
Conditional Model Checking:
A Technique to Pass Information between Verifiers ∗ ‡

Dirk Beyer
University of Passau

Germany

Thomas A. Henzinger
IST Austria

Austria

M. Erkan Keremoglu
Simon Fraser University

Canada

Philipp Wendler
University of Passau

Germany

ABSTRACT
Software model checking, as an undecidable problem, has
three possible outcomes: (1) the program satisfies the spec-
ification, (2) the program does not satisfy the specification,
and (3) the model checker fails. The third outcome usually
manifests itself in a space-out, time-out, or one component
of the verification tool giving up; in all of these failing cases,
significant computation is performed by the verification tool
before the failure, but no result is reported. We propose to
reformulate the model-checking problem as follows, in or-
der to have the verification tool report a summary of the
performed work even in case of failure: given a program
and a specification, the model checker returns a condition Ψ
—usually a state predicate— such that the program satisfies
the specification under the condition Ψ —that is, as long as
the program does not leave the states in which Ψ is satisfied.
In our experiments, we investigated as one major application
of conditional model checking the sequential combination of
model checkers with information passing. We give the con-
dition that one model checker produces, as input to a second
conditional model checker, such that the verification prob-
lem for the second is restricted to the part of the state space
that is not covered by the condition, i.e., the second model
checker works on the problems that the first model checker
could not solve. Our experiments demonstrate that repeated
application of conditional model checkers, passing informa-
tion from one model checker to the next, can significantly
improve the verification results and performance, i.e., we can
now verify programs that we could not verify before.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification F.3.1 [Logics
and Meanings of Programs]: Specifying, Verifying, Reason-
ing about Programs

Keywords: Formal Verification, Model Checking, Program
Analysis, Sequential Combination, Coverage, Testing

∗This research was supported by the Canadian NSERC
grant RGPIN 341819-07, the ERC Advanced Grant
QUAREM, and the Austrian Science Fund NFN RiSE.
‡A preliminary version of this article appeared as Technical
Report MIP-1107, University of Passau, in 2011 [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

1. INTRODUCTION
Model checking is an automatic search-based procedure

that exhaustively verifies whether a given model (e.g., la-
beled transition system) satisfies a given specification (e.g.,
temporal-logic formula) [12, 33]. Since model checking of
software is an undecidable problem, there are three possible
outcomes of the analysis process: (1) the program satisfies
the specification, (2) the program does not satisfy the spec-
ification, and (3) the model checker fails. The first outcome
can be obtained by the model checker if the abstract model
that was computed for the program is sufficient to prove
the program correct under the given specification. This out-
come can be accompanied by a proof certificate [23]. The
second outcome can be obtained by the model checker if an
abstract counterexample path is found and can be proven
feasible, i.e., a bug that can actually occur in the program.
This outcome is usually accompanied by the violating pro-
gram part in the form of program source code, and some-
times test input to reproduce the error at run-time [4]. The
third outcome usually occurs if the model checker runs out
of resources (memory exhausted, time-out) or if one of the
components in the verification tool gives up. In all of these
failing cases, significant computation is performed by the
verification tool before the failure. But since no useful re-
sult is reported, the spent resources are wasted.

Our goal is to capture the results of the model checker,
and take those results as input for further verification ef-
forts. For example, knowing the state space that was al-
ready proved safe by the first tool, a second tool can focus
straight on parts of the state-space that are not yet verified.
We propose the approach of conditional model checking. The
goal of conditional model checking is to maximize the out-
come of a model-checking run under certain conditions, e.g.,
a given set of resources. We reformulate the model-checking
problem as follows: Given a program, a specification, and
an input condition, the model checker returns a condition Ψ
—usually a state predicate— such that the program satisfies
the specification under the condition Ψ —that is, as long as
the program does not leave the states in which Ψ is satis-
fied. The condition Ψ represents the state space that has
been verified, thus, we are interested in model checkers that
return conditions Ψ that are as weak as possible.

The outcomes of a model-checking run can be translated
to conditions in the following way: Previous outcome (1)
corresponds to the condition Ψ = true. That is, if the model
checker returns true as condition, the model checker com-
pletely verified the program under no additional conditions.
For outcome (2), the model checker does not return false,

1

||
Abstract
Domain

1

Abstract
Domain

2

Model Checker

SAFE / UNSAFE

Ψ0

Model Checker 1

Ψ1

Model Checker 2

Ψ2

Figure 1: Combination strategies
Left: Parallel combination of two abstract domains; com-
bination must be implemented within the same tool and
algorithm; information can be exchanged at any time;
Right: Sequential combination of two analyses with condi-
tional model checking; the techniques can be implemented
in different tools, can run on different platforms, even at dif-
ferent locations in the cloud; information can be transferred
from the first to the second tool through condition Ψ1; per
default, the first model checker starts with Ψ0 = false.

but can specify program parts that are free of errors, and
explicitly exclude the violating parts. For example, consider
an invalid program that consists of two branches, one of
which is safe and the other violates the specification. The
resulting condition for this program would contain all pro-
gram states that occur in the successfully verified branch
and report an error path that violates the specification. In
outcome (3), in which the model checker previously failed
with “no useful result”, the condition Ψ now summarizes the
work that has been performed by the model checker before
space-out, time-out, or giving up.

If a model checking run was not completely successful, the
condition can be taken as input for another model checker
that might succeed in proving the program correct or find
an error, while it does not need to touch the state space
that is already proven correct. Thus, one major application
of conditional model checking is a sequential combination
of several model checkers where knowledge from an earlier
run of the model checker is passed to a later run. Such a
combination is strictly more than the sum of individually
executing model checkers one after the other in batch mode.

For example, consider a valid program that consists of
two branches, one of which is easy to verify by the model
checker and the other leads the model checker into an infi-
nite loop. Using conventional model checking, we would not
get any feedback from the model checker, because the time-
out would cause a failure. Our modified approach of con-
ditional model checking would still be unable to prove that
the program satisfies the specification. However, it would
—by taking its input condition into account— heuristically
detect the hopeless situation and summarize the performed
work by reporting that (at least) the first branch has been
successfully verified. If complete verification is necessary,
then a different verification method or tool may be used to
focus on the states that violate the condition.

We performed experiments to investigate the sequential
combination of different techniques and tools, and conclude
that conditional model checking can significantly improve
the performance of the analysis, and that the sequential
combination with information passing can effectively check
programs that we were not able to verify with conventional
model checking or simple sequential combinations.

Contributions. We make the following two contributions:

• Conditional Model Checking. We introduce the tech-
nique of conditional model checking, which generates a
summary of the performed verification work as output
—for the user as feedback, or for later tool runs— and
accepts as input a condition that specifies which parts
of the state space are already verified. We have imple-
mented an extension of an existing model checker in
such a way that conditions can be generated as output
and accepted as directive input. Such a technique and
implementation did previously not exist [6].

• Sequential Combination of Model Checkers. We ap-
plied conditional model checking to the problem of
combining several model-checking techniques sequen-
tially with passing information between them. We per-
formed experiments on combining explicit-state model
checking and predicate-based model checking. The
goal was to take advantage of the complementary ben-
efits of each technique. The experiments witness a
significant improvement in performance and precision.
Such verification configurations, where information is
passed between two model-checking techniques, were
not experimentally evaluated before [6].

Figure 1 explains the difference between parallel (left) and
sequential combination (right) of verification techniques. In
parallel combination, the two abstract domains analyze and
store different aspects of the program. The model checker
can combine results and exchange information between the
domains at any time (most elegantly in a strengthen step af-
ter both post operations). This is, for example, not possible
if the techniques require different iteration algorithms or rely
on different binaries. In sequential combination with con-
ditions, the two model checkers are not executed indepen-
dently in batch mode one after the other, in good hope that
one succeeds, but connected via a condition. The first tool
analyzes the program according to the input condition Ψ0

(per default, Ψ0 is false). When finishing, the first model
checker summarizes its work in Ψ1, such that the second
tool knows what is left to be verified.

Other Applications. Conditional model checking enables
the following features that were not possible in conventional
model checking before:

• No Fail without Results. Every run of the model
checker results in a condition that summarizes the
achieved results.

• Maximal Outcome. Conditional model checking maxi-
mizes the outcome for a given set of resources (memo-
ry/time limit).

• Partial Verification. Conditional model checking can
be used to restrict the verification to certain parts of
the program, by taking as input a condition that ex-
cludes the parts that should not be verified. For ex-
ample, some parts of the system might be checked via
model checking, others via testing, theorem proving,
or complementary model checkers.

• Comparison of Tools. Given two model-checking tools,
we can not only compare the time and memory needed
for a given verification task, but we can now compare
the quality of the verification results (the weaker the
condition, the better).

2

• Benchmark Generation. Conditional model checking
can be used to produce hard verification benchmarks.
Given a verification task that currently can not be
solved, conditional model checking can be instructed to
generate excluding conditions for all parts that (cur-
rently) can not be model checked, and dump a new
program that does not contain the state space that
is excluded by the conditions. If started on the new
program (which represents the maximal verifiable pro-
gram fragment), the model checker succeeds and the
time to prove this fragment correct can be measured.

• Guided Test-Case Generation. The output condition
of conditional model checking can be used to guide
a tool for test-case generation, if previous verifica-
tion attempts were not successful. The test generator
uses the condition to produce test cases that explore
the not-yet-verified state space, but does not produce
test cases for the already verified state space. A con-
crete instance of this application idea was recently de-
scribed [11]. Such a sequential combination of static
analysis and testing is orthogonal to previous, more
tight combinations, like Synergy/Yogi [22].

Example. Loops introduce challenges for static program
analysis. For example, if the abstract domain of predicates
with lazy abstraction is used for the analysis, there is the
possibility that each step of loop unwinding will add a new
predicate and verification will be performed until the entire
path is unwound. In some cases that operation might be
repeated thousands of times and this will lead the analysis to
get stuck in the loop. The example in Fig. 2 presents a case
where the analysis might fail to terminate. If the analysis
has to fully unwind the loop in this program, the analysis
will not terminate in a reasonable amount of time. In that
case, the verification outcome would be ‘fail’. At line 11,
there is another assertion and the analysis would miss the
opportunity to investigate this part of the program because
it is busy with checking the loop. If the analysis is started
with a condition that limits the number of unwindings of
a loop to at most k iterations, it will eventually skip the
loop and verify the rest of the program. This way it can
determine that the assertion at line 11 does not hold and
report an error without much effort. If the specification were
not violated in the rest of the program, the outcome would
be ‘safe’ under the condition that the program visits the loop
entry at most k times (as in bounded model checking).

Model checking with predicate analysis depends on the
capabilities of SMT solvers, and thus can only verify condi-
tions that can be expressed in theories that are supported
by the integrated SMT solver. This might exclude, for ex-
ample, properties that depend on non-linear relations be-
tween program variables, as shown in the snippet of Fig. 3.
Suppose we analyze this program with a conventional pred-
icate analysis. Given a precision that includes the predicate
(i ≥ 1000000), the model checker will easily be able to prove
that the assertion in line 5 can never fail. However, as our
predicate analysis is based on linear arithmetics and needs
to model the multiplication of program variables as unin-
terpreted function, the model checker cannot prove that the
second assertion in line 11 also always holds. A precise path
analysis of the counterexample reveals that the assertion
cannot fail, thus, the analysis has to give up.

1 void main() {
2 int x = 1;
3 if (nondet_int ()) {
4 while (x < 10000) {
5 x++;
6 }
7 assert (x == 10000);
8 } else {
9 x = 0;

10 }
11 assert (x != 0);
12 }

Figure 2: Example program with loop

1 void main() {
2 if (nondet_int ()) {
3 int i;
4 for (i = nondet_int (); i < 1000000; i++);
5 assert(i >= 1000000);
6

7 } else {
8 int x = 5;
9 int y = 6;

10 int r = x * y;
11 assert(r >= x);
12 }
13 }

Figure 3: Example with non-linear safety condition

In order to complete the verification of the program in
Fig. 3, a second analysis is needed. In this case a good
choice for verifying the assertion in line 11 is an explicit-
value analysis for integers. If the condition produced by
the predicate analysis is used to restrict the analyzed state
space, the explicit-value analysis needs to prove only the
safety of the second assertion, which it can check efficiently.
The final analysis correctly reports that the program is safe.
However, note that an explicit-value analysis cannot verify
the other assertion (it would have to unroll the loop and
branch many times, probably exceeding all available time or
memory resources). Thus it is indeed necessary to use the
condition from the first run to guide the second analysis.

By using two different model-checking configurations, and
by giving detailed information about the verified state space
in form of a condition, this example can be proved safe. None
of the two configurations is able to verify this alone; both
would either fail due to resource exhaustion or terminate
without useful results.

Availability of Data and Tools. We implemented con-
ditional model checking using standard components of the
open-source verification framework CPAchecker [8]. All
experiments are based on publicly available benchmark
programs from the last competition on software verifica-
tion [3] 1. Our extension of CPAchecker is available in the
project repository 2. CPAchecker is released under the free-
software license Apache 2. All benchmark programs that
we used in our experimental evaluation, as well as the nec-
essary configurations, scripts, and a ready-to-run version of
CPAchecker are available on the supplementary web page 3.

Related Work. The assume-guarantee paradigm is a well-
known principle of verification theory [26]. Conditional
model checking (CMC) implements this paradigm: “if the

1
http://sv-comp.sosy-lab.org

2
http://cpachecker.sosy-lab.org

3
http://www.sosy-lab.org/∼dbeyer/cpa-cmc

3

http://sv-comp.sosy-lab.org/
http://cpachecker.sosy-lab.org/
http://www.sosy-lab.org/~dbeyer/cpa-cmc

program fulfills the (generated) assumptions, then the pro-
gram is guaranteed to satisfy the specification”. A verifier
should explicitly state under which conditions it guaran-
tees correctness. ESC/Java uses an annotation language
for Java to let the user encode conditions for pruning false
alarms [20]. Thus, the user can choose a compromise be-
tween soundness and efficiency. CMC follows this principle
by allowing the model checker to take conditions as input.

Bounding the path length in symbolic execution is a well-
known technique [28]. Bounded model checking (BMC) is
successful in finding bugs, but is often rejected as verifica-
tion technique because it is unsound [10]. If the condition of
unwinding every loop up to a certain bound is stated explic-
itly, then it would be a sound conditional model-checking
technique. The bounded model checker CBMC does re-
port whether the program contains paths that exceed the
given bounds, or whether the program could be verified
completely [14]. This can be nicely expressed as a condi-
tion, but conditional model checking is more powerful be-
cause more information is reported. Nimmer and Ernst ef-
ficiently extract program specifications from dynamic anal-
ysis [32]. Although the approach is unsound, the generated
specifications can effectively cover a large part of the state
space. Conditional model checking also has the objective to
improve the verification coverage. Conway et al. define a
points-to analysis with conditional soundness [15].

Many software-verification tools make implicit assump-
tions about the program, sacrificing soundness in order to be
practically useful. For example, the predicate-abstraction–
based tools SLAM [1] and Blast [5] implicitly use the as-
sumption that the program does not contain integer over-
flows, and model variables as unbounded mathematical inte-
gers (cf. [5], page 515). Several verification tools use heuris-
tics similar to our conditions (search strategies, iteration
orders, pruning, etc.) in order to find safety violations
faster [18, 31]. JPF is a tool that allows arbitrary user-
defined search strategies [21]. Conditional model checking
makes these heuristics externally visible and adjustable in
the form of conditions.

No experimental investigation was done yet on using such
conditions for sequentially combining model checkers beyond
executing them one after the other in isolation. Our ex-
perimental study shows that sequential combination with
information passing (reduced sequential combination) can
significantly improve the effectiveness and performance of
software model checking.

The approach of using information from previous verifica-
tion runs to guide later testing attempts [6] was instantiated
for the sequential combination of the verifier Dafny and the
testing tool Pex [11]. This work outlines several promising
scenarios where such an approach can potentially improve
the precision and preformance of the overall analysis and en-
sure small test suites for reduced testing effort compared to
the traditional testing approach (Pex alone). We are con-
vinced that a future experimental evaluation of this CMC
configuration also reveals significant improvements.

Parallel combinations (reduced products) were investi-
gated in the past (e.g., [7, 16, 19]) and can be successfully
applied if the overall algorithms of the analyses are similar.
Such combinations are complementary to sequential combi-
nations. However, our goal is to investigate the possibilities
of combining analysis techniques that are not necessarily
similar, available as source code, or require the same plat-

form. Sequential combination with conditions can bring to-
gether highly decoupled components, e.g., verification tools
that do not need to run at the same time, on the same ma-
chine, or at the same location (cloud computing).

Another way of parallel combination (concurrent execu-
tion) is to run the same analysis on different parts of the
state space in parallel on a multi-core machine [17,27]. This
is orthogonal to conditional model checking, as we make no
assumption on how each of the analyses is executed, allow-
ing the use of parallel algorithms. Even distributed model
checking (e.g., [2, 30]) can be used as a sub-analysis of a se-
quential combination. The performance improvement would
be independent.

So-called incremental or regression model checking also
re-uses analysis results in order to make subsequent runs
easier [24, 29, 34, 35], but it uses the results for verifying a
different program with the same analysis. It uses the results
of successful verification runs by storing (summaries of) the
successfully verified part of the state space. On the contrary,
conditional model checking verifies the same program with
a different analysis after an unsuccessful verification run.

2. CONDITIONAL MODEL CHECKING
In conditional model checking (CMC), a model checker

needs to output a condition that summarizes the work that
it has performed so far (which parts of the program were
successfully verified and which parts were not yet checked).
This condition needs to be written in a format that makes
it possible to use it as input condition for another model
checker. In the following, we define one such format and
describe how it can be used for conditional model checking.
However, conditional model checking does not require this
specific condition format. Any format can be used as long
as the involved model checkers support it. For example, the
code annotations presented by Christakis et al. [11] might
be used in their CMC instance.

The technical details and formal definitions of our analyses
are described in a technical report [6] on CMC, and in our
previous work on the CPA framework [7–9].

2.1 Output Conditions
We define the following format for the condition, which

is easy to obtain in model checkers that are based on ab-
stract reachability trees (ART). We reduce the ART that the
model checker produces to an assumption automaton, which
is annotated with generated assumptions. Each transition
of the assumption automaton corresponds to a control-flow
edge and is labeled with the assumption that was used by
the model checker when processing this edge. An assump-
tion is produced for a transition if the analysis decided to
not explore a certain path of the state space, or if it failed
to establish a full safety proof for the part of the program
that follows the CFA edge that the transition corresponds
to. The assumption false is also added to transitions that
lead to frontier states that the analysis did not explore in
case of a premature termination (e.g., due to resource ex-
haustion). Subtrees of the ART for which all transitions are
labeled with the assumption true (i.e., the subtrees could be
completely verified), are collapsed into a single sink state ‘T’,
which has a self edge that matches any control-flow edge and
is labeled with the assumption true. For all other parts of
the ART there is a 1:1 correspondence between ART nodes
and automaton states.

4

2

3

 [nondet_int()]

8

 [!(nondet_int())]

4a

4b

 i = nondet_int();

4c

 [i < 1000000]

5

 [!(i < 1000000)] i++

 int i;

9

 int x = 5;

6

 assert(i >= 1000000);

13

10

 int y = 6;

11

 int r = x * y;

12

 assert(r >= x);

Figure 4: Control-flow automaton
for the example program with non-
linear safety condition (cf. Fig. 3)

2
true

3
true

8
true

4a
true

4b
true

4c
true

5
i >= 1000000

4b
true

covered by

6
i >= 1000000

13
i >= 1000000

9
true

10
true

11
true

12
true

 r >= x

13
true

covered by

Figure 5: ART for the example
program; covered states are gray,
edges are labeled with assumptions

T
 * → *
 true

 2 → 3
 true

 2 → 8
 true

 8 → 9
 true

 9 → 10
 true

 10 → 11
 true

 11 → 12
 r >= x

 12 → 13
 true

Figure 6: Assumption automaton
for the example program

2.2 Conditions as Input
An assumption automaton as defined above can be used

as an input condition. Note that, as a condition states which
parts of the state space were successfully verified, the sec-
ond model checker needs to check those states that do not
satisfy the condition. For an assumption automaton, this
means that the second verifier has to analyze only those
paths of the program that contain at least one edge for
which the corresponding transition is not labeled with the
assumption true. We implemented this restriction by run-
ning the automaton in parallel to the analysis as an own
‘abstract domain’ when exploring the control-flow automa-
ton, processing a control-flow edge whenever the automaton
can take a matching transition. The exploration of a path
can be stopped as soon as the automaton reaches the sink
state ‘T’, because this means that the assumption of all fu-
ture edges is always true.

2.3 Example
We show the conditions produced during the analysis of

the example program in Fig. 3. The control-flow automa-
ton can be seen in Fig. 4. This program can neither be
verified by predicate analysis (due to imprecision caused by
non-linear arithmetic) nor by explicit analysis (due to lack
of resources), but it can be successfully verified by a sequen-
tial combination of both, if the condition that summarizes
the work done by the predicate analysis is used as input
condition for the explicit analysis.

Fig. 5 shows the ART that the predicate analysis gener-
ates. Each ART node is labeled with the control-flow node
that it belongs to and the formula that represents the ab-
stract state. The ART edges are labeled with the assump-
tions that the analysis produced during the verification run.
In this case, there is only one non-trivial assumption at the
edge from program location 11 to 12. For all other edges, the
assumption is true and not shown in the ART. The assump-
tion automaton that the analysis outputs for this example is

shown in Fig. 6. Each transition of the automaton is labeled
with a control-flow edge (e.g., “2→ 8” is the edge from loca-
tion 2 to 8) and the assumption that was used when taking
this edge. It can be seen that one part of the state space
(ART nodes 3 to 6) was collapsed into the sink state ‘T’ as
this whole subtree has no assumption different from true.

The second model checker will now let the assumption
automaton from Fig. 6 run in parallel to the state-space ex-
ploration of the explicit analysis. Whenever the automaton
enters the sink state ‘T’ on a path, the analysis of this path
will be stopped. Thus the loop will be skipped and only
the second branch of this program will be analyzed. The
explicit-value analysis needs to prove only the safety of the
second assertion, which it can check efficiently. The final
analysis correctly reports that the program is safe.

2.4 Failure-Preventing Conditions
We also implemented two techniques to restrict the search

of the model checker via conditions and to prevent failure.
First, we monitor the progress for every component of the
model checker. When such a component reaches a certain
limit (e.g., exhausts its assigned time or memory), the mon-
itor discovers that the limit is reached, terminates the com-
ponent, and generates a condition that excludes the corre-
sponding states from the verification result (we use such a
condition for restricting the time resource in Sect. 3.3). Sec-
ond, we implemented several conditions that try to predict
situations in which the model checker should not continue
to try verifying this part of the program, and generate con-
ditions excluding that part (bounded model checking is one
such possibility to restrict, or bound, the search). Such con-
ditions make it possible to verify larger parts of the program,
instead of spending all time on a particular, unsolvable prob-
lem. Thus, if we cannot completely verify a program, we at
least obtain a “verification coverage” that is as large as pos-
sible, and we can use the resulting condition to continue the
verification with different tools and configurations.

5

3. EXPERIMENTAL RESULTS
Our experiments investigate the practical benefits of con-

ditional model checking when applied to the sequential com-
bination of model checkers with information passing. We
show that this approach can improve the overall verifica-
tion performance (i.e., the total sum of consumed analysis
resources) and also the effectiveness (number of solved ver-
ification problems).

3.1 Benchmark Programs
The benchmark programs that we used in the experi-

ments are taken from, or constructed from, the benchmark
verification problems of the competition on software verifi-
cation [3]. CPAchecker, the verification platform that we
used for implementing conditional model checking, partici-
pated in the competition, and there are two categories where
it has significant potential for improvement: the categories
‘DeviceDrivers64’ and ‘SystemC’. Many programs in these
categories could not be verified due to either a timeout or
memory-out. Therefore, we concentrate on benchmark pro-
grams from these two ‘hard’ categories. The first set of
benchmark programs in our experiments (cf. Table 1) con-
tains instances from the category ‘SystemC’.

In order to create larger and even more difficult programs,
we combined programs from category ‘DeviceDrivers64’ with
the program mem_slave_tlm.1 from category ‘SystemC‘ (a
program that cannot even be verified by CPAchecker’s pred-
icate analysis). The combination of programs was done by
concatenating the program sources and creating the follow-
ing new main function that calls the main functions of the
original programs:
1 void main() {
2 // use uninitialized variable
3 // for non - deterministic value
4 int nondet;
5

6 if (nondet) main1 ();
7 if (! nondet) main2 ();
8 }

The name of each new program indicates both the original
programs and the order in which they are called. The results
for this second benchmark set are given in Table 2.

3.2 Experimental Setup and Reporting
All experiments were performed on a machine with a

3.4 GHz Quad Core CPU and 16 GB of RAM. The oper-
ating system was Ubuntu 10.04 (64 bit), using Linux 2.6.35
as kernel and OpenJDK 1.6 as Java virtual machine. We
used CPAchecker from revision 5871 of the repository for
running the experiments. A time limit of 15 minutes and a
memory limit of 15 GB were used. CPAchecker was config-
ured with a Java heap size of 12 GB. The predicate analysis
uses MathSAT 4.2.17 as SMT solver.

All benchmark programs, the used configurations, scripts
and a ready-to-run version of CPAchecker are avail-
able on the supplementary web page http://www.sosy-

lab.org/∼dbeyer/cpa-cmc.
In all configurations, CPAchecker was instructed to

check every error report using CBMC 4.1 (i.e., whenever
CPAchecker finds an error path, it generates a C program
for the path and queries CBMC about the feasibility of it).
In cases where CBMC determines a path as infeasible, the
analysis continues in order to check for the existence of a
different feasible error path; if later no feasible error path is

found, the analysis result is ‘unknown’ instead of ‘program
is safe’ (because there might be some abstract states that
are covered by an infeasible error path that was not ana-
lyzed). The time necessary for running CBMC is included in
the reported verification times. This counterexample check
with CBMC is done in order to increase the precision (and to
avoid reporting false positives). For example, the explicit-
value analysis of CPAchecker cannot store inequalities (e.g.,
facts of the form ‘x 6= 0’) or relations between variables.
Such facts are necessary to verify some of the benchmark
programs. The predicate analysis is limited by the chosen
theories for the predicate abstraction (linear arithmetics and
equality with uninterpreted function symbols).

For each run, the tables show the consumed processor
time of the verifier (in seconds and rounded to two signif-
icant digits) and a symbol for the result. The symbol ‘X’
indicates that the model checker computed the correct an-
swer to the verification problem (bug found or safe). A
question mark means that the model-checking configuration
was too imprecise to verify the program (model checker re-
turned ‘unknown’). This occurred only with the explicit
analysis. The symbols T and M indicate a timeout and an
out-of-memory condition, respectively. There was no exper-
iment for which the verifier computed a wrong answer (no
false-positives/false alarms, no false-negatives/missed bugs).
Programs whose name contains bug are known to be unsafe.
The column ‘LOC’ shows the number of lines of each pro-
gram. In the last row of a table, we report the total runtime
of each configuration, and how many verification problems
were successfully solved.

Figure 7 gives a performance overview for all successful
results using a plot of the quantile functions. The function
graph for a configuration yields the maximum run time y
for the x fastest computed correct results. For example, the
plot shows that the 40th fastest result of the configuration
‘Expl. (100 s)+Pred.’ needed about 100 s. This means that
this configuration could successfully verify 40 programs in
under 100 s each, and took longer than that for all remain-
ing programs. The x-value for which a graph ends at the top
gives the maximal number of successfully verified programs
for the configuration. The area below a graph (its integral)
represents the accumulated verification time that the con-
figuration needed for all programs that it could verify.

3.3 Configurations
We experimented with several verification configurations

of the tool CPAchecker, which is an open verification plat-
form with support for explicit-value analysis and predicate
analysis. We configure CPAchecker to perform an explicit-
value analysis (column ‘Explicit’), which keeps track of in-
teger values explicitly while searching in depth-first order
through the state space. In this configuration, the abstract
states at meet points of the control flow are not joined, in
order to obtain a precise analysis. However, such a pre-
cise analysis usually exhausts the given memory quickly
for large programs, and may get stuck in loops since no
abstractions or summaries are computed. We also con-
figure CPAchecker for a predicate analysis with lazy ab-
straction [25], CEGAR [13], and adjustable-block encoding
(ABE) [9] (column ‘Predicate’). This is a powerful but ex-
pensive analysis, consuming large amounts of resources when
verifying large programs. The predicate analysis is based on
SMT solving and Craig interpolation for linear arithmetics.

6

http://www.sosy-lab.org/~dbeyer/cpa-cmc
http://www.sosy-lab.org/~dbeyer/cpa-cmc

For comparison, we also report results that a simple se-
quential combination of explicit-value and predicate analy-
sis would yield, where the explicit-value analysis is started
first, and then the predicate analysis is performed, without
passing information from the explicit-value analysis to the
predicate analysis (column ‘Expl.+Pred.’). If the first anal-
ysis terminates with a final answer (‘bug found’ or ‘program
is safe’), the verification is finished. Otherwise, a predicate
analysis can be started and consume the remaining time,
and the final result is given by the last configuration. The
total verification time is the sum of the run times of both
configurations.

To make this combination more interesting, we give to the
explicit-value analysis as input the condition that it should
terminate after 100 s of time (column ‘Expl. (100 s)+Pred.’).
If the analysis could not complete the verification task in
the given time, the predicate analysis is started. This is ex-
pected to waste less time on examples for which the explicit-
value analysis would fail to verify even with more time, and
instead give more time to the predicate analysis.

The most interesting configuration is a sequential combi-
nation of explicit-value and predicate analysis with passing
information from the first analysis to the second, leveraging
the features of conditional model checking (column ‘CMC’).
For this, we run the explicit-value analysis with an input
condition that specifies a time limit of 100 s. After this time,
the analysis will terminate gracefully, dumping its verifica-
tion results as a condition that describes the verified parts
of the state space of the program. Then the (conditional)
predicate analysis is started, which reads the condition of
the explicit-value analysis and accordingly verifies the re-
maining parts. The condition is created as an assumption
automaton (cf. Fig. 6) that summarizes those parts of the
abstract reachability tree that were verified. All subtrees
that were completely verified are omitted.

The second analysis reads the condition file and runs the
automaton in parallel, as explained in Sect. 2. Whenever the
model checker analyzes an edge of the control-flow automa-
ton, the assumption automaton takes the matching condi-
tion. When the assumption automaton indicates that an
edge does not need to be verified, the analysis can stop ex-
ploring that path. As additional information, the tables re-
port the size of the condition that is passed from the explicit-
value to the predicate analysis, by printing the number of
states of the automaton in the last column.

3.4 Discussion
The explicit-value analysis of CPAchecker is able to verify

38 programs with a total runtime of 27 000 s. It successfully
verifies only 10 programs that are safe (half of which are only
variants of a single program). However, it is able to find the
bug in many programs that are declared to contain a bug.
In most cases in which this configuration produces a result,
it is quite fast (only a few seconds of verification time). The
amount of time used for all successfully verified 38 programs
is only 2 300 s. This is the only configuration that terminates
on some programs without producing a result and without
exceeding the available resources. This occurs if it has ana-
lyzed the whole state space but found only counterexamples
that CBMC proved infeasible. As such infeasible counterex-
amples may have masked real counterexamples, the analysis
cannot give an answer in this case.

The predicate analysis is more successful: it verifies a total
of 58 programs using 31 000 s of verification time. However,
there are 14 programs that the explicit-value analysis could
verify, but the predicate analysis can not. This shows that
it is a good idea to combine several analyses.

The results of the simple sequential combination of differ-
ent analyses (col. ‘Expl.+Pred.’) show that a simple com-
bination without passing information is not the right way.
This naive combination is able to verify 51 programs, less
than the predicate analysis alone, and still uses more time
(34 000 s). This is because the explicit analysis wastes too
much time on many programs, and the predicate analysis
thus has no chance to work on them sufficiently.

The other simple combination (col. ‘Expl. (100 s)+Pred.’),
which limits the explicit-value analysis to at most 100 s,
is already better than any of the previous combinations.
The number of verified programs is 67 and the run time
is 24 000 s. This was expected, because the different tech-
niques have different strengths and weaknesses. For exam-
ple, explicit-value analysis is considered better in detecting
shallow bugs and predicate analysis might be better in prov-
ing the absence of safety violations.

Now we leverage the strengths of conditional model check-
ing for an even better sequential combination of different ap-
proaches: we use conditions to transfer information from one
analysis to the next. By having the first (conditional) model
checker inform the second (conditional) model checker about
what has already been verified, the second model checker
has to check a much smaller state space. The second verifier
can concentrate on the partial problems that the first ver-
ifier could not solve, whereas in previous combinations, all
work had to be done again.

The experiments demonstrate (col. ‘CMC’) that the ap-
plication of conditional model checking —implementing the
two analyses in such a way that they produce verification
results as condition and accept conditions as input— can
significantly improve the performance as well as the number
of solved instances. Compared to the best configuration so
far (col. ‘Expl. (100 s)+Pred.’), this combination is able to
verify 8 more programs in only 56% of the time.

The total number of verified programs is 75 and the to-
tal verification time is only 14 000 s. Several verification
problems that cannot be verified by any other configura-
tion are now verified in under 200 s, for example the combi-
nations of mem_slave_tlm.1 with loop.BUG, usbcore.BUG,
and kbtab. There are seven programs that cannot be han-
dled by this analysis, although they can be verified by the
‘Expl. (100 s)+Pred.’ configuration. In these cases, the in-
put condition lets the predicate analysis actually do more
work than it would without. This is because CPAchecker’s
adjustable-block encoding usually merges many abstract
states, which is prevented when it uses a large assumption
automaton that is produced by the explicit-analysis (which
does never merge its abstract states). However, this is not
a principal disadvantage of conditional model checking, but
only due to the specific format used for the condition. More
research work can, and should, be done in this direction, i.e.,
to improve the effectiveness of the conditions.

The last column in the tables shows the number of states
of the assumption automaton that is created by the explicit-
value analysis. This may give an indication of how large the
remaining parts of the state space are. For example, if this
number is 1, then the explicit analysis proved the program

7

Table 1: Results for verification tasks from the category ‘SystemC’
(times given in seconds, condition size in number of states of the assumption automaton;

X: correct answer, ?: result ‘unknown’, T: timeout, M: out-of-memory)

Explicit Predicate Expl.+Pred. Expl. (100 s) CMC
+Pred. Cond.

Program LOC Time Time Time Time Time size
kundu1_BUG 511 1.7 X 6.1 X 1.7 X 1.7 X 2.2 X 598
kundu2_BUG 615 1.4 X 6.3 X 1.4 X 1.4 X 1.6 X 498
pc_sfifo_1_BUG 359 > 900 T 1.5 X > 900 T 100 X 120 X 333265
pc_sfifo_2_BUG 464 > 900 T 1.6 X > 900 T 100 X 120 X 395121
pipeline_BUG 813 12 ? 15 X 27 X 27 X 98 X 72742
token_ring.01.BUG 481 1.5 ? 2.6 X 4.1 X 4.1 X 2.8 X 405
token_ring.02.BUG 606 1.8 ? 4.6 X 6.4 X 6.4 X 3.3 X 793
token_ring.03.BUG 731 2.3 ? 6.7 X 9.0 X 9.0 X 4.8 X 1668
token_ring.04.BUG 856 2.8 ? 17 X 20 X 20 X 6.1 X 3661
token_ring.05.BUG 981 3.5 ? 89 X 93 X 93 X 9.6 X 8178
token_ring.06.BUG 1106 4.7 ? 100 X 110 X 110 X 13 X 18319
token_ring.07.BUG 1231 8.0 ? > 900 T > 900 T > 900 T 21 X 40860
token_ring.08.BUG 1356 19 ? > 900 T > 900 T > 900 T 46 X 90505
token_ring.09.BUG 1481 61 ? > 900 T > 900 T > 900 T 120 X 198966
token_ring.14.BUG 1851 490 X > 900 T 490 X > 900 T > 900 T 846
toy1.BUG 711 1.5 X 92 X 1.5 X 1.5 X 1.7 X 539
toy2.BUG 699 1.5 X 89 X 1.5 X 1.5 X 1.7 X 536
transmitter.01.BUG 444 1.4 X 2.1 X 1.4 X 1.4 X 1.5 X 237
transmitter.02.BUG 568 1.6 X 2.5 X 1.6 X 1.6 X 1.9 X 373
transmitter.03.BUG 692 1.6 X 4.3 X 1.6 X 1.6 X 2.1 X 537
transmitter.04.BUG 816 2.1 X 8.4 X 2.1 X 2.1 X 2.2 X 729
transmitter.05.BUG 940 2.1 X 8.7 X 2.1 X 2.1 X 2.7 X 949
transmitter.06.BUG 1064 2.5 X 25 X 2.5 X 2.5 X 2.7 X 1197
transmitter.07.BUG 1188 3.2 X 80 X 3.2 X 3.2 X 3.7 X 1473
transmitter.08.BUG 1312 5.2 X 520 X 5.2 X 5.2 X 5.7 X 1777
transmitter.09.BUG 1436 9.4 X > 900 T 9.4 X 9.4 X 11 X 2109
transmitter.10.BUG 1560 29 X > 900 T 29 X 29 X 32 X 2469
transmitter.11.BUG 1684 110 X > 900 T 110 X > 900 T 110 X 2857
transmitter.12.BUG 1808 480 X > 900 T 480 X > 900 T > 900 T 874
transmitter.15.BUG 1932 490 X 3.2 X 490 X 100 X 130 X 916
transmitter.16.BUG 2057 > 900 T 3.3 X > 900 T 100 X 130 X 963
bist_cell 499 1.3 X 2.1 X 1.3 X 1.3 X 1.3 X 1
kundu 630 6.0 X 14 X 6.0 X 6.0 X 6.7 X 1
mem_slave_tlm.1 1363 1.8 X > 900 T 1.8 X 1.8 X 2.0 X 1
mem_slave_tlm.2 1368 1.7 X > 900 T 1.7 X 1.7 X 1.9 X 1
mem_slave_tlm.3 1373 1.8 X > 900 T 1.8 X 1.8 X 2.4 X 1
mem_slave_tlm.4 1378 2.0 X > 900 T 2.0 X 2.0 X 2.2 X 1
mem_slave_tlm.5 1382 2.0 X > 900 T 2.0 X 2.0 X 2.6 X 1
pc_sfifo_1 359 > 900 T 4.4 X > 900 T 100 X 310 X 334009
pc_sfifo_2 464 > 900 T 4.3 X > 900 T 100 X 230 X 389195
pc_sfifo_3 566 1.6 X 2.0 X 1.6 X 1.6 X 1.7 X 1
pipeline 813 12 ? 88 X 100 X 100 X 630 M 72742
token_ring.01 469 1.4 ? 4.3 X 5.7 X 5.7 X 2.5 X 392
token_ring.02 594 1.6 ? 7.3 X 8.9 X 8.9 X 4.0 X 779
token_ring.03 719 2.0 ? 49 X 51 X 51 X 6.9 X 1652
token_ring.04 844 2.5 ? 320 X 320 X 320 X 9.4 X 3641
token_ring.05 969 3.3 ? > 900 T > 900 T > 900 T 19 X 8150
token_ring.06 1094 4.5 ? 750 M 760 M 760 M 43 X 18275
token_ring.07 1219 7.2 ? > 900 T > 900 T > 900 T 150 X 40784
token_ring.08 1344 19 ? > 900 T > 900 T > 900 T 580 X 90365
toy 703 > 900 T 200 X > 900 T 300 X > 900 T 397349
Total time / #Solved 7200 26 17000 34 14000 38 11000 41 5700 47

8

Table 2: Results for verification tasks from the category ‘DeviceDrivers64’ combined with ‘mem slave tlm.1.c’
(times given in seconds, condition size in number of states of the assumption automaton;

X: correct answer, ?: result ‘unknown’, T: timeout, M: out-of-memory)

Explicit Predicate Expl.+Pred. Expl. (100s) CMC
+Pred. Cond.

Program LOC Time Time Time Time Time size
mem_slave+drbd.BUG 84078 > 900 T 590 X > 900 T 690 X 240 X 3746
mem_slave+farsync.BUG 13311 > 900 T 620 X > 900 T 720 X 370 X 135473
mem_slave+gigaset.BUG 29123 > 900 T 190 X > 900 T 290 X 160 X 25427
mem_slave+iowarrior.BUG 8549 > 900 T 390 X > 900 T 490 X 170 X 184755
mem_slave+keyspan_remote.BUG 7279 4.2 X > 900 T 4.2 X 4.2 X 4.5 X 2115
mem_slave+lirc_imon.BUG 7934 > 900 T > 900 T > 900 T > 900 T 190 X 38668
mem_slave+loop.BUG 11244 > 900 T > 900 T > 900 T > 900 T 170 X 60314
mem_slave+mISDN_core.BUG 30135 6.3 X > 900 T 6.3 X 6.3 X 8.1 X 2554
mem_slave+pktcdvd.BUG 15368 > 900 T 450 X > 900 T 550 X 320 X 39782
mem_slave+ppp_generic.BUG 16828 > 900 T > 900 T > 900 T > 900 T 170 X 119668
mem_slave+synclink_gt.BUG 24177 6.7 ? 140 X 150 X 150 X 53 X 2634
mem_slave+ttusb_dec.BUG 14356 6.3 X 420 X 6.3 X 6.3 X 5.9 X 3125
mem_slave+usbcore.BUG 56379 > 900 T > 900 T > 900 T > 900 T 160 X 9447
mem_slave+usbmouse.BUG 6252 100 X 280 X 100 X 380 X 100 X 2540
mem_slave+i915 130290 220 X > 900 T 220 X > 900 T > 900 T 81706
mem_slave+kbtab 6034 > 900 T > 900 T > 900 T > 900 T 170 X 13372
mem_slave+pppox 6776 > 900 T > 900 T > 900 T > 900 T 190 X 225378
drbd.BUG+mem_slave 84078 87 X 90 X 87 X 87 X 87 X 2504
gigaset.BUG+mem_slave 29123 > 900 T 8.9 X > 900 T 110 X 120 X 25276
iowarrior.BUG+mem_slave 8549 > 900 T 6.0 X > 900 T 110 X 140 X 177650
keyspan_remote.BUG+mem_slave 7279 4.1 X 88 X 4.1 X 4.1 X 4.7 X 1447
lirc_imon.BUG+mem_slave 7934 > 900 T 40 X > 900 T 140 X 150 X 38000
loop.BUG+mem_slave 11244 > 900 T 16 X > 900 T 120 X 420 M 57256
mISDN_core.BUG+mem_slave 30135 7.3 X 79 X 7.3 X 7.3 X 8.7 X 1886
pktcdvd.BUG+mem_slave 15368 > 900 T 140 X > 900 T 240 X > 900 T 36549
ppp_generic.BUG+mem_slave 16828 > 900 T 17 X > 900 T 120 X 130 X 117639
synclink_gt.BUG+mem_slave 24177 8.1 X 9.1 X 8.1 X 8.1 X 9.3 X 1830
ttusb_dec.BUG+mem_slave 14356 5.8 X 6.8 X 5.8 X 5.8 X 5.7 X 2457
usbcore.BUG+mem_slave 56379 > 900 T 10 X > 900 T 110 X 120 X 8653
usbmouse.BUG+mem_slave 6252 100 X 110 X 100 X 210 X 100 X 1872
btmrvl+mem_slave 11195 > 900 T 190 X > 900 T 290 X > 900 T 640271
i915+mem_slave 130290 140 X > 900 T 140 X > 900 T 120 X 1
kbtab+mem_slave 6034 > 900 T 380 X > 900 T 480 X > 900 T 12821
pppox+mem_slave 6776 > 900 T 450 X > 900 T 550 X > 900 T 209219
Total time / #Solved 20000 12 14000 24 20000 13 13000 26 8400 28

safe. For programs where the first analysis already finds
a bug, the automaton consists mostly of the found coun-
terexample and is typically small (up to 3 000 states). If the
automaton is large (more than 100 000 states), then condi-
tional model checking is sometimes slower than the simple
sequential combination due to the overhead caused by the
automaton. The reason for this is mostly that our predi-
cate analysis would usually merge abstract states, but the
explicit analysis does not because it would be too impre-
cise otherwise. With the input condition being read in from
the automaton, the predicate analysis is now forced to build
an ART similar to that of the explicit analysis, and does
not merge states (at least for those states that are present
in the automaton). This shows that the power of condi-
tional model checking can be further increased in the fu-
ture by investigating different formats for the output and
input conditions. However, even now there are programs for

which a large automaton is indeed useful, for example, the
program mem_slave+pppox, where the automaton has more
than 200 000 states and CMC is the only successful configu-
ration.

Figure 7 helps to interpret the overall results. First, the
left part of the plot shows the strengths of the explicit-value
analysis: many programs can be verified within a few sec-
onds. In contrast, predicate analysis alone needs more time
even for programs that are ‘easy’ for it. The disadvantage
of the explicit analysis is that the verification time increases
rapidly as shown by the graph, and more than half of the
programs cannot be verified. The advantage of combining
analyses with different strengths increases with the complex-
ity of the verification task, i.e., the more difficult the problem
is to solve, the better it is to use combination analyses —
the most difficult programs can only be solved by combi-
nations. As expected, the two configurations ‘Expl.+Pred.’

9

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80

Ti
m

e
 i
n
 s

n-th fastest result

Explicit
Predicate

Expl.+Pred.
Expl. (100s)+Pred.

CMC

Figure 7: Quantile functions. For each configuration, we plot all pairs (x, y) such that the maximum run time
of the x fastest results is y. The graphs are plotted on a logarithmic scale and decorated with symbols at
every tenth data point in order to make the graphs distinguishable on gray-scale prints.

and ‘Expl. (100 s)+Pred.’ differ only for verification times
of more than 100 s. The latter of these two configurations
is already better in terms of time and successful verifica-
tion results than predicate analysis alone. It combines the
strengths of both configurations, providing fast results for
easy programs and being able to solve a large amount of
programs within the time and memory limits.

The best graph in the plot refers to the sequential com-
bination with passing of information, based on conditional
model checking. On the left (where the explicit analysis is
able to solve the programs alone) we notice a small overhead,
but the additional work pays off by successfully verifying
more programs in less time. There are only few programs
for which this configuration needs large amounts of time:
70 programs out of a total of 75 verified programs are ana-
lyzed in less than 200 s each.

4. CONCLUSION
Software model checking is an undecidable problem, and

therefore, we cannot create model checkers that always give
a precise answer to the verification problem. Conventional
model checkers fail when they cannot give a precise answer,
leaving the user no information about what the tool was
not able to verify, where in the program the problem oc-
curred, and how much of the program was already verified.
Conditional model checking proposes to design model check-
ers that do not fail, but instead summarize their work when
they decide to give up. That is, we change the outcome from
{safe, unsafe, fail} to {condition}, meaning that the model
checker has verified that the program satisfies the specifica-
tion under the reported condition. In addition to this user
feedback, conditional model checking improves verification
coverage and performance by making it possible to give con-
ditions as input that avoid certain parts of the program.

We investigated one major application of conditional
model checking: the combination of different verifiers with
passing information between the verification runs. After the
first verification run, the resulting condition is given as input
to the second verification run, which uses a different algo-

rithm or abstract domain, and therefore can be expected to
fail on different parts of the state space. This process can be
repeated until the desired coverage is achieved. In contrast
to other combination techniques, e.g., parallel combination
by reduced products, the sequential combination with in-
formation passing is possible even if the techniques require
different iteration algorithms, are implemented in different
tools, are only available as binaries, compile only on incom-
patible platforms, or run at different locations (e.g., in cloud
computing).

The experiments confirmed the following benefits of se-
quential combination with conditional model checking:

1. More problem instances can be solved.

2. The performance can be improved, in terms of reduced
run-time and reduced memory consumption.

3. Better coverage of the state space can be achieved for
problem instances for which neither the presence nor
the absence of an error can be proved.

4. A powerful and flexible combination technique for dif-
ferent verification technologies is established.

Other applications of conditional model checking include
partial verification, automatic generation of verifiable bench-
marks from programs that are too hard for current tech-
niques, regression model checking, the qualitative compari-
son of model checking results of different tools, and guided
test-case generation based on verification results of static-
analysis runs. We also plan to investigate further appli-
cations of conditional model checking. For example, condi-
tional model checking can support the verification of compo-
nents and modules in isolation, and then be used to compose
the global verification goal of the system from the partial re-
sults (i.e., modeling assumptions and guarantees as ‘condi-
tions’). We leave it for future work to further investigate the
structure of conditions and its influence on the verification
performance, and to provide an even more flexible language
for condition exchange between different model checkers.

10

5. REFERENCES
[1] T. Ball and S. K. Rajamani. The Slam project:

Debugging system software via static analysis. In
Proc. POPL, pages 1–3. ACM, 2002.

[2] S. Ben-David, T. Heyman, O. Grumberg, and
A. Schuster. Scalable distributed on-the-fly symbolic
model checking. In Proc. FMCAD, LNCS 1954, pages
427–441. Springer, 2000.

[3] D. Beyer. Competition on software verification
(SV-COMP). In Proc. TACAS, LNCS 7214, pages
504–524. Springer, 2012.

[4] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. Generating tests from
counterexamples. In Proc. ICSE, pages 326–335.
IEEE, 2004.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and
R. Majumdar. The software model checker Blast.
Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–525,
2007.

[6] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and
P. Wendler. Conditional Model Checking. Technical
Report MIP-1107, University of Passau, 2011.

[7] D. Beyer, T. A. Henzinger, and G. Théoduloz.
Program analysis with dynamic precision adjustment.
In Proc. ASE, pages 29–38. IEEE, 2008.

[8] D. Beyer and M. E. Keremoglu. CPAchecker: A tool
for configurable software verification. In Proc. CAV,
LNCS 6806, pages 184–190. Springer, 2011.

[9] D. Beyer, M. E. Keremoglu, and P. Wendler.
Predicate abstraction with adjustable-block encoding.
In Proc. FMCAD, pages 189–197. FMCAD, 2010.

[10] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In Proc.
TACAS, LNCS 1579, pages 193–207. Springer, 1999.

[11] M. Christakis, P. Müller, and V. Wüstholz.
Collaborative verification and testing with explicit
assumptions. In Proc. FM, 2012, to appear.

[12] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time
temporal logic. In Proc. Logic of Programs 1981,
LNCS 131, pages 52–71. Springer, 1982.

[13] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[14] E. M. Clarke, D. Kröning, and F. Lerda. A tool for
checking ANSI-C programs. In Proc. TACAS,
LNCS 2988, pages 168–176. Springer, 2004.

[15] C. L. Conway, D. Dams, K. S. Namjoshi, and
C. Barrett. Pointer analysis, conditional soundness,
and proving the absence of errors. In Proc. SAS, pages
62–77. Springer, 2008.

[16] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Combination of
abstractions in the Astrée static analyzer. In Proc.
ASIAN’06, LNCS 4435, pages 272–300. Springer, 2008.

[17] M. B. Dwyer, S. G. Elbaum, S. Person, and
R. Purandare. Parallel randomized state-space search.
In Proc. ICSE, pages 3–12. IEEE, 2007.

[18] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu,
and W. Visser. Formal software analysis emerging

trends in software model checking. In Proc. FOSE,
pages 120–136. IEEE, 2007.

[19] J. Fischer, R. Jhala, and R. Majumdar. Joining data
flow with predicates. In Proc. ESEC/FSE, pages
227–236. ACM, 2005.

[20] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Proc. PLDI, pages 234–245.
ACM, 2002.

[21] A. Groce and W. Visser. Heuristics for model checking
Java programs. Int. J. Softw. Tools Technol. Transfer,
6(4):260–276, 2004.

[22] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V.
Nori, and S. K. Rajamani. Synergy: A new
algorithm for property checking. In Proc. FSE, pages
117–127. ACM, 2006.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, G. C.
Necula, G. Sutre, and W. Weimer. Temporal-safety
proofs for systems code. In Proc. CAV, LNCS 2404,
pages 526–538. Springer, 2002.

[24] T. A. Henzinger, R. Jhala, R. Majumdar, and
M. A. A. Sanvido. Extreme model checking. In
International Symposium on Verification: Theory and
Practice, LNCS 2772, pages 332–358. Springer, 2003.

[25] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In Proc. POPL, pages
58–70. ACM, 2002.

[26] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You
assume, we guarantee: Methodology and case studies.
In Proc. CAV, LNCS 1427, pages 440–451. Springer,
1998.

[27] G. J. Holzmann, R. Joshi, and A. Groce. Tackling
large verification problems with the Swarm tool. In
Proc. SPIN, LNCS 5156, pages 134–143. Springer,
2008.

[28] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[29] S. Lauterburg, A. Sobeih, D. Marinov, and
M. Viswanathan. Incremental state-space exploration
for programs with dynamically allocated data. In
Proc. ICSE, pages 291–300. IEEE, 2008.

[30] F. Lerda and R. Sisto. Distributed-memory model
checking with Spin. In Proc. SPIN, LNCS 1680, pages
22–39. Springer, 1999.

[31] M. Musuvathi and D. R. Engler. Model checking large
network-protocol implementations. In Proc. Networked
Systems Design and Implementation, pages 155–168.
USENIX, 2004.

[32] J. W. Nimmer and M. D. Ernst. Automatic generation
of program specifications. In Proc. ISSTA, pages
229–239. ACM, 2002.

[33] J.-P. Queille and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In Proc.
Symposium on Programming, LNCS 137, pages
337–351. Springer, 1982.

[34] O. Sokolsky and S. A. Smolka. Incremental model
checking in the modal mu-calculus. In Proc. CAV,
LNCS 818, pages 351–363. Springer, 1994.

[35] G. Yang, M. B. Dwyer, and G. Rothermel. Regression
model checking. In Proc. ICSM, pages 115–124. IEEE,
2009.

11

