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This work presents a formal model that is part of our effort to construct a verified file system for Flash
memory. To modularize the verification we factor out generic aspects into a common component that
is inspired by the Linux Virtual Filesystem Switch (VFS) and provides POSIX compatible operations.
It relies on an abstract specification of its internal interface to concrete file system implementations
(AFS). We proved that preconditions of AFS are respected and that the state is kept consistent. The
model can be made executable and mounted into the Linux directory tree using FUSE.

1 Introduction

The popularity of Flash memory as a storage technology has been increasing constantly over the last
years. Flash memory offers a couple of advantages compared to magnetic storage: It is less susceptible
to mechanical shock, consumes less energy and offers higher speed when reading data. However, Flash
memory can only be written sequentially, and memory cells must be erased in rather large blocks before
they can be written again.

Two approaches exist to deal with these special characteristics: Standard file systems can be used
if the hardware has a built-in Flash translation layer (FTL) that emulates behavior of magnetic storage.
USB drives and Solid State Disks fall into this category. In contrast, Flash file systems (FFS for short)
are specifically designed to work on “raw-flash”. FFS are commonly used in embedded systems such as
home routers, example implementations are YAFFS and JFFS. More recently, UBIFS [11] has become
part of the Linux kernel and represents the state of the art. An FFS can in principle be more efficient than
the combination of FTL and a traditional file system.

Flash memory is beginning to be used in safety-critical applications, leading to high costs of failures
and correspondingly to a demand for high reliability of the file system implementation. As an example,
an error in the software access to the Flash store of the Mars Exploration Rover “Spirit” already had
nearly disastrous consequences [15]. As a response, Joshi and Holzmann [12] from the NASA JPL
proposed in 2007 the verification of a Flash file system as a pilot project of Hoare’s Verification Grand
Challenge [10] and for use in future missions.

We are developing such a verified Flash file system as an implementation of the POSIX file system
interface [20], using UBIFS as a blueprint. Our goal is that it can either be used stand-alone or in Linux.

The effort is structured into layers that are connected by refinement, corresponding to the various
logical parts of the file system. The top level is an abstract formal model of the file system interface as
defined in the POSIX standard. It serves as the specification of the functional requirements, i.e., what it
means to create/remove a file/directory and how the contents of files are accessed.

The POSIX interface addresses files and directories by paths and views files as a linear sequence of
bytes. Such high-level concepts are typically mapped to a more efficient data representation in the file
system, in particular a graph structure. In Linux, this mapping is realized by the Virtual Filesystem Switch
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(VFS). It implements many generic operations that are common to all file systems, e.g., permission
checks and management of open file handles. VFS relies on concrete file systems – such as UBIFS – to
provide lower-level operations. To that purpose, VFS defines an internal interface. The advantage of this
scheme is separation of concerns and code reuse.

To achieve a fully verified POSIX compatible file system we have to provide our own implementation
of the VFS functionality. Therefore, we define a formal specification of the main operations of the
internal interface of the Linux VFS, called AFS1(for abstract file system) in the following.

Figure 1 visualizes the different components displayed as boxes. Functional correctness is estab-
lished by several nested refinements (or simulation relations) that are graphically shown as dotted lines.
In particular, the a proof of the topmost refinement from POSIX to VFS+AFS implies the correctness of
the model presented in this paper.

Note that AFS is refined to a Flash File System independently of VFS. As a consequence, VFS on
top of the concrete FFS instead of AFS also refines POSIX, i.e., functional correctness propagates in a
compositional fashion.

Previously published is our formalization of the core concepts of UBIFS [18] which deals with keep-
ing the index data structures consistent. A POSIX model and the two refinements from POSIX to VFS
and from AFS to UBIFS are ongoing work. We also work on the formalization of other layers, including
UBI that takes the role of an FTL.

Our specification language is Abstract State Machines [2], which define operations over abstract data
types. We use algebraic specifications to axiomatize data types, and our interactive theorem prover KIV
[16] to verify properties.
In summary, the contribution of this work is:

• A model of operations common to file systems, i.e., a Virtual Filesystem Switch, that provides all
essential POSIX file system interface. Standard POSIX operations are broken down to a number
of AFS operations. Notably, linear access to file content is mapped to a sparse array of pages.
Besides that, we implement path lookup, access permission checks and management of handles
for open files. The model is thus very close to an implementation.

• The AFS model for file systems that can be plugged into the above VFS. It abstracts details of
concrete file system operations into a generic specification and encodes the assumptions made by

1Not to be confused with the Andrew File System
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the VFS. Thus, if a file system implementation respects the given contracts, it can be used directly
within our VFS. In contrast to the VFS model, AFS remains as abstract as possible.

• We verified that AFS preconditions are respected by the VFS and we proved several consistency
invariants about the state.

Furthermore, we have derived an executable Scala simulation from the models that can be mounted
directly into the Linux directory tree using the file system in user space library (FUSE [19]). The simu-
lation is used for testing and validates the models with respect to POSIX. For reasons of space we do not
present the full models in this paper (AFS: ∼100 LOC, VFS: ∼500 LOC). Together with the proofs of
invariants and the code of the simulation they are available online [6].

The remainder of this paper is structured as follows: Section 2 describes the VFS data model and
operations, focusing on structural modifications of the file system. Section 3 describes the AFS data
types, operations and invariants. We then turn to access of file content through file handles in Sec. 4.
Section 5 discusses related work and Sec. 6 concludes.

2 The VFS Layer

This section shows, how the VFS layer realizes the top-level POSIX operations. Conceptually, the file
system consists of directories and files that are organized hierarchically in a directed acyclic graph with
the toplevel directory as root node, as visualized in Fig. 2. File system objects are addressed by paths,
which are sequences of names concatenated by the separator / (resp. \ on Windows). Operations can be
classified into structural modifications, such as creating/deleting files, and content modification, such as
reading/writing.

Creation of a new file will be used as running example throughout the paper. The following C source
code creates a file named “test” in the top-level directory named “tmp”, using the creat(3) operation:

int err = creat("/tmp/test", 0644);

The given path is parsed, each segment but the last is looked up in the directory tree (starting from the
root) and finally a file with some access permissions (here: 0644) is created. The return value indicates
success or a specific error condition. The new subgraph arising from the creat operation is indicated by
dotted lines in Fig. 2.

The task of the VFS layer is to break down such high-level POSIX operations to several calls of AFS
operations. Fig. 3 visualizes a typical sequence for structural operations like creat. In this case, it relies
on three operations provided by the file system implementation, namely

1) lookup of the target of a single edge in the graph
2) retrieve the access permissions at each node that is passed during path lookup
3) actual creation of the file

In Linux, the AFS interface is realized by a set of function pointers. The file system specific create
operations have the following signature:

int (*create)(struct inode *dir, struct dentry *dent,

int mode, struct nameidata *nd);

The first parameter, dir, points to some object representing the parent directory of the new file
(“/tmp” in the example above). The second parameter, dent, specifies the name of the new file.

The types of the formal parameters of the internal interface constitute the VFS data model. All file
system queries and modifications are expressed in terms of these data structures.
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2.1 Data Model

This section defines an algebraic specification of the VFS data model. Three main data structures repre-
sent the file system graph: inodes, dentries and pages. They are communication data structures and do
not necessarily reflect the file system’s runtime state and the on-disk data structures.

Inodes (“Index Nodes”) correspond to the nodes of the graph, i.e., the files and directories. Inodes
are uniquely identified by an inode number ino : Ino ' N and store some associated information. The
sort Inode is formally defined as an algebraic data type:

data Inode = inode(ino : Ino, meta : Meta, isdir : B, nlink : N, size : N)

It has one constructor inode that records the inode number (ino), some metadata (meta), whether it
corresponds to a file or a directory (isdir), the number of hard-links (inbound edges, nlink) and the
file size resp. the number of directory entries in case of a directory inode (size). The abstract sort Meta
is a placeholder for any further information that is associated with inodes. We postulate some selectors,
to retrieve for example read, write and execute permissions following the ideas given in [9]. Constructor
arguments are accessed by postfix selectors with the given names, for example inode.size retrieves the
size of an inode inode.

Dentries (“Directory Entries”) correspond to the edges of the graph. They relate a parent directory
to its children and are labelled with the respective file names. Dentries store a name and come in two
flavors: Normal dentries point to an existing file identified by the selector target. Negative dentries
indicate that a file name is not contained within a directory – they are used for example as return value
of the lookup operation.

data Dentry = dentry(name : String, target : Ino) | negdentry(name : String)

The content of files is partitioned into uniformly sized pages. This has several advantages: The size of
pages typically corresponds to the size of a virtual memory page, enabling caching and memory-mapped
input/output. Furthermore, sparse files, i.e. files with large empty parts, can be represented efficiently by
the convention that non-present pages contain zeros only. Formally, pages are arrays of bytes of a fixed
length, specified by the constant PAGE SIZE:

type Page = Array[PAGE SIZE]〈Byte〉

2.2 Operations

To continue the example, the signature of the create operation in our model is:

vfs_create(path : Path, md : Meta; err : Error)

where paths are sequences of strings (the separator is implicit) and errors are given by an enumeration of
possible error constants (where ESUCCESS denotes “no error”):

type Path = Seq〈String〉 data Error = ESUCCESS | EIO | . . .

As a convention, we prefix VFS and AFS operations with vfs resp. afs to indicate that they are
part of the formal model. The semicolon in the parameter list separates input parameters from reference
parameters. Thus, assignments to err in the body of the operations are visible to the caller.

VFS (and AFS) operations are defined by rules of an Abstract State Machine (ASM) [2]. The lan-
guage features typical programming constructs such as parallel (function) assignments, conditionals,
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vfs_create(path , md; err)

if path = [] then

err := EACCESS

else let

ino = ROOTINO ,

dent = negdentry(path.last)

path = parent(path)

in vfs_walk(path; ino , err);

if err = ESUCCESS then

vfs_maycreate(ino; dent , err);

if err = ESUCCESS then

afs_create(ino , md; dent , err)

vfs_walk(path; ino , err)

err := ESUCCESS;

let path = path in

while path 6= [] ∧ err = ESUCCESS do

vfs_maylookup(ino; err);

if err = ESUCCESS then

let dent = negdentry(path.first)

in afs_lookup(ino; dent , err);

if err = ESUCCESS then

ino := dent.target

path := path.rest

Figure 4: ASM rules of the VFS create operation

loops, nondeterministic choice and recursive procedures. ASM rules are executable, provided that the
nondeterminism is resolved somehow and the algebraic operations on data types are executable.

All VFS operations perform extensive error checks. Similar to Hesselink and Lali [9], we ensure that
the file system is guarded against unintended or malicious calls to operations. Specifically, all operations
are total (defined for all possible values of input parameters) and either succeed or return an error without
modifying the internal state. Some implications of these checks manifest as preconditions in AFS (and
further refinements), as discussed in Sec. 3.2.

Figure 4 shows the ASM rules that realize the create operation in the syntax of our specification lan-
guage. The entry point is vfs create. It receives the path to the new file and ensures that it is non-empty.
Subsequently, the helper routine vfs walk determines the parent directory of the new file, identified by
the inode number returned in ino. The path walk itself performs multiple lookups of directory entries by
calling the AFS routine afs lookup(ino; dent, err). Informally, afs lookup checks, whether the
name given by dent is contained in the directory identified by ino and sets dent.target to the inode
number of the child or returns an error. In the latter case, the whole operation is aborted. The subroutine
vfs maycreate ensures that the user has sufficient permissions to create a file in the parent directory
and that the name is not already present. Creation of the file is then delegated to afs create(ino, md;

dent, err) (shown in Fig. 5), which allocates a new inode number and modifies its internal state. The
new inode number is returned in dent.target.

The formal model supports the following operations besides create:

The operation mkdir creates a new empty directory, conversely, rmdir removes an existing directory,
which must be empty. The operation link introduces hard-links to existing files, i.e., they introduce
additional edges in the graph between existing nodes, so that a file becomes accessible through multiple
paths. The converse operation is unlink, which also deletes the file on disk when the last link is removed
(and the last file handle is closed, see Sec. 4.2). The most complex structural operation is rename (AFS
rule shown in Fig. 6), which allows to change the name and optionally the parent directory of a file or
directory. It performs two path walks and checks a couple of error conditions.

The operation open returns a file descriptor through which the content of the file can be accessed with
read, write, and seek. The operation close invalidates a descriptor and frees associated resources.
The size of a file can be changed with truncate, meta data is accessed with getattr and setattr.
Finally, the operation readdir returns the filenames contained in a directory.
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3 The AFS Layer

AFS is also realized as an Abstract State Machine, i.e., it is an operational specification of expected
behavior of concrete file systems. The design goal is to remain as abstract as possible.

3.1 State

AFS maintains an internal state, consisting of files and directories. These are kept in two separate stores
(partial functions), mapping inode numbers to the respective objects; we use the symbol 7→ to denote
partial function types.

state vars dirs : Ino 7→ Dir, files : Ino 7→ File where Ino' N

The separation is motivated by the distinction into structural and content modifications: the former will
affect mainly dirs while the latter will affect only files. We expect this decision to facilitate the refinement
proofs between the POSIX layer and VFS. However, it comes at the cost of an extra disjointness invariant
(see Sec. 3.4).

Directory entries are contained in the parent directory, likewise, pages are contained in the file object
they belong to:

data Dir = dir(meta : Meta, entries : String 7→ Ino)

data File = file(meta : Meta, size : N, pages : N 7→ Page)

Inode numbers ino ∈ (dom(dirs) ∪ dom(files)) are called allocated, they refer to valid directories resp.
files. We often omit the dom-operator for brevity, as in ino ∈ dirs. We write application of partial
functions using square brackets, e.g., dirs[ino] retrieves the directory identified by ino. Function update
is written dirs[ino] := d for a directory d. We require explicit allocation of inode numbers for dirs and
files, dirs + + ino denotes the store dirs with an additional mapping for ino (to an arbitrary directory).
Conversely, deallocation is written as dirs – – ino. Empty stores are written as /0. Similar conventions
apply to the stores files, entries and pages, except that the latter two do not require explicit allocation.

3.2 Operations

ASM rules in the AFS model have the form if pre then actions with a precondition pre. These
preconditions roughly correspond to the error checks performed by VFS. We proved that all calls from
VFS indeed establish the AFS preconditions. In contrast to the axiomatic approach of Hoare-style con-
tracts, postconditions are implicitly given by the effect of the actions, namely, the outputs and state
transitions.

All structural operations, such as vfs create, have corresponding AFS counterparts. Figure 5
shows the ASM rules of afs lookup and afs create.

The lookup operation tests whether a parent directory identified by the inode number pino contains
an entry with a specific name, given by the (negative) directory entry dent. It returns a positive directory
entry that points to the child’s inode number or a negative directory entry and the error “no entry”. The
test pino ∈ dirs represents the precondition of the operation: it may only be invoked with a valid
parent inode number.

The create operation allocates a new inode number ino. It is added to the entries slot of the parent
directory under dent.name. The new file object has the given metadata, a size of zero and no pages.
The operation requires that pino refers to a valid directory and that the name is not already present.
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afs_lookup(pino; dent , err)

if pino ∈ dirs then

if dent.name ∈ dirs[pino]. entries

then let

ino = dirs[pino]. entries[dent.name]

in dent := dentry(dent.name , ino)

err := ESUCCESS

else dent := negdentry(dent.name)

err := ENOENT

afs_create(pino , md; dent , err)

if pino ∈ dirs

∧ dent.negdentry?

∧ dent.name 6∈ dirs[pino]. entries

then

choose ino with ¬ ino ∈ dirs

∧ ¬ ino ∈ files ∧ ino 6= 0 in

dirs[pino]. entries[dent.name] := ino

files := files ++ ino

files[ino] := file(0, md , /0)
dent := dentry(dent.name , ino)

err := ESUCCESS

Figure 5: ASM rules of the AFS create and lookup operations

afs_rename(oldino , newino; olddent , newdent)

if oldino ∈ dirs

∧ newino ∈ dirs

∧ olddent.target ∈ dirs[oldino ]. entries

∧ ( olddent.ino ∈ files ∧ newdent.ino ∈ files

∨ olddent.ino ∈ dirs ∧ newdent.ino ∈ dirs )

∧ (newdent.ino ∈ dirs → dirs[newdent.ino]. entries = /0)
∧ ;; whether olddent/newdent must be positive/negative ,

;; and their .target inodes are allocated

then

{ dirs[oldino ]. entries := dirs[oldino ]. entries -- olddent.target;

dirs[newino ]. entries[newdent.target] := olddent.target }

olddent := negdentry(olddent.target)

newdent := dentry(newdent.target , olddent.target)

err := ESUCCESS

Figure 6: ASM rules of the AFS rename operations

The AFS rename operation is shown in Fig. 6. It takes two inode numbers and two directory entries.
The file or directory is simply renamed if oldino= newino. Otherwise, it is additionally moved into a
different parent directory. It is possible to overwrite an existing destination, if it has the same type (file
resp. directory) and in the latter case the destination is empty. Furthermore there are some consistency
conditions on both dentries. The state transition consists of two directory modifications. Note that
sequential composition (emphasized by curly braces) in the given order is significant, since the two
statements might affect the same parent directory.

The remaining non-structural AFS operations are: The pair of operations afs readinode and
afs writeinode construct Inode instances and write back changes. Similarly, afs readpage and
afs writepage read and write whole pages. The operation afs evict deletes unreferenced files. The
operations afs readdir and afs truncate complete the list.

3.3 Nondeterministic Errors

AFS operations assume infinite, perfect storage: allocation always succeeds and dirs and files can be
accessed reliably. However, transient and persistent failures are quite common with real Flash hardware;
allocation may fail due to insufficient memory, and the Flash device can be full. Since the AFS model
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is too abstract to capture when exactly such errors arise, most AFS operations nondeterministically fail
with an error code selected from a set of low-level errors (the exception is afs evict, see Sec. 4.2).
This is achieved by modifying the body of operations as follows:

{ choose e with e ∈ {EIO ,...} in err := e } or { normal code }

3.4 Invariants

We have proved the following invariants on the AFS state: inode numbers of files and directories are
disjoint, never 0 and there is a root inode (1). Invariant (2) states closure under lookup: following a
directory entry leads to an allocated inode number. Directories have at most one parent (3) and there are
no superfluous pages beyond the file size (4). For all ino, str, n:

0 6∈ dirs and 0 6∈ files and ROOT INO ∈ dirs and dirs∩files = /0 (1)

ino ∈ dirs∧ str ∈ dirs[ino].entries → dirs[ino].entries[str] ∈ (dirs∪files) (2)

ino ∈ dirs → # links(ino,dirs)≤ 1 (3)

ino ∈ files∧n ∈ files[ino].pages → n∗PAGE SIZE< files[ino].size (4)

The last page of a file (if present) contains zeros in the part that is outside the file size (5)

The proofs are not difficult, a couple of helper lemmas lead to high automation. The verification crucially
relies on the AFS preconditions. For example:
• The link operation requires the target to be a file, otherwise, invariant (3) may be violated.

• The rmdir operation requires that the path is not empty, so that the root directory is never deleted
(invariant (1)).

4 File Access and File Handles

The external POSIX view of file content is a sequence of bytes that is accessed indirectly through file
descriptors, passed to the operations read and write. An example write to the file “/tmp/test” using the C
interface is:

int fd = open("/tmp/test", O_WRONLY);

write(fd, "Hello, World!", 13);

close(fd);

The first line opens the file for writing, yielding a descriptor fd. Read and write operations take a
memory buffer and a length specifying how many bytes to transfer from/to this buffer. In the example,
the buffer contains the string “Hello, World!” with a length of 13 bytes. The VFS keeps track of the
current read/write offset into the file. Access is sequential and writes at the end of the file implicitly
increase its size.

The VFS state consists of a registry oh of open file handles, formalized as:

state var oh : N 7→ Handle where

data Handle = handle(ino : Ino,pos : N,mode : Mode)

We have proved the following invariant on the VFS state. For all fd:

fd ∈ oh→ oh[fd].ino ∈ files (6)
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The VFS client may obtain a file descriptor fd : N by the call to vfs open(path, mode; fd, err)

and release it after use with vfs close(fd; err). The pos slot of a handle can be modified by the
operation vfs seek(fd; n, whence, err), returning the updated position (the parameter whence
specifies whether n is to be understood relative to pos or absolute).

The signatures of read and write are vfs read(fd; buf, len, err) and vfs write(fd, buf;

len, err), where buffers buf are arrays of bytes (type Buffer = Array〈Byte〉)

4.1 Read & Write

Reading and writing maps a linear buffer onto the file’s array of pages. There is a number of special
cases that must be considered.

An example read operation is visualized in Fig. 7. At the bottom, the file’s pages are denoted by gray
boxes with an outer frame indicating the file size. The hatched part of the last page does not contribute to
the file’s content and must always contain zeros. The white space among the pages denotes an unallocated
page, which implicitly represents a range of all zeros in the file.

The rectangle in the middle denotes the destination buffer (parameter buf). The black part corre-
sponds to the range that should be read (parameter len). The buffer may be larger than len (white
part). The read operation loads the affected pages sequentially and copies the required parts (graphically
delimited by arrows) into the buffer.

Listing 9 shows the core helper procedure that is called in a loop until done or an error occurs.
Parameters start and end define the range to read, as absolute positions into the file in bytes. Of this
range, total bytes have been processed so far (note that done, buf and total are passed by reference).

The procedure computes the current page and offset into that page and considers three upper bounds
for the length of the range to copy in this iteration: the maximum number of bytes to transfer (len), the
end of the current page, and the end of the file. Note that for a top-level read operation, each page is
loaded at most once. Nonexistent pages are handled in AFS:

afs_readpage(ino , pageno; page , err)

let pages = files[ino]. pages in

page := if (pageno ∈ pages) then pages[pageno] else emptypage

err := ESUCCESS

Writing is done similarly, an example is shown in Fig. 8, assuming the operation is executed with
the same file as in Fig. 7. A write operation may extend the file at the end. In this case, the dotted lines
indicate the newly allocated parts of the file: the missing second page is written, as well as an additional
page at the end. The fourth page is overwritten and becomes part of the file entirely. The write operation
relies on a helper routine similar to vfs read block, an excerpt is shown in Fig. 10. The affected page
is loaded, modified and then written back.2 Writes that extend the file additionally call afs truncate

with the new size.
2The afs readpage could be optimized away if n = PAGE SIZE
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vfs_read_block(start , end , inode; done , buf , total , err)

if ¬ done ∧ start + total ≤ inode.size

∧ total ≤ # buf ∧ inode.ino ∈ files

∧ err = ESUCCESS then

let pageno = (start + total) / PAGE_SIZE ;; integer division

offset = (start + total) % PAGE_SIZE ;; and modulo

page = ?

in ;; bytes to read in this iteration

let n = min(end - (start + total) ;; read size boundary

PAGE_SIZE - offset ;; current page boundary

inode.size - (start + total)) in ;; inode size boundary

if n 6= 0 then

afs_readpage(inode.ino , pageno , dirs , files; page , err)

if err = ESUCCESS then

buf := copy(page , offset , buf , total , n)

total := total + n

else done := true

Figure 9: ASM rule to read a partial page

if n 6= 0 then

afs_readpage(inode.ino , pageno , dirs , files; page , err)

if err = ESUCCESS then

page := copy(buf , total , page , offset , n)

afs_writepage(inode.ino , pageno , page , dirs; files , err)

Figure 10: ASM rule to write a partial page (excerpt)

A write that completely falls beyond file size leads to a gap in the file that must contain zeros. That
no zeros have to be written in between is guaranteed by the invariants (4) and (5).

A further detail is that a read/write may be successful, even if less than len bytes were transferred,
i.e., some intermediate page access failed, for example if the storage medium becomes full.

4.2 Deletion

The POSIX standard allows file handles to point to files that are not part of the directory tree any more.
This situation occurs, when the last link to an open file is removed. The manual of close(3) specifies:

“If the link count of the file is 0, when all file descriptors associated with the file are closed, the space
occupied by the file shall be freed and the file shall no longer be accessible.”

Some applications actively exploit this feature to create hidden temporary files (MySQL caches,
Apache SSL mutex). Replacement of files during a system update is another use case: existing files, in
particular application binaries, are unlinked before the new version is written. The command lsof +L1

can be used to detect applications that still refer to a deleted file.
Since the AFS layer does not know about open files (it can not access oh), VFS needs to signal

explicitly when files become obsolete, which is done by a call to the operation afs evict. The helper
routine vfs putinode is called after a file handle has been closed and after a link to a file has been
removed.
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vfs_putinode(ino; err)

if ¬ is -open(ino , oh)

then afs_evict(ino; err)

afs_evict(ino; err)

if links(ino , dirs) = []

then files := files -- ino

err := ESUCCESS

where is-open(ino,oh) :↔ ∃ fd ∈ oh. oh[fd].ino= ino
As previously indicated, afs evict must always succeed. The reason is that the state has already

been modified and thus the corresponding VFS call may not fail any more (see Sec. 2.2). The requirement
not to fail is reasonable, since afs evict will be implemented as in-memory operation.3. The Linux
VFS has a similar requirement (void return type of evict).

5 Related Work

File system correctness has been an active research topic for some time. An early model of the POSIX
standard written in Z by Morgan and Sufrin is [14]. Several mechanized models have been developed
related to this work [3, 9, 5, 4]. These approaches typically remain on a very high abstraction level, make
strong simplifications, e.g., leave out hard-links or treat file content atomically. To our knowledge, the
separation of common functionality (VFS) versus file system specific parts (AFS) has not been addressed
previously.

The work of Kang and Jackson [13] is closest to our work with respect to read and write – it provides
the same interface (buffer, offset, length). However, their model only deals with file content but not with
directory trees or file handles. They check correctness with respect to an abstract specification for small
bounded models. Kang and Jackson address further issues as well (fault tolerance and physical disk
layout), that can be modularly realized as a separate layer in our refinement chain. In comparison, their
read and write algorithm is less practical than ours, because it relies on an explicit representation of a list
of blocks that needs to be modified during an operation.

Arkoudas et al. [1] address reading and writing of files in isolation (without file handles). Their
model of file content is similar to ours (i.e., non-atomic pages). They prove correctness of read and write
with respect to an abstract POSIX-style specification. However, their file system interface allows only to
access single bytes at a time, which is a considerable simplification.

Damchoom et al. [5] start with a graph-based specification of file system operations, with an interface
similar to our AFS layer. Their model differs from the VFS data model by using parent pointers to encode
the graph. In [4] Damchoom et al. decompose the write operation with respect to pages, however, not
down to bytes. They use shadow copies of whole files to achieve abstract fault tolerance, which is not
realistic.

Ferreira et al. [7] et. al. provide a POSIX-like specification at the level of paths.

6 Discussion and Conclusion

We have presented a formal model of a Virtual Filesystem Switch and an abstract specification of its
internal interface, inspired by the implementation of the POSIX file system interface in Linux.

Our model has two notable simplifications that are visible in the external interface: Symbolic links
are not supported since we feel that they are a secondary concern. In POSIX, readdir is specified only

3Technically, in UBIFS, the modification has already been recorded in the on-flash journal and evict only removes the file
and its content from the RAM index.
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by a C library interface based on further data structures that out of scope of this model. We therefore
chose a simple implementation of readdir. In contrast to the corresponding Linux system call, it is not
based on directory handles and returns all entries at once.

The effort to develop these models was dominated by two factors: On one hand, we spent much time
studying the Linux source code, figuring out the interplay between VFS and file system implementations
and details of the semantics of operations (e.g., evict). On the other hand, we had to ensure that the
simulation proofs involving POSIX, the existing UBIFS model, and further refinements will work out
(e.g., nondeterministic errors). The development of a POSIX model has been overlapped with this work
in order to clarify the requirements to the VFS.

We estimate that the effort related to VFS and AFS was about four months, of which the technical
aspects – writing ASM rules, specifying and proving invariants and properties – took roughly one month.

The modularization into VFS and AFS allows us to focus on the FFS internals in our future work.
Three important orthogonal aspects remain for future work:
A major decision was that the VFS layer does not store or cache any inode, dentry or page objects

internally. We expect that caching can be introduced by a refinement of the VFS model without the need
to change AFS.

Concurrency is an essential part of the Linux VFS. It leads to locking and synchronization and intro-
duces additional complexity. Work in this direction could benefit from Galloway et al. [8], where Linux
VFS code is abstracted to a SPIN model to check correct usage of locks and reference counters.

Fault tolerance against power loss is of great interest and we are currently proving that the model can
deal with crashes anytime during the run of an operation, using the temporal program logic of KIV [17].
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