18th IEEE International Conference on Program Comprehension

DepDigger: A Tool for Detecting Complex Low-Level Dependencies *

Dirk Beyer
Simon Fraser University, B.C., Canada
& University of Passau, Germany

Abstract

We present a tool that identifies complex data-flow de-
pendencies on code-level, based on the measure dep-degree.
Low-level dependencies between program operations are
modeled by the use-def graph, which is generated from
reaching definitions of variables. The tool annotates pro-
gram operations with their dep-degree values, such that
‘difficult’ program operations are easy to locate. We hope
that this tool helps detecting and preventing code degenera-
tion, which is often a challenge in today’s software projects,
due to the high refactoring and restructuring frequency.

1. Tool Overview

We present a lightweight tool that helps answering the
following question: Given two versions of a software pro-
gram that have the same behavior and differ only in code
structure, which version is to prefer in terms of low-level
dependency structure? For example, if the second version
is the result of changing the first version, we would like to
know whether the change actually improves the code struc-
ture, i.e., was a positive ‘refactoring’.

The tool is based on dep-degree, an indicator for com-
plex low-level dependencies that uses the notion of reach-
ing definitions, a well-known concept from compiler opti-
mization and program analysis. The dep-degree for a single
operation is the total number of reaching definitions for the
variables that occur in the operation. The dep-degree for a
set of operations (or a complete function) is the sum over
all dep-degrees for operations (or the number of edges in
the use-def graph, respectively). For example, consider the
assignment operation x = a — b. The dep-degree for this
operation is the number of different reaching definitions for
variable a plus the number of different reaching definitions
for variable b.

The measure dep-degree is easy to understand, simple to
compute, flexible and scalable in its application, and inde-
pendently complementing other indicators. In comparison

*This paper supplements our ICPC’ 10 technical paper [1].

978-0-7695-4113-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPC.2010.52

40

Ashgan Fararooy
Simon Fraser University, B.C., Canada

to the indicators LOC and cyclomatic complexity, which are
often used for measuring maintainability and understand-
ability, dep-degree is a relatively better indicator for assess-
ing code improvements (e.g., by refactoring). The relation
of the measure dep-degree to other existing indicators is dis-
cussed in the concept paper that introduced dep-degree [1].

Design and Implementation. We have developed a software
tool to automate the calculation of the dep-degree values.
The tool integrates with the Eclipse IDE as plug-in, and is
capable of interacting with the Eclipse source editor. The
plug-in uses the Eclipse Java development tools (JDT) to
parse the selected source file within the active editor, and
to obtain the abstract syntax tree. Then, the control-flow
graph (CFG) of the program is extracted by traversing the
syntax tree using the available visitor class from the JDT.
The set of reaching definitions is computed for each node
in the CFG and the dep-degree value is calculated for all
program operations accordingly (cf. Fig. 1).

Availability. The tool is released under the Apache 2 license
and the source code as well as binaries are freely available
athttp://www.sosy—-lab.org/~dbeyer/DepDigger.

Value Annotation. The tool highlights the operations of the
program within the editor, based on their dep-degree value.
This is done using a generated relative color map, which
assigns to each dep-degree value a color on the scale from
white to red, where 0 is mapped to white and the maximal
dep-degree value for a program operation is mapped to red
(cf. Fig. 3). It is also possible to view the exact dep-degree
value for each operation in a dedicated text field or marker.

Tracking Dependencies. If an operation is selected (or
clicked on) in the editor, then all defining operations for the
selected operation are highlighted in cyan (Fig. 2).

Text Output. The tool also generates the results in plain
text format, which contains the dep-degree value for each
method in the class and the value for each operation within
every method, along with the set of reaching definitions for
each operation. This output can be useful for off-line or
automatic post-processing.

IEEE
computer
® psouety



switch (obj) {

4=  public void test() { i% ::::k:;[  resultieg’Pen’;
? 1:-:1:(5 i E.}CBT ; E: ;asek? . result/#= "Pencil";
Source Codel-InPUt JDT Parser Sﬁfﬁiﬁ; JOT Vistter _ :'L::H EE -
Control J b 1= 2: 27 if (obj < 0)
Eclipse IDE GFrI::;Vh A 10 c =| 2 * (':: E. result = "Unknown Request.";
OUtP\|Ut Evaluator |(—|Ué?;2:f Analyzer njt z? ) et result;
Figure 2. The defining
Figure 1. Tool architecture operations (in cyan) Figure 3. Coloring the operations
Method Version LOC | CC | DD value for printOwing was 27 before, and the sum over
printOwing Original 19 5 27 all new methods is 18); the other two indicators suggest that
Refactored 1 1 1 the new code is longer (LOC increased by two from 19 to
. Original 0 0 0 21) or has more complicated control flow (CC increased by
getOutstanding Refactored 7 2 8 four from 5 to 9).
Original 0 0 0 We performed similar analyses on other examples of
getTaxRate Refactored 7 4 1 refactoring, including ‘Parameterize Method’, ‘Replace
. , Original 0 0 0 Conditional with Polymorphism’, and ‘Pull Up Method’.
printDetails Refactored 5 1 6 Our experiments indicate that dep-degree acknowledges the
: Original 0 0 0 effect of simplifying refactorings as code improvements.
o8 Refactored | 1 1 2 Localization of Problematic Code. In the last paragraphs
Original 19 5 27 we applied our tool to the assessment of code changes as
TOTAL Refactored | 21 9 18 they occur during refactorings, and illustrated that the dep-
degree values match the developer opinion, and that LOC
Table 1. Indicator values for the ‘Extract and cyclomatic complexity are not applicable to assessing

Method’ example before and after refactoring

2. Applications

Assessment before/after Refactoring. Dep-degree can be
used to indicate structural improvements. To illustrate this,
we consider a well-known refactoring example of which we
know already that it is a good refactoring (‘authoritative’ ex-
ample) and test if the indicator dep-degree agrees. There is
no other simple indicator for structural improvement avail-
able, and therefore, we compare dep-degree with the widely
used indicators lines of code (LOC) and cyclomatic com-
plexity (CC). LOC measures the length of code; CC mea-
sures the difference of control-flow nodes and edges.

The ‘extract method’ refactoring rule recommends, for
a given code fragment, to factor out a cohesive, common,
possibly repeating ‘chunk’ of code and move it to a new
method. We revisit (an extended version of) the method
mentioned in Martin Fowler’s refactoring book which prints
the amount of money a customer owes (printOwing). We
extract four new methods: ‘getOutstanding’, ‘getTaxRate’,
‘printDetails’, and ‘log’.

Table 1 presents the indicator values for lines of code
(LOC), cyclomatic complexity (CC), and dep-degree (DD).
The value 0 indicates that the method was empty before the
refactoring, i.e., did not exist. Only the new indicator dep-
degree correctly identifies the improvement of the code (the

41

refactorings. Next we point out another possible application
for using dep-degree: detecting problematic code, i.e., to
indicate and locate pieces of code with complex dependen-
cies (which could be considered for refactoring).

Dep-degree for program operations can be applied to sin-
gle program operations. The tool generates a detailed report
of the dep-degree values for each operation in the program.
This immediately proposes two possible uses: (a) we can
list and inspect the operations with highest dep-degree val-
ues, and (b) we can color (highlight) each operation in the
source-code editor according to its dep-degree value.

Both features (a) and (b) are implemented in the Eclipse
plug-in. For (a), the plug-in attaches markers to the left
vertical ruler of Eclipse’s source editor. These markers in-
dicate the operations with the highest dep-degree values in
the selected source file. (A parameter can be set to limit the
amount of markers to values that exceed a certain thresh-
old.) For (b), we generate a relative color map rgb that as-
signs to each dep-degree value a color on the scale from
white to red (illustrated in Fig. 3).

References

[1] D. Beyer and A. Fararooy. A simple and effective measure
for complex low-level dependencies. In Proc. ICPC. IEEE,
2010.



