
Interleaved Programs and Rely-Guarantee Reasoning with ITL

Gerhard Schellhorn, Bogdan Tofan, Gidon Ernst and Wolfgang Reif
Institute for Software and Systems Engineering

University of Augsburg
Augsburg, Germany

{schellhorn,tofan,ernst,reif}@informatik.uni-augsburg.de

Abstract—This paper presents a logic that extends basic
ITL with explicit, interleaved programs. The calculus is based
on symbolic execution, as previously described. We extend
this former work here, by integrating the logic with higher-
order logic, adding recursive procedures and rules to reason
about fairness. Further, we show how rules for rely-guarantee
reasoning can be derived and outline the application of some
features to verify concurrent programs in practice. The logic is
implemented in the interactive verification environment KIV.

Keywords-Interval Temporal Logic; Compositional Reason-
ing; Concurrency; Rely-Guarantee Reasoning

I. INTRODUCTION

Compared to sequential programs, the design and verifi-
cation of concurrent programs is more difficult. Two reasons
contribute to this: the more complex control flow caused by
scheduling and the fact that reasoning about initial and final
states only (pre- and postconditions) is no longer sufficient,
but must be extended to intermediate states.

Numerous specialized automatic methods have been de-
veloped to verify decidable system classes, e.g., model
checking, decision procedures and abstract interpretation
techniques. While these are often successful on correct
programs, they have two significant disadvantages: first, they
typically do not provide insight, why a property is correct.
Second, there is usually not much feedback when they fail. If
there is an output, it is often hard to understand, in particular
when programs are encoded as first-order specifications of
transition systems with program counters.

The alternative to specific automated proof techniques
is interactive theorem proving. A main advantage is that
expressive specification languages can be used and (read-
able) feedback for failed proof attempts can be provided.
Of course, the price is that a much higher expertise with
the tool is required. Most interactive provers are based on
variants of higher-order logic (HOL). However, embedding
concurrency into HOL requires a big effort to encode the se-
mantics of programs and of (temporal) assertions. Therefore,
the expressive temporal logic and the native programming
language described here has been directly implemented in
the theorem prover KIV [1] with the following goals:

- High-level verification of system designs with abstract
programs and abstract (algebraic) data types, as op-

posed to verification using a fixed set of data types
and a specific programming language.

- Readable proof goals with explicit programs that are
not encoded as transition systems.

- Verification of sequential programs should not become
more complicated using the extended logic than using
the wp-calculus already implemented in KIV.

- Arbitrary correctness and progress properties of pro-
grams should be expressible.

- Compositional proofs for parallel programs, in partic-
ular rely-guarantee reasoning.

The basic approach to extend ITL [2] by shared-variable
interleaved programs has already been described in [3]. It
focuses on porting the well-known principle of symbolic
execution [4] of sequential programs to parallel programs.
For lack of space, we do not repeat the rules used to
implement this principle here.

Instead, this paper focuses on several extensions of the
logic. Section II describes the embedding of the basic logic
into higher-order logic, instead of first-order logic. Global
frame assumptions are replaced with local ones. Section
III describes compositional interleaving. Section IV adds
recursive procedures. Section V outlines how forms of rely-
guarantee reasoning can be derived, by abstracting each
program with a rely-guarantee formula. Section VI describes
well-founded induction, and shows how weak fairness of
interleaving is encoded. Section VII outlines a few appli-
cations, highlighting the use of some features of the logic.
Finally, Section VIII concludes.

II. THE BASIC LOGIC

Our definition of ITL is similar to [5], but instead of
first-order logic we use higher-order logic, i.e., simply
typed lambda calculus as the base logic and we extend the
semantics to interleaved programs.

A. Signatures and Algebras

A higher-order signature SIG = (S,OP) consists of two
finite sets. A set S of sorts, with bool ∈ S, which is used
to define the set of types T as the least set that includes
all sorts and all function types t → t, where t ∈ T and
t = t1, . . . , tn. The set OP contains typed operators op : t,

including the usual boolean operators, e.g., true, false : bool
and . ∨ . : bool × bool → bool.

The semantics of a signature is an algebra A, which
defines a nonempty carrier set As as the semantics of every
sort s. The set Abool is always {tt, ff}. The semantics of
a function type is the set of all functions of that type. An
operator symbol op is interpreted as a total function opA.
The predefined boolean operators have standard semantics.

B. Expressions and Temporal Formulas

Temporal logic expressions are defined over a signature
SIG, dynamic (flexible) variables x, y, z ∈ X and static
variables u ∈ U . In concrete formulas, we follow the
KIV convention to use uppercase names for flexible and
lowercase names for static variables. An arbitrary variable
is written v ∈ X ∪ U . As usual in higher-order logic,
expressions e of type bool are formulas, denoted by ϕ.

e ::= u | x | x′ | x′′ | op | e(e) | e1 = e2 | λu. e | ∀ v. ϕ |
ϕ1 until ϕ2 |ϕ1; ϕ2 |ϕ∗ |Aϕ | step |ϕ1‖ϕ2 |ϕ1 ‖nfϕ2

Expressions must satisfy standard typing constraints, e.g., in
e(e) the type of e must be a function type with argument
types equal to the types of the arguments e. The parameters
of lambda expressions and quantifiers must all be different
variables. The first line defines higher-order expressions that
do not involve temporal logic. Dynamic variables can be
primed and double primed. Lambda expressions allow for
static variables only, while quantifiers allow both static and
dynamic variables. The chop operator ϕ1; ϕ2 is used as
sequential composition of programs. The star operator ϕ∗

is similar to a loop. Universal path quantification is denoted
as Aϕ, and step characterizes atomic steps of a program.
ϕ1‖ϕ2 and ϕ1 ‖nf ϕ2 denote weak-fair and arbitrary (non-
fair) interleaving of ϕ1 and ϕ2. By convention, temporal
operators bind stronger than junctors, and quantifiers bind
as far to the right as possible. Free variables free(e) are
defined as usual.

C. Semantics

Standard semantics of ITL defines an interval I =
(I(0), I(1), . . .) to be a finite or infinite sequence of states,
where a state maps variables to values. Static variables are
disallowed to change between states. To have a composi-
tional semantics for interleaving (as explained in Section
III), our semantics alternates between system and envi-
ronment transitions by adding intermediate primed states:
I = (I(0), I ′(0), I(1), I ′(1), . . .). The transitions from I(0)
to I ′(0), I(1) to I ′(1) etc. are system steps, while the steps
from I ′(0) to I(1), I ′(1) to I(2) etc. are environment steps.
The idea is similar to reactive sequences in [6].

Finite intervals with length #I = n have 2n + 1 states
and end in the unprimed state I(n). Infinite intervals have
#I = ∞. For an interval I and m ≤ n ≤ #I , I[m..n]

denotes the subinterval from I(m) to I(n) inclusive. I[n..]
is the postfix starting with I(n).

The semantics JeK(I) of an expression e of type t w.r.t.
an interval I (and an algebra A, which we leave implicit) is
an element of At. In particular, a formula ϕ evaluates to ff
or tt. In the latter case we write I |= ϕ (ϕ holds over I). A
formula is valid, written |= ϕ, if it holds for all I .

Unprimed variables are evaluated over the first state, i.e.,
JvK(I) = I(0)(v). Primed and double primed variables
x′ and x′′ are evaluated over I ′(0) and I(1) respectively,
if the interval is nonempty. For an empty interval, both
are evaluated over I(0) by convention. Operators get their
semantics from the algebra, i.e., JopK(I) = opA.

The semantics of quantifiers is defined using value se-
quences σ = (σ(0), σ′(0), . . .) for a vector v of variables.
Each σ(i) and σ′(i) is a tuple of values of the same types
as v. If some vk is a static variable, then all values σ(i)k
and σ′(i)k for that variable have to be identical. The value
sequence for x in I is written I(x), and the modified
interval I[v ← σ] maps v in each state to the corresponding
values in σ, when #σ = #I . Similarly, I[u ← a] modifies
static variables u to values a. The semantics of a tuple of
expressions e is the tuple of semantic values for each ek.
With these prerequisites, the semantics of the rest of the
expressions, except interleaving, is defined as follows:

Je(e)K(I) ≡ JeK(I)(JeK(I))
Jλu.eK(I) ≡ a 7→ JeK(I[u ← a])

I |= e1 = e2 iff Je1K(I) = Je2K(I)
I |= ∀ v. ϕ iff for all σ, #σ = #I : I[v ← σ] |= ϕ

I |= step iff #I = 1

I |= ϕ1 until ϕ2 iff there is n ≤ #I with I[n..] |= ϕ2

and for all m < n : I[m..] |= ϕ1

I |= Aϕ iff for all J with J(0) = I(0) : J |= ϕ

I |= ϕ1; ϕ2 iff either #I =∞ and I |= ϕ1

or there is n ≤ #I, n 6=∞ with
I[0..n] |= ϕ1 and I[n..] |= ϕ2

I |= ϕ∗ iff either #I = 0 or there is a sequence
ν = (n0, n1, . . .), n0 = 0, such that
for i+ 1 < #ν : ni < ni+1 ≤ #I

and I[ni..ni+1] |= ϕ. Additionally,
when #ν <∞ : I[n#ν−1..] |= ϕ

The semantics of higher-order formulas ϕ(x) without
primed variables or temporal operators depends on I(0)
only. These formulas are called state formulas in the fol-
lowing. Higher-order formulas ϕ(x, x′) describe properties
of the first system step, while formulas ϕ(x′, x′′) describe
the first environment step respectively.

The semantics of the chop operator “; ” agrees with the
semantics of a compound. Either the first part (ϕ1) does

not terminate and the full interval is a run of ϕ1, or the
interval can be split into two parts: a first, finite part where
ϕ1 runs and a second, possibly infinite, part where ϕ2 runs.
Similarly, the star operator corresponds to a loop which runs
ϕ for a nondeterministic, maybe infinite number of times.
The iteration splits the interval into finitely or infinitely
many parts I[0..n1], I[n1..n2], . . ., each of which is required
to satisfy ϕ (the last part is infinite, if the split is finite, but
the interval infinite). For an empty interval ϕ∗ trivially holds
using zero iterations.

In the following, we use the following operators defined
as abbreviations:

∃ v. ϕ ≡ ¬ ∀ v. ¬ ϕ Eϕ ≡ ¬ A¬ ϕ
3 ϕ ≡ true until ϕ 2 ϕ ≡ ¬ 3 ¬ ϕ
◦ ϕ ≡ step; ϕ • ϕ ≡ ¬ ◦ ¬ ϕ
last ≡ ¬ (step; true) inf ≡ 2 ¬ last

The empty interval consisting of just I(0) is characterized
by the formula last, infinite intervals by inf.

D. Programs
Programs are introduced as specific formulas, which influ-

ence system steps only. A program is valid over an interval
I if I is a possible run of the program. Finite intervals
correspond to terminating programs.

Deviating from [3], assignments x := e are not required to
leave all variables except x unchanged (expressed there as a
formula dxe, the global frame assumption). This requirement
turned out not to be practical, as then all variables are free
in assignments, which prevents elimination of quantifiers by
new variables, as used in the rules of sequent calculus.

Therefore, like in TLA [7], we now use an explicit vector
of disjoint, flexible variables x as a local frame assumption
around a program α. Assignments in [α]x leave all variables
unchanged that do not occur on the left hand side, but are
in x. For (parallel) assignments we therefore have:

[z := e]x ≡ z′ = e ∧ step ∧ y = y′ , where y = x \ z
Any formula ϕ may be used as a program. Frame assump-

tions propagate over chop and star to assignments

[ϕ1; ϕ2]x ≡ [ϕ1]x; [ϕ2]x and [ϕ∗]x ≡ ([ϕ]x)
∗

and similarly over interleaving. Frame assumptions around
other types of formulas are simply dropped. All the usual
constructs for sequential programs can now be defined:

[skip]x ≡ step ∧ x′ = x

[if∗ϕ then α1 else α2]x ≡ ϕ ∧ [α1]x ∨ ¬ ϕ ∧ [α2]x

[if ϕ then α1 else α2]x ≡ [if∗ϕ then (skip; α1)

else (skip; α2)]x

[while∗ ϕ do α]x ≡ (ϕ ∧ [α]x)
∗; (¬ ϕ ∧ last)

[while ϕ do α]x ≡ [while∗ ϕ do (skip; α)]x

[let z = e in α]x ≡ ∃ y. y = e ∧ [α
y
z]x,y ∧ 2 y′′ = y′

[choose z with ϕ ≡ (∃ y. ϕy
z ∧ [α1

y
z]x,y ∧ 2 y′′ = y′)

in α1 ifnone α2]x ∨ (¬ ∃ z. ϕ) ∧ [α2]x

skip is a stutter step, which leaves all variables in x
unchanged. A normal if evaluates the test in an extra step
(indicated by leading skips in the then and else part). if∗ is
used to model instructions such as compare-and-set (CAS),
which execute a test and an assignment atomically.

The definition of let introduces new flexible variables
y as local variables for z. These must be disjoint from
the variables used in e, x and α. The variables in α are
renamed to these new variables, written α

y
z . The 2-formula

indicates that the local variables y are not modified by
environment steps. The choose is a nondeterministic let
(taken from ASMs [8]). It chooses some values that satisfy
ϕ, binds them to y and executes α1 with z renamed to y.
If there is no possible choice of values, e.g., if ϕ is false,
then α2 is executed. Note that the semantics of programs
is well-defined without any restrictions on the expressions
and formulas used in programs. In practice, however, tests
and assignments are state expressions (such programs are
guaranteed to have a nonempty set of runs from any initial
state, while others could be equivalent to false).

III. COMPOSITIONAL INTERLEAVING

One of the crucial design criteria for our logic was that
interleaving (and operators such as chop and star) must be
compositional, i.e., the following rule of sequent calculus is
sound1.

[α1]x ` ϕ1 [α2]x ` ϕ2 (ϕ1‖ϕ2) ` ψ
[α1 ‖α2]x ` ψ (1)

Proving that an interleaved program [α1 ‖α2]x satisfies a
property ψ then can be done by proving that the two
individual programs satisfy properties ϕ1 and ϕ2 and then
abstracting the programs to their properties to prove ψ.
Section V shows how this feature can be exploited, by
setting ϕ1 and ϕ2 to suitable rely-guarantee properties.
Compositionality holds, when the semantics of interleaving
is definable by interleaving individual intervals:

I |= ϕ1 ‖ϕ2 iff there are I1, I2 :

I1 |= ϕ1 and I2 |= ϕ2 and I ∈ I1 ‖ I2
This definition of interleaving is possible only for a seman-
tics of programs that takes its environment into account.
Therefore, we have chosen a semantics with alternating
system and environment steps.

In our setting, parallel programs communicate via shared
variables. For synchronization we use an operator await ϕ

1A sequent ϕ1, ϕ2, . . . ` ψ1, ψ2, . . . abbreviates the formula
(ϕ1 ∧ ϕ2 ∧ . . .) → (ψ1 ∨ ψ2 ∨ . . .). A rule is sound, if valid
premises above the line imply a valid conclusion. Rules are applied
bottom-up reducing goals to simpler goals.

that blocks the executing process as long as condition ϕ is
not satisfied. A blocked process repeatedly executes stutter
steps that additionally fulfill the formula blocked. It is
defined in terms of a special boolean variable Blk, which is
implicitly contained in all frame assumptions and therefore
not changed by assignments and skip. In contrast, a blocked
step is specified to toggle Blk.

blocked ≡ Blk′ 6= Blk

[await ϕ]x ≡ [while∗ ¬ ϕ do Blk := ¬ Blk]x

We now define weak fair I1 ‖ I2 and non-fair I1 ‖nf I2
interleaving of two intervals. In comparison to [3] (that is
based on SOS rules) we prefer a slightly different approach
here that fits better to the axioms from Section VI.

To characterize fairness, we introduce explicitly scheduled
interleavings I1 ⊕ I2. They are sets of pairs (I, s) of the
resulting intervals I and schedules s = (s(0), s(1), . . .).
Each s(i) is either 1 or 2, indicating which interval was
scheduled for execution. We denote the postfix of s starting
with s(n) as s[n..]. A schedule is fair if it is either finite, or
infinitely often changes the selected process. Thus, we have:

I1 ‖ I2 ≡ {I : there is a fair s with (I, s) ∈ I1 ⊕ I2}
I1 ‖nf I2 ≡ {I : there is s with (I, s) ∈ I1 ⊕ I2}

The set I1⊕I2 is defined recursively as the union of 6 cases.
We describe the first three, where I1 is scheduled, the other
three cases are symmetric.

1) The first process terminates in the current state, i.e.,
I1 is empty. If I1(0) = I2(0), then {(I2, ())} with an
empty schedule is returned. Otherwise interleaving is
not possible and the empty set is returned.

2) The first step of process 1 is not blocked
(I1 |= ¬ blocked). Then its first system transition is
executed, and the system continues with interleaving
the remaining process with the second. The set of all
pairs (I, s) is returned, where I(0) = I1(0), I ′(0) =
I ′1(0), s(0) = 1 and (I[1..], s[1..]) ∈ I1[1..] ⊕ I2.

3) The first process is blocked in the current state. If I2
has terminated, then the result is as in the first case,
but with I1 and I2 exchanged. Otherwise, I1(0) =
I2(0) must hold, to have any results, and a transition
of the second process is taken, even though the first
is scheduled. The resulting pairs (I, s) have s(0) = 1,
I(0) = I2(0), I ′(0) = I ′2(0), and (I[1..], s[1..]) must be
in I1[1..] ⊕ I2[1..]. Both transitions are consumed and
the overall transition is blocked iff the first transition
of I2 is blocked too.

Note that the schedule ends as soon as one interval
is finished, it may be shorter than the resulting in-
terleaved interval. As an example for interleaving con-
sider two one-step intervals I1 = (I1(0), I

′
1(0), I1(1)) and

I2 = (I2(0), I
′
2(0), I2(1)) with unblocked steps and a

schedule s = (1, 2). The interleaved result then is I =

(I1(0), I
′
1(0), I2(0), I

′
2(0), I1(1)), when I2(1) = I1(1). Oth-

erwise interleaving is not possible. The local environment
step from I ′1(0) to I1(1) is mapped to the sequence
(I ′1(0), I2(0), I

′
2(0), I1(1)) in the result, corresponding to the

intuition that the environment steps of one process consist
of alternating sequences of global environment steps and
steps of the other process. Environment assumptions for one
process (cf. rely conditions in Section V) must therefore be
satisfied by such sequences.

IV. PROCEDURES

To be practically useful, a programming language should
have recursive procedures. Many semantic encodings of
programming languages either do not consider procedures
at all, or they study procedures without parameters only. A
common way of introducing procedures when defining the
semantics of programming languages is to have local proce-
dure declarations and environments which store them. Our
logic instead prefers globally defined procedures. This has
the advantage that it becomes possible to specify procedures
using axioms in addition to procedure implementations. We
will exploit the possibility to specify procedures in Section
VII. We do not use procedures that compute on global
variables, since these do not allow to determine the modified
variables. Instead, all variables a procedure computes on
must be given explicitly as parameters.

Technically, the signature SIG = (S,OP, Proc) is ex-
tended with typed procedure names p : t1; t2 ∈ Proc. The
first vector of types indicates the types of input (or call
by value) parameters, the second vector indicates the types
of input/output (or call by reference) parameters. The set
of formulas (boolean expressions) is extended to contain
procedure calls p(e;x), where e are expressions of types
t1 and x are pairwise disjoint variables of types t2.

The semantics pA of a procedure p : t1; t2 is part of the
algebra A and consists of a set of pairs (a, σ). Each pair
describes a potential run of the procedure: a is a vector
of initial values for the input parameters from the carrier
sets of types t1. σ is a value sequence that exhibits, how
the reference parameters change in each step. Note that
this semantics implies that input parameters work like local
variables. Changes to these parameters while the procedure
is executing are not globally visible. The semantics of a
procedure call is

I |= p(e;x) iff (JeK(I), I(x)) ∈ pA

A procedure call within a frame assumption abbreviates

[p(e; z)]x ≡ p(e; z) ∧ 2 y = y′ , where y = x \ z

Specifications may now contain axioms for procedures. A
typical contract for a procedure with pre- and postcondition
ϕ,ψ is:

ϕ ∧ p(x; y) ∧ (2 y′′ = y′) → 3 (last ∧ ψ)

It states that starting the procedure p in a state where ϕ
holds and assuming that the environment never changes the
reference parameters y, the procedure will always reach a
final state, where ψ holds. Procedures can also be used
as placeholders for arbitrary formulas ϕ by specifying
p(;x) ↔ ϕ using x = free(ϕ) as reference parameters.

The implementation of procedures is specified by (possi-
bly mutually recursive) procedure declarations of the form
p(x; y). α. Two requirements for the body α guarantee
that the semantics is correct. First, α may only assign to
its parameters x, y and local variables introduced by let
and choose. Second, α must be a regular program: such
a program uses state formulas only in its expressions (tests,
parameters of procedures, right hand sides of assignments).

Regular programs α can be proved to be monotonic in
their calls: for two procedures p and q with the same argu-
ment types if pA ⊆ qA, then {I : I |= α} ⊆ {I : I |= α′}
where α′ replaces all calls to p in α with calls to q. There-
fore, the semantics of recursive procedure declarations can
be defined according to Knaster-Tarski’s standard fixpoint
theorem. In particular, a declaration p(x; y).α yields the
fixpoint equation

pA = {(I(0)(x), I(y)) : I |= [let z = x in αz
x]y}

For deduction, the unfolding axiom

p(e; y) ↔ ∃ z. z = e ∧ [αz
x]y,z ∧ 2 z′ = z′′

is implied, which directly expands the let. New local vari-
ables z, which can not be changed by the environment, are
used for the value parameters x (initialized with e). Changes
to the reference parameters are globally visible.

V. RELY-GUARANTEE PROOFS

Rely-guarantee rules [9] define suitable abstractions for
individual system components to avoid reasoning about
their interleaved execution. In our setting, these abstractions
typically are

p(y) ` R(y ′, y ′′) +−→ G(y , y ′)

where a procedure p is abstracted by a temporal formula
R

+−→ G. The state variables y and the frame assumption
are usually omitted. The sustains operator +−→ ensures that
the guarantee conditions G are maintained by p’s steps, as
long as previous environment transitions have preserved its
rely conditions R. It is defined as2

R
+−→ G ≡ ¬ (Runtil¬ G)

2In previous work, we used the equivalent, but more complex formula
G unless (G ∧ ¬ R). Formula G∗; (G ∧ ¬ R) is equivalent too.

For instance, the verification of p1 ‖nf p2 can be decom-
posed with the following rely-guarantee rule, for i = 1, 2.

` reflexive(Gi) ` transitive(Ri) Gi ` R3−i

pi ` Ri
+−→ Gi R ` Ri Gi ` G

p1 ‖nf p2, 2 R ` 2 G

(2)

The conclusion of this rule states that each step of an
interleaved system execution preserves a guarantee G at all
times in an environment R. This is because a component’s
rely Ri is preserved by both the system’s environment
and each step of the other component. Hence, the first
premise ensures that each system step of pi preserves its
guarantee Gi, thus G, at all times. Note that according to
the definition of interleaving in Section III, an environment
step of a procedure can consist of both steps of the global
environment and steps of the other program. Therefore,
guarantee conditions must imply the other rely.

The calculus permits to formally derive rule (2) as fol-
lows: first, components p1 and p2 are abstracted by the
corresponding sustains formula using (1). Then the proof
derives a contradiction by induction over the number of steps
until G is violated and symbolic execution. Abstraction is
used, since an arbitrary component procedure pi can not be
executed. The sustains operator, however, can be executed
according to the following unwinding rule.

(R
+−→ G) ↔ G ∧ (R → • (R +−→ G))

A symbolic execution step of +−→ proves that G is main-
tained by the first program transition and by the rest of the
interval if the previous environment transition satisfies R.

We note that rely-guarantee rules for systems with an un-
bounded number of interleaved components can be derived
as well. In practice, these rules typically include further
predicates, e.g., for invariants or pre- postconditions. We
have also derived local rely-guarantee rules, where specifica-
tions consider a small number of representative components
only, instead of using an arbitrary number of local states, as
in the original approach [9]. Such reductions are useful when
verifying concurrent data structures, where processes exhibit
similar behaviors. Rely-guarantee reasoning also serves as
a base for the decomposition of global correctness and
progress properties of concurrent systems (cf. Section VII).

Furthermore, we have encoded the complete rely-
guarantee proof system from Xu et al. [10]. Informally, their
rely-guarantee specifications p sat (pre, rely , guar , post)
ensure that starting from a state that satisfies precondition
pre in an environment that always fulfills rely , program
p satisfies the guarantee guar in each step and establishes
postcondition post upon termination. A translation of these
specifications in our logic is:

p, pre ` rely∗
+−→ (guar ∧ (last → post))

By using the transitive closure rely∗, we can summarize
consecutive rely (environment) transitions. This is neces-
sary to weaken our requirement of transitive relies, since
environment steps abstract from the number of transitions
of other processes in our setting. In contrast, executions in
[10] record environment transitions at the level of atomic
actions and therefore do not have to be transitive.

To prove that no deadlocks occur, Xu uses an addi-
tional run-predicate, which characterizes unblocked pro-
gram states. A similar encoding can be defined in our setting,
by introducing an additional predicate run and adding
run → ¬ blocked to the guarantee conditions. Moreover,
we can express total correctness of programs w.r.t. a rely-
guarantee specification simply as

p, pre ` (rely∗
+−→ guar) ∧ 3 (last ∧ post)

VI. INDUCTION AND WEAK FAIRNESS

In higher-order logic, proving a formula ϕ(N) by in-
duction over a well-founded order ≺ gives an induction
hypothesis ∀ M. M ≺ N → ϕ(M), which must be shown
to imply ϕ(N). For temporal reasoning this is not sufficient,
as this induction hypothesis would hold only for the current
interval, while de facto it holds for all intervals.

In [3] we have put a 2 in front of the induction hypothesis,
which gives an induction hypothesis for all suffixes of
the current interval. However, when recursive procedures
are used, it is sometimes necessary to have the induction
hypothesis for an infix of the current interval, which is
determined by a recursive call. Thus, the following stronger
rule is used for induction over a term e:

e = n, Ind-Hyp(n) ` ϕ
` ϕ (3)

where Ind-Hyp(n) ≡ A∀ v.(e ≺ n → ϕ), n is a new static
variable, and v = free(ϕ) ∪ free(e).

The validity of the induction hypothesis depends on the
static variable n only, so it is preserved unchanged when
stepping through an interval by symbolic execution3. The
induction hypothesis is applied like a global lemma e ≺
n → ϕ.

To reason about temporal formulas, in addition to well-
founded induction most calculi use additional induction rules
to reason about the passing of time (here: the length of
intervals). Our calculus prefers to reduce such principles
to standard well-founded induction whenever possible. In
particular, the following equivalence is used:

3 ϕ ↔ ∃ N. N = N ′′ + 1 until ϕ (4)

3It would be sufficient to use the weaker x2 operator instead of A, where
“for all subintervals” is defined as x2ϕ ≡ true; ϕ; true. However, x2 has
other uses (see [11]) where it should be symbolically executed, while the
induction hypothesis should not.

N is a new flexible variable for natural numbers, that is
decremented until a state is reached, where ϕ holds. Note
that N = N ′′ + 1 is equivalent to N > 0 ∧ N ′′ = N−1.

When proving a property 2 ϕ, this equivalence is used
to get a proof by contradiction, by assuming that there is
a number of steps N , after which ϕ is false. The proof is
then by induction over the initial value of N . Proving that
a program satisfies a rely-guarantee property R +−→ G first
introduces a new boolean variable B, and then applies (4)
on 3 B.

(R
+−→ G) ↔ ∀ B. 3 B → ((R ∧ ¬ B)

+−→ G)

The resulting counter N counts the number of steps for
which the guarantee must be upheld, provided the rely is
true until then.

Both induction principles are special cases of induction
over the length of a prefix of the current interval (called
prefix induction). Such an induction is possible for safety
formulas ϕ, that are valid over a full interval I , when
every prefix of I can be extended to an interval where ϕ
holds. All higher-order formulas, always-, until- formulas
and all regular sequential programs without local variables
and procedure calls fall into the class of safety formulas.
More details on prefix induction and the semantics of the
necessary prefix operator is given in [12].

Reasoning about an interleaved program α1 ‖α2 by sym-
bolic execution is indifferent to whether the interleaving is
weak-fair or nonfair. Either the first step of α1 is executed,
leaving a restprogram α′1 ‖α2, or the first step of α2 is
executed, leaving α1 ‖α′2.

However, symbolic execution alone is not sufficient to
deal with weak fairness. We need a way to ensure, that
in a fair interleaving, eventually each of the programs will
execute a step. To make this “eventually” explicit, we define
an extended interleaving operator L1: α1 ‖L2: α2, where
L1 and L2 are two formulas (“labels”), which enforce
scheduling. Informally, whenever label L1 is true, the next
step of the interleaving must be one of α1. If this step is
blocked, then a step of α2 is executed as well. If α1 is in its
last state then L1 has no effect. α1 ‖α2 is thus considered
as an abbreviation for both labels being false. The definition
of Section III is adapted to remove (I, s) from I1⊕I2 if for
some n < #s I[n...] |= L1, but s(n) = 2, or if I[n...] |= L2

and s(n) = 1. No interleaving is possible when both L1 and
L2 are true in the same state.

Using scheduling labels is inspired by the auxiliary vari-
ables used in [13] to encode fairness. However, our calculus
does not pre-encode fairness (by immediately transforming
the program), but introduces them on the fly by the rule

L1: α1 ‖L2: α2 ↔ ∃ B. 3 B ∧ ((L1∨B): α1 ‖L2: α2)

and a symmetric rule for α2. Typically, L1 and L2 are both

false, so the rule simplifies to:

α1 ‖α2 ↔ ∃ B. 3 B ∧ (B: α1 ‖α2) (5)

Informally, the formula asserts that there exists a number of
steps, after which the new boolean variable B becomes true,
thus enforcing a step of α1.

A simple example demonstrates the interplay between the
given rules.

2X ′ = X ′′, X = 0, [X := 1 ‖ skip∗]X ` 3 X = 1

would be proved by applying (5), then (4) on 3 B, which
introduces the variable N . Induction (3) over N then yields

N = N ′′ + 1 until B, n = N, Ind-Hyp(n),
2X ′′ = X ′, X = 0, [B: X := 1 ‖ skip∗]X ` 3 X = 1

Executing a step now either makes B true, then the left
process is scheduled and X=1 now, or if B remains false,
then the resulting sequent is almost identical, but N has been
decremented (n = N+1) and induction can be applied.

Interestingly, nonfair interleaving satisfies almost the same
rule. Either α1 will be scheduled after some steps, or the run
consists of an infinite sequence of unblocked α2 steps:

α1 ‖nf α2 ↔ (∃ B. 3 B ∧ (B: α1 ‖nf α2))

∨ α2 ∧ inf ∧ 2 ¬ blocked ∧ E ∃ x. α1

The requirement E ∃ x. α1 where x = free(α1) ensures that
α1 is satisfied by at least one interval I1 that can be used
to derive I2 ∈ (I1 ‖nf I2). Compared to fair interleaving,
this rule introduces only a simple additional case in proofs.
It has been used in the verification of lock-freedom, where
unfair scheduling of processes must be considered.

VII. APPLICATIONS

Based on rely-guarantee reasoning, we have derived
decomposition theorems for linearizability [14] and lock-
freedom [15]. This section outlines them and their applica-
tion on some case studies from the literature. Further details
are available online [16].

Decomposition of Linearizability and Lock-Freedom
Linearizable procedures appear to take effect instantly at
one step (the linearization point) between invocation and re-
sponse. We prove linearizability by locating the linearization
point of a procedure cp during its execution in a refinement
proof, using an abstraction predicate Abs(cs, as), which re-
lates valid concrete states cs to corresponding abstract states
as . Refinement between a concrete and abstract procedure
cp resp. ap can then be expressed as

cp(cs) ` ∃ as. ap(as) ∧ 2 (Abs(cs, as) ∧ Abs(cs ′, as ′))

To prove linearizability, ap is instantiated with skip steps
skip∗ that model concrete non-linearization steps, and an
atomic step alin(as) for the linearization point. Moreover,
rely conditions R that were established by rely-guarantee

reasoning may be assumed (cf. [12] for details). When Abs
is a partial function Absf , the existential quantifier for as
can be dropped, resulting in the proof obligation

cp(cs),2 (R ∧ Absf (cs) = as ∧ Absf (cs ′) = as ′) (6)
` skip∗; alin(as); skip∗

The right hand side becomes a safety formula and prefix
induction can be applied. Finding an induction principle that
also covers existentially quantified (safety) formulas is an
open issue.

Lock-free implementations avoid major problems asso-
ciated with locks, such as convoying, deadlocks, livelocks
or priority inversion. Lock-freedom guarantees termination
of some operation in a finite number of steps, even when
individual operations are arbitrarily delayed or fail. However,
individual operations might starve under interference.

We use an additional, reflexive and transitive relation U to
describe interference freedom (“unchanged”). To prove lock-
freedom, each system procedure must terminate without U -
interference and also after violating predicate U in a step
(cf. [17] for details):

cp,2 R ` 2 (2 U (cs ′, cs ′′) ∨ ¬ U (cs, cs ′) → 3 last)

The temporal framework permits to derive that this local
proof obligation implies lock-freedom of an interleaved
system. In contrast, [18] defines a new logic to reason about
lock-freedom, outlining their decomposition on paper only.

Case Studies Proof obligation (6) suffices to verify lin-
earizability of algorithms that have an internal linearization
point (within the code of the executing process), even when
its location depends on subsequent system behavior. This is
possible, since future states of an interval can be easily ana-
lyzed in temporal logic. One example of such a linearization
point can be found in Michael and Scott’s lock-free queue
algorithm [19]. In case of a dequeue when the queue is
empty, the reading of the shared head-of-queue pointer is a
linearization point if the read copy equals the shared head-of-
queue in a future state. While other verification approaches,
e.g., [20], require additional techniques in such cases, one
can decide whether to linearize in the current state of an
execution, using the temporal next operator.

Our verification of a lock-free stack with hazard pointers
applies abstraction on sequential programs. In programming
environments without support for garbage collection, hazard
pointers [21] enable safe memory reclamation of objects that
are removed from a lock-free data structure. Each process
is associated with a fixed number of shared pointers (so
called hazard pointers), to signal contending processes not
to deallocate a location.

Originally, atomic access on hazard pointers was assumed.
Our work confirms that non-atomic access to hazard pointers
suffices too, even though a process might then read cor-
rupted hazard pointer entries. To generically specify non-
atomic read and write operations, we exploit that we can

specify procedures. The non-atomic read operation na read
is specified as follows.

na read(Lv ,Sv) `
◦ 3 last ∧ 2 (¬ blocked ∧ Sv = Sv ′)

∧ (2 (◦ ¬ last → Sv ′ = Sv ′′)
→ 2 (◦ last → Lv ′ = Sv ′))

Procedure na read terminates after at least one step, it does
not block and never changes the shared value Sv to be
read; if Sv is never changed by the environment, the local
copy Lv finally equals Sv . Using such generic specifications,
we can abstract from implementation details of non-atomic
access to shared variables. The proofs apply abstraction to
replace each generic procedure call with its specification,
thus enabling symbolic execution.

VIII. CONCLUSION

This paper contributes some new and improved concepts
and their semantic foundation – embedding into higher-order
logic, procedures, rules for fairness and induction – to the
basic approach based on symbolic execution of programs
and formulas we have defined earlier. The calculus has
been successfully used to verify a number of case studies.
The current focus was on verification of linearizability and
lock-freedom of lock-free algorithms, where we managed to
verify some significant examples that had no mechanized
proof before. Proof complexity has been quite manageable.
The main difficulty of concurrency proofs is finding correct
theorems with correct invariants and rely conditions.

There are still some open problems. Finding good proof
rules that allow elegant verification of refinement “modulo
stuttering” (as in TLA, but for arbitrary programs, not just
transition systems) is still an open issue that is of great
practical relevance. From the theoretical point of view, our
calculus contains two complete fragments: Moszkowski’s
ITL axioms [22] and the rely-guarantee calculus from [10].
Completeness in general, however, is still an open issue.

REFERENCES

[1] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser, “Structured
specifications and interactive proofs with KIV,” in Automated
Deduction—A Basis for Appl., W. Bibel and P. Schmitt, Eds.
Dordrecht: Kluwer, vol. II, pp. 13 – 39, 1998.

[2] B. Moszkowski, “A temporal logic for multilevel reasoning
about hardware,” IEEE, vol. 18, no. 2, pp. 10–19, 1985.

[3] S. Bäumler, M. Balser, F. Nafz, W. Reif, and G. Schellhorn,
“Interactive verification of concurrent systems using symbolic
execution,” AI Comm., vol. 23, no. (2,3), pp. 285–307, 2010.

[4] R. M. Burstall, “Program proving as hand simulation with a
little induction,” Information Processing, pp. 309–312, 1974.

[5] A. Cau, B. Moszkowski, and H. Zedan, ITL – Interval
Temporal Logic, Software Techn. Research Laboratory, SER-
Centre, De Montfort University, The Gateway, Leicester,
2002, www.cms.dmu.ac.uk/ cau/itlhomepage.

[6] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers, Concurrency Verifi-
cation: Introduction to Compositional and Noncompositional
Methods, ser. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2001, no. 54.

[7] L. Lamport, “The temporal logic of actions,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 3, pp. 872–923, 1994.

[8] E. Börger and R. F. Stärk, Abstract State Machines—
A Method for High-Level System Design and Analysis.
Springer-Verlag, 2003.

[9] C. B. Jones, “Specification and design of (parallel) programs,”
in Proc. of IFIP’83. North-Holland, pp. 321–332, 1983.

[10] Q. Xu, W. de Roever, and J. He, “The rely-guarantee method
for verifying shared variable concurrent programs,” FACJ,
vol. 9, no. 2, pp. 149–174, 1997.

[11] F. Ortmeier and G. Schellhorn, “Formal fault tree analysis -
practical experiences,” in Proceedings of AVoCS 2006, 2006.

[12] S. Bäumler, G. Schellhorn, B. Tofan, and W. Reif,
“Proving linearizability with temporal logic,” Formal As-
pects of Computing (FAC), 2009, appeared online first,
http://www.springerlink.com/content/7507m59834066h04/.

[13] K. Apt and E.-R. Olderog, Verification of Sequential and
Concurrent Programs. Springer-Verlag, 1991.

[14] M. Herlihy and J. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. on Prog.
Languages and Systems, vol. 12, no. 3, pp. 463–492, 1990.

[15] H. Massalin and C. Pu, “A lock-free multiprocessor os ker-
nel,” Columbia University, Tech. Rep. CUCS-005-91, 1991.

[16] “Presentation of KIV-proofs for concurrent algorithms,” 2011,
http://www.informatik.uni-augsburg.de/
swt/projects/lock-free.html.

[17] B. Tofan, S. Bäumler, G. Schellhorn, and W. Reif, “Temporal
logic verification of lock-freedom,” in In Proc. of MPC 2010,
ser. Springer LNCS 6120, 2010, pp. 377–396.

[18] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis,
“Proving that nonblocking algorithms don’t block,” in POPL.
ACM, 2009, pp. 16–28.

[19] M. M. Michael and M. L. Scott, “Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms,” in
Proc. 15th ACM Symp. on Principles of Distributed Comput-
ing, 1996, pp. 267–275.

[20] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Formal
verification of a practical lock-free queue algorithm,” in
FORTE 2004, ser. LNCS, vol. 3235, 2004, pp. 97–114.

[21] M. M. Michael, “Hazard pointers: Safe memory reclamation
for lock-free objects,” IEEE Trans. Parallel Distrib. Syst.,
vol. 15, no. 6, pp. 491–504, 2004.

[22] B. C. Moszkowski, “An automata-theoretic completeness
proof for interval temporal logic,” in Proc. of ICALP. Lon-
don, UK: Springer-Verlag, pp. 223–234, 2000.

