, nodes, and connected components

in control-flow graph G, respectively). Dep-degree (DD) is

an indicator for complex low-level dependencies of a pro-

gram. It measures the amount of data-flow dependencies by

counting edges in the use-def graph.

Besides LOC and cyclomatic complexity, there is a rich

set of software measures defined in the literature: there are

classic software measures [2, 3, 5, 6, 7, 8, 9, 10, 16, 21, 22],

most of them still in use today; there have been recent ef-

forts to create new software measures that are supported by

richer theoretical background (e.g., [11]); there are mea-

sures for object-oriented programming [13, 18]; and some

that proposed to measure program complexity based on

data-flow information (e.g., [21]). The indicators measure

certain properties of software, attempting to indicate size,

product properties, quality, and complexity. For our com-

parison, we chose LOC as the most prominent indicator for

size, and cyclomatic complexity as the most prominent in-

dicator for control-flow complexity. For details about the

various measures we refer the reader to the survey and dis-

cussion articles on software measures [2, 3, 6, 7, 9, 10, 16].

1We distinguish between measure and indicator: a measure needs to

be precise, and we use it in the spirit of Stevens [20], while we allow the

weaker term indicator to be less precise.

18th IEEE International Conference on Program Comprehension

978-0-7695-4113-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPC.2010.49

80

The application of software measures has significantly

advanced the techniques to automatically and abstractly as-

sess properties of large software systems. But many soft-

ware engineers were too enthusiastic in applying measures,

trying to use measures as indicators for properties that they

were not designed for. For example, LOC was often consid-

ered a measure for size, but it is a measure for length, and

just an indicator for size. Or, cyclomatic complexity was

sometimes used as measure for program complexity, but

it is a measure for cyclomatic complexity of control-flow

graphs, and might only roughly indicate program complex-

ity. This was extensively discussed in the literature, and

there was criticism on measurement practice in the litera-

ture [9], and effort was spent on improving existing mea-

sures [17, 19], and then on showing the limitations of the

extensions again [4].

2. Dependency Degree

Control-Flow Graph (CFG). We represent a computer

program as a collection of control-flow graphs [1], one for

each function (or procedure) of the program. A control-

flow graph G = (B,F) is a directed graph that consists of

a set B of program operations (the nodes of the graph) and

a set F ⊆ B × B of control-flow edges of the program. A

program operation is executed when control moves from the

entry to an exit of the operation node. A program operation

is either an assignment operation, a conditional, a function

call, or a function return. A conditional is a predicate that

must be evaluated to true (false) for control to proceed along

the first (second, resp.) exit edge. All other operations have

one exit edge. Program operations can read and write values

via variables from the set X of program variables.

Reaching Definitions. In this paper, we use a notion of op-

eration dependency that is motivated by the data-flow anal-

ysis for reaching definitions [1]. The function reaching def-

initions rdG : B×X → 2B for a CFG G = (B,F) assigns

to a program operation bu and a variable x the set of all

definitions of variable x that can reach the operation bu. In

other words, a program operation bd is in the set of reach-

ing definitions for program operation bu and variable x, if

bd is an assignment operation or a function call that assigns

a value to x and there exists a path in the CFG from bd to bu

on which no other program operation assigns a value to x.

Use-Def Graph. We now derive the use-def graph from

the results of the reaching-definitions analysis. A use-def

graph SG = (B,E) for a CFG G = (B,F) is a directed

graph that consists of the set B of program operations (of G)

and the set E of use-def edges that are derived from the

reaching-definitions function as follows: an edge (bu, bd) is

member of the set E if there exists a variable x that is used

in bu and for which bd ∈ rdG(bu, x) holds.

The use-def graph is a dependency graph on operation

level, more precisely, it models the data-flow dependencies

void

swap(int a, int b) {

a += b;

b = a - b;

a -= b;

}

void

swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

Figure 1. Two ‘swap’ implementations

’a’ init def

a + = b ;

b = a - b ;

a -= b ;

’b’ init def

’a’ init def

in t t emp = a ;

b = t emp;

’b’ init def

a = b ;

Figure 2. Use-def graphs for ‘swap’

between operations and the direction of an edge models the

direction of the dependency (from use to definition). In

compiler optimization and program analysis, this data-flow

dependency is one of the most important dependencies that

are considered (but mostly stored in a different form as so-

called ud-chains [1]).

Dependency-Degree. The dep-degree for program opera-

tions in a CFG G = (B,F) is a total function ddG : B → N

that assigns to each program operation b the number of other

program operations that it depends on in SG = (B,E),
i.e., ddG(b) = |{b′ ∈ B | (b, b′) ∈ E}| (the out-degree of b

in graph SG). The dep-degree for program functions is a

total function dd : G → N that assigns to each control-flow

graph G the number of edges in its dependency graph SG =
(G,E), i.e., dd(G) =

∑

b∈B
ddG(b) = |E| (the sum of all

out-degrees in graph SG).

Inspired by Miller’s article on our capacity for process-

ing information [15], we believe that the comprehension of

program code is easy if we have to remember only a few

possible states of the program (e.g., different variable val-

ues, branching choices), and that we make mistakes while

programming, or misunderstand a program, if we have to

remember too much information about the current program

state. The dep-degree for a single program operation tells

us how many different pieces of information we need to

consider in order to understand the effect of the program

operation; more precisely, it tells us the number of all dif-

ferent predecessor operations that influence the effect of the

considered program operation (it sums up, over all variables

used in the operation, the number of different reaching def-

initions). Thus, if Miller’s insight is true for program un-

derstanding, then the dep-degree of an operation is a good

indicator for the difficulty to understand the operation.

81

// Require: n >= k >= 0

int bico(int n, int k) {

int[] arr = arrInit(n+1);

for (int i = 0; i <= n; i++) {

int temp = arr[0];

for (int j = 1; j < i; j++) {

arr[j] = arr[j] + temp;

temp = arr[j] - temp;

}

}

return arr[k];

}

// Require: n >= k >= 0

int bico(int n, int k) {

int facK = 1;

for (int i = 1; i <= k; i++) {

facK = facK * i;

}

int facNk = 1;

for (int j = n; j > n-k; j--) {

facNk = facNk * j;

}

return facNk / facK;

}

Figure 3. Two ‘bico’ implementations

’n’ init def

int []arr = arr Ini t (n + 1)

i < = n

in t temp = ar r [0]

arr[j] = arr[j] + temp

return ar r [k]

int i = 0

i + +

j <= i

in t j = 1

j + +

temp = arr[j] - temp

’k’ init def

Figure 4. Use-def graph for ‘bico’ (left)

’n’ init def

int j = n

j > n-k

j--

facNk = facNk * j

in t i = 1

i + +

facK = facK * i i < = k

int facK = 1

return facNk / facK

int facNk = 1’k’ init def

Figure 5. Use-def graph for ‘bico’ (right)

3. Examples

Assignments and Arithmetics. Consider the two imple-

mentations of the function swap in Fig. 1. The first imple-

mentation (left) has the advantage of using only two regis-

ters —which are allocated already anyway— but the disad-

vantage of being more difficult to understand because it uses

not only assignments but also arithmetics. 2 The second im-

plementation (right) has the advantage of being easy to un-

derstand —it uses only assignment operations— but the dis-

advantage that a simple code generator would allocate three

registers for the execution of this code. Figure 2 shows the

use-def graphs for the two swap functions (a node labeled

‘init def’ refers to the parameter initialization of the call-by-

value). The graph layout was calculated using GRAPHVIZ

(dot). On the right, the value of variable b (third assign-

ment) depends on the assignment of variable temp which

in turn depends on the initial value of variable a. The value

of a depends on the initial value of b. The graph on the left

illustrates that this implementation not only involves arith-

metics, but also has a more complicated dependency struc-

ture. The DD is 6 for the function on the left and 3 for the

function on the right, which indicates that the left function

has a more complex dependency structure. Table 1 shows

that LOC and CC do not distinguish the two functions, be-

cause LOC measures length and CC measures control-flow

complexity, which is the same for both functions.

Strength Reduction and Nested Loops. In Fig. 3 we com-

pare two implementations for computing binomial coeffi-

cients. Both functions take as input two non-negative in-

2Furthermore, one has to understand the arithmetic-overflow semantics

of the programming language in order to establish correctness.

tegers n and k (required: k ≤ n), and compute the bino-

mial coefficient
(

n

k

)

(n choose k). The function on the left

computes the result without using multiplication — it sim-

ulates Pascal’s triangle to perform the computation. The

array arr contains the i-th row of the triangle at the end

of the i-th iteration of the outer ‘for’ loop. The disadvan-

tage of this program is that it is rather difficult to under-

stand because it uses nested loops instead of a sequence of

two loops, and it uses an array, the content of which is im-

portant to understand. (An array access is more difficult

than a variable access because it involves the array pointer

and an index.) The function on the right computes (almost

directly) the result using the formula
(

n

k

)

= n!
(n−k)!k! , but

has the disadvantage of using multiplication (more expen-

sive to compute, more expensive to verify because not lin-

ear). We say ‘almost directly’ because the second ‘for’ loop

calculates n(n − 1) . . . (n − k + 1) = n!
(n−k)! . The two

functions bico are equal in the number of lines of code

(LOC), the number of statements, and the number of local

variables (i,j,temp,arr versus i,j,facK,facNk).

Furthermore, the functions use the same number of control

structures (two ‘for’ loops), and therefore the cyclomatic

complexity yields the same value for both functions. But

the low-level dependency structures of the two functions

are very different. The dependency graphs are shown in

Figs. 4 and 5. The graph in Fig. 4 has higher density such

that the graph-drawing algorithm ‘dot’ from GRAPHVIZ was

not able to find a layout without edge crossings. In Table 1,

LOC and cyclomatic complexity yield the same values, and

dep-degree yields the values 28 and 24, respectively, for the

two implementations, indicating that the first implementa-

tion has a more complex dependency structure.

82

class Pair {

int x;

int y;

boolean equals(Object o) {

boolean result = false;

if (o != null) {

if (o instanceof Pair) {

result = this == o;

Pair p = (Pair) o;

result = result ||

((x == p.x) && (y == p.y));

}

}

return result;

}

}

class Pair {

int x;

int y;

boolean equals(Object o) {

if (o == null) {

return false;

}

if (this == o) {

return true;

}

if (! (o instanceof Pair)) {

return false;

}

Pair p = (Pair) o;

return (x == p.x) && (y == p.y);

}

}

Figure 6. Two ‘equals’ implementations

Method LOC CC DD

swap (left) 3 1 6

swap (right) 3 1 3

bico (left) 9 3 28

bico (right) 9 3 24

equals (left) 10 3 11

equals (right) 11 4 8

Table 1. Indicator values LOC, CC, and DD

Early Return. In the last example we consider two alter-

native implementations of the equals function for a class

Pair (of two integer values). Figure 6 shows the exam-

ple functions. The two functions follow the same logic, but

the first implementation uses a local variable result to

store the decision to return, whereas the second implemen-

tation returns as early as possible. The second implemen-

tation seems to be easier to understand, because all special

cases are checked and immediately dealt with; after this, the

reader can forget them, i.e., there are not many dependen-

cies. The first implementation requires the reader to track

the outcome of the various comparisons, and the last value

of variable result, all the way to the end of the function.

The cyclomatic complexity of the second implementation is

higher, because it uses one more ‘if’ statement (cf. Table 1).

The program length LOC prefers the first implementation,

because it is shorter. The value of dep-degree witnesses that

the dependency structure of the second implementation is

less complicated (DD=8) than that of the first one (DD=11).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-

ples, Techniques, and Tools. Addison-Wesley, 1986.
[2] B. Curtis, S. B. Sheppard, and P. Milliman. Third time

charm: Stronger prediction of programmer performance by

software complexity metrics. In Proc. ICSE, 1979.
[3] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and

T. Love. Measuring the psychological complexity of soft-

ware maintenance tasks with the Halstead and McCabe met-

rics. IEEE Trans. Softw. Eng., 5(2):96–104, 1979.
[4] G. K. Gill and C. F. Kemerer. Cyclomatic-complexity met-

rics revisited: An empirical study of software development

and maintenance. MIT, 1991.

[5] M. H. Halstead. Elements of Software Science (Operating

and programming systems series). Elsevier, 1977.

[6] S. M. Henry and D. G. Kafura. Software-structure met-

rics based on information flow. IEEE Trans. Softw. Eng.,

7(5):510–518, 1981.

[7] S. M. Henry, D. G. Kafura, and K. Harris. On the relation-

ships among three software metrics. In Proc. Measurement

and Evaluation of Softw. Quality, pages 81–88. ACM, 1981.

[8] S. S. Iyengar, N. Parameswaran, and J. Fuller. A measure

of logical complexity of programs. Computer Languages,

7(3-4):147–160, 1982.

[9] C. Jones. Software metrics: Good, bad, and missing. Com-

puter, 27(9):98–100, 1994.

[10] D. Kafura and G. R. Reddy. The use of software complexity

metrics in software maintenance. IEEE Trans. Softw. Eng.,

13(3):335–343, 1987.

[11] S. R. Kirk and S. Jenkins. Information theory-based soft-

ware metrics and obfuscation. J. Systems and Software,

72(2):179–186, 2004.

[12] M. M. Lehman and L. A. Belady. Program evolution: Pro-

cesses of software change. Academic Professional, 1985.

[13] W. Li. Another metric suite for object-oriented program-

ming. J. Systems and Software, 44(2):155–162, 1998.

[14] T. J. McCabe. A complexity measure. IEEE Trans. Softw.

Eng., 2(4):308–320, 1976.

[15] G. A. Miller. The magical number seven, plus or minus two:

Some limits on our capacity for processing information. The

Psychological Review, 63:81–97, 1956.

[16] E. E. Mills. Software Metrics. Curriculum Module SEI-CM-

12-1.1, CMU-SEI, 1988.

[17] G. J. Myers. An extension to the cyclomatic measure of pro-

gram complexity. SIGPLAN Notices, 12(10):61–64, 1977.

[18] S. Purao and V. K. Vaishnavi. Product metrics for object-

oriented systems. ACM Comp. Surv., 35(2):191–221, 2003.

[19] F. Stetter. A measure of program complexity. Computer

Languages, 9(3-4):203–208, 1984.

[20] S. S. Stevens. On the theory of scales of measurement. Sci-

ence, 103(2684):677–680, 1946.

[21] K.-C. Tai. A program-complexity metric based on data-flow

information in control graphs. In Proc. ICSE, pages 239–

248. IEEE, 1984.

[22] M. R. Woodward, M. A. Hennell, and D. Hedley. A measure

of control-flow complexity in program text. IEEE Trans.

Softw. Eng., 5(1):45–50, 1979.

83

