
CPAchecker with
Adjustable Predicate Analysis

(Competition Contribution)

Stefan Löwe and Philipp Wendler

University of Passau, Germany

Abstract. CPAchecker is a freely available software-verification
framework, built on the concepts of Configurable Program Anal-
ysis (CPA). CPAchecker integrates most of the state-of-the-art tech-
nologies for software model checking, such as counterexample-guided ab-
straction refinement (CEGAR), lazy predicate abstraction, interpolation-
based refinement, and large-block encoding. The CPA for predicate anal-
ysis with adjustable-block encoding (ABE) is very promising in many
categories, and thus, we submit a CPAchecker configuration that uses
this analysis approach to the competition.

1 Verification Approach

Predicate analysis is a common approach to software verification, and tools like
Blast and SLAM showed that it can be used effectively for software verifica-
tion of medium sized programs. CPAchecker [2] constructs —like Blast— an
abstract reachability graph (ARG) as a central data structure, by continuous
successor computations along the edges of the control-flow automaton (CFA)
of the program. The nodes of the ARG, representing sets of reachable program
states, store relevant information like control-flow location, call stack, and, most
importantly, the formulas that represent the abstract data states.

When single-block encoding (as implemented in Blast) is used, abstractions
are computed for every single edge in the CFA. The major drawback of this
approach is the large number of successor computations, each requiring expensive
calls to a theorem prover. Furthermore, boolean abstraction is prohibitive for
such a large number of successor computations, and only the more imprecise
cartesian abstraction can be used.

Therefore, CPAchecker implements an approach called adjustable-block en-
coding [3], which completely separates the process of computing successors from
the process of computing a predicate abstraction for a formula. The post opera-
tions in this approach (purely syntactically) assemble formulas for the strongest
postcondition. Then, at certain points that can be chosen arbitrarily, the pro-
cedure applies an (expensive) computation of the predicate abstraction for a
given abstract state. This method reduces the number of theorem-prover calls
by effectively combining program blocks of arbitrary size into a single formula
before computing an abstraction. Because the model checker now delegates much
larger problems to the SMT solver (the formulas will contain a disjunction for



each control-flow join point inside a block), this technique is able to leverage
the huge performance increase of SMT solvers being witnessed over the last
decade. Experiments have shown that using adjustable blocks (e.g., loop-free
blocks spanning across function calls) is orders of magnitudes faster than com-
puting an abstraction for every single abstract state. Furthermore, the reduced
number of abstractions (and refinements) makes it feasible to use the more ex-
pensive boolean abstraction, which makes the analysis more precise. This predi-
cate analysis is wrapped in an algorithm for counterexample-guided abstraction
refinement that uses Craig interpolation and lazy abstraction.

2 Software Architecture

CPAchecker is designed as an extensible framework for software verification
and is written in Java. The framework provides the parsing of the input pro-
gram (by using the C parser from the Eclipse CDT project1), interfaces to the
SMT solver and interpolation procedures (using the SMT solver MathSAT42),
and the central verification algorithms. In CPAchecker, every analysis is im-
plemented as a Configurable Program Analysis (CPA) [1], which makes it
easier to implement new concepts (separation of concerns). Different CPAs can
be flexibly combined on demand, enabling reuse of verification components. For
the software verification competition, we use a configuration consisting of the
CPAs for predicate analysis, program-counter tracking, call-stack analysis, and
function-pointer analysis.

3 Strengths and Weaknesses

CPAchecker is meant as an infrastructure for implementing and evaluating in-
novative verification algorithms. Due to that, the framework is not focused on
optimizing as much as possible, but instead advocates a strong compliance of the
theoretical concepts and its respective implementation, thus easing the integra-
tion of new algorithms and concepts. Furthermore, the use of CPAs provides a
high degree of re-usability, which makes the tool kit highly interesting for other
groups, some of which already use CPAchecker to build their own extensions.

From a conceptional point of view, CPAchecker, and the CPA for predi-
cate analysis in particular, lack support for checking multi-threaded or recursive
programs. Further areas of improvement, well documented by the false posi-
tives given in the categories DeviceDrivers and HeapManipulation, include a
more complete handling of pointers as well as proper support for more advanced
constructs of the C programming language, like structs and unions.

4 Setup and Configuration

The source code for CPAchecker is released under the Apache 2.0 license and is
available online at http://cpachecker.sosy-lab.org. Because the tool is written

1 http://www.eclipse.org/cdt/
2 http://mathsat4.disi.unitn.it/

http://cpachecker.sosy-lab.org
http://www.eclipse.org/cdt/
http://mathsat4.disi.unitn.it/


in Java, it runs on almost any platform. The predicate analysis currently works
only under GNU/Linux because the MathSAT library is available only for this
platform. CPAchecker requires a Java 1.6 compatible JDK (e.g., OpenJDK),
Ant 1.7, and the GNU Multiprecision library for C++ (required by MathSAT).
The build process is performed by calling ant from the CPAchecker root direc-
tory. For the purpose of the software-verification competition, we use the trunk

directory in revision 4569 and the configuration -sv-comp12. Thus the command
line for running CPAchecker is

./scripts/cpa.sh -sv-comp12 -heap 12500m path/to/sourcefile.cil.c

For C programs that assume a 64-bit environment (i.e., those in the category
DeviceDrivers64) the below parameter needs to be added:

-setprop cpa.predicate.machineModel=64-Linux

The programs in the category DeviceDrivers need the following additional op-
tion, because they make heavy use of pointers:

-setprop cpa.predicate.handlePointerAliasing=true

For general purpose verification tasks (outside the competition), we recom-
mend the configuration -predicateAnalysis instead. Also, the amount of mem-
ory given to the Java VM needs to be adjusted on machines with less RAM.
CPAchecker will print the verification result and the name of the output di-
rectory to the console. Additional information (such as the error path) will be
written to files in this directory.

5 Project and Contributors

The CPAchecker project was founded in 2007 by Dirk Beyer, and is hosted
by the Software Systems Lab at the University of Passau. CPAchecker is an
international open-source project which is used and contributed to by several
research groups, e.g., the Russian Academy of Science, the Technical University
of Vienna, and the University of Paderborn.

We thank all contributors for their help and efforts spent on the CPAchecker

project. A complete list of contributors is provided on the project homepage
at http://cpachecker.sosy-lab.org/. In particular, we would like to thank Dirk
Beyer as the project leader and main architect, and Peter Häring, Michael Käufl,
and Andreas Stahlbauer for their eager implementation work on CPAchecker

as student assistants.

References

1. D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification.
In Proc. CAV, LNCS 4590, pages 504–518. Springer, 2007.

2. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

3. D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

http://cpachecker.sosy-lab.org/

