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Abstract. This work presents a formal specification and an implemen-
tation of an erase block management layer and a formal model of the
flash driver interface. It is part of our effort to construct a verified file
system for flash memory. The implementation supports wear-leveling,
handling of bad blocks and asynchronous erasure of blocks. It uses ad-
ditional data structures in RAM for efficiency and relies on a model
of the flash driver, which is similar to the Memory Technology Device
(MTD) layer of Linux. We specify the effects of unexpected power failure
and subsequent recovery. All models are mechanized in the interactive
theorem prover KIV.
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1 Introduction

Flaws in the design and implementation of file systems already lead to serious
problems in mission-critical systems. A prominent example is the Mars Explo-
ration Rover Spirit [25] that got stuck in a reset cycle. This incident prompted a
proposal to verify a file system for flash memory [I8[12] as a small step towards
Hoare’s Grand Challenge [I5]. In 2013, the Mars Rover Curiosity also had a
bug in its file system implementation, that triggered an automatic switch to safe
mode.

We are developing such a verified flash file system (FFS) as an implementa-
tion of the POSIX file system interface [29], using UBIFS [16]—a state-of-the-art
FFS implemented in Linux—as a blueprint. In order to tackle the complexity
of the verification of an entire file system implementation, we refine a top-level
abstract POSIX specification in several steps down to an implementation.

File systems for flash memory differ from traditional ones because the hard-
ware does not support overwriting data in-place (in contrast to magnetic disks).

* The final publication is available at Springer via http://dx.doi.org/10.1007/
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The memory is physically partitioned into blocks, each consisting of an array of
pages that can be empty or programmed with data. There are three operations
1) Read a consecutive part of a block, possibly across page boundaries. Empty
pages yield default values, typically bytes 0xFF. 2) Write/Program data to a
whole page that was previously empty. Typically, there is an additional con-
straint that pages in a block must be written in order [I1I8]. 3) Erase a whole
block, i.e., empty all of its pages. The erase operation enables reuse of memory,
though it comes at considerable costs: Erasing is slow and physically degrades
the memory. The number of erase cycles until a block breaks down is thus limited
— between 10* and 10° for typical hardware. Such broken blocks are called bad.

To deal with these characteristics, data is always written to new locations
(out-of-place updates); and erasing is performed asynchronously and in parallel
to read/write access to the flash device. The software component responsible
for this is called the Erase Block Management (EBM) layer. It maintains the
information which blocks are currently available. The interface offered to clients
mirrors the hardware operations, but it is based on logical block numbers instead
of physical ones. The primary task of the EBM is therefore to maintain a mapping
from logical to physical block numbers.

Several significant benefits follow from such a mapping. The EBM layer can
transparently migrate a logical block to a different physical one. This enables
wear-leveling, a method to distribute erase cycles evenly between physical blocks
to prolong the hardware’s lifetime. Furthermore, the client may reuse a logical
block number after issuing an erase request, even before the corresponding phys-
ical erase has been performed.

This work presents the formal models of our project Fiesystom Implomentation
that are related to erase block management. As the bot- (UBIFS)
tom layer (Sec. we specify a thin abstraction of the
driver for flash memory that supports the operations read,
write and erase. It is modeled after the Memory Technol-
ogy Device (MTD) interface of Linux. We also define a
simple EBM specification (Sec. [3]) to capture the behav-
ior visible to the upper layers. The main design goal is to | UBI I—C°—| MID |
abstract from implementation details as far as possible to
facilitate the verification of clients wrt. the specification.
Note that this abstract model only needs to consider logical blocks. Finally, we
give an implementation (Sec. that supports wear-leveling, handling of bad
blocks and asynchronous erasure of blocks using additional data structures in
RAM for efficiency. Its design is inspired by the state-of-the-art Unsorted Block
Image layer (UBI) [22[14]. Our implementation also provides strong guarantees
in the event of an unexpected power failure. However, the effects are subtle and
visible to the client (and thus occur in the abstract EBM as well). For the EBM
specification and the MTD layer, we also contribute a proof of certain invariants.

Eraseblock Management Layer

Fig. 1: Lower Layers

Figure [1] visualizes some of the layers of our FFS. The part shaded in grey is
subject of this paper, namely the abstract EBM, the implementation UBI and
driver abstraction MTD. The dashed lines indicate functional equivalence, or



more formally, refinement relations. The erase block management is utilized by
the file system either directly or through a write-back cache (the write buffer
"WBUF”). The interface symbol —6— denotes dependencies between the com-
ponents. The refinement is already proved, but a description is out of scope for
this paper. A correctness proof of the FFS then only has to consider the ab-
stract specification of an EBM’s behavior, which is much more suitable for the
verification of clients — especially wrt. the effects of unexpected power failure.

We have previously published models of the top-level POSIX specification
[10], of the Virtual Filesystem Switch (VFS) [9] and of an abstract version of
UBIFS [28]; [10] also presents a correctness proof of VFS. These models consti-
tute the upper layers of the refinement stack that are not shown in Fig.

We use KIV to mechanize our models as ASMs [I] based on structured alge-
braic specifications [26] with freely and non-freely generated algebraic datatypes.
For proofs about programs we use the wp-calculus. All our models and proofs
are available online [24].

2 Hardware Model (MTD)

This section defines our assumptions about the hardware, captured by the be-
havior of an abstract interface representing the driver.
Flash memory is organized as an array of physical erase blocks (PEBs):

state var pebs : Array(Peb) where (1)
data Peb = peb(data : Arraypgg s1zz{Byte), £i1l : N bad : B)

Each PEB stores a byte-array data of fixed length PEB_SIZE that is implicitly
partitioned into pages of length PAGE_SIZE. A PEB stores a page-aligned counter
f£ill that tracks the part of the block that contains programmed pages, i.e.,
only data above £ill is known to be EMPTY and can be written to. Note that
the fill counter cannot be accessed by software. It is an auxiliary state only used
to enforce that pages are written sequentially and never overwritten. PEBs also
carry a hardware-supported marker bad that is set by the EBM or the file system
after access failures to prevent future usage of the block.

Figure [2|shows the specification of the operations on this layer. Value param-
eters are separated from reference parameters by semicolon. The state variable
is passed implicitly. The if-test at the beginning of operations reflects the pre-
condition. With the exception of mtd_isbad, each operation requires that the
respective physical erase blocks is not marked as bad. Furthermore, all offsets
must be in bounds; offsets must additionally be page-aligned for mtd_write. We
tacitly omit an additional precondition n < #pebs for all operations.

The operation mtd_write models the fact that pages are written sequentially
by a loop. The function copy(src, offp, dst, off;,n) returns the result of copying
the value from index offy +1 in src to index off; +4 in dst, for all ¢ with 0 < i < n.
We also specify the possibility of hardware failures: either the body of the loop
executes normally, or writing of the current page fails nondeterministically and



mtd_write(n, off, len, buf; err)
if  pebs[n].£ill < off A off + len < PEB_SIZE A — pebs[n].bad
A page-aligned(off) A page-aligned(len) then
err ;= ESUCCESS, m:=0
while err = ESUCCESS A m # len do
{ pebs[n].data:= copy(buf, m, pebs[n].data, off + m,PAGE_SIZE)
pebs[n|.£i1l = off + m + PAGE_SIZE
m :=m + PAGE_SIZE }
or err:=EIO

mtd_read(n, off, len; buf, err) mtd_isbad(n; bad)
if off + len < PEB_SIZE A — pebs[n].bad then bad = pebs[n].bad
buf := copy(pebs[n].data, off, buf, 0, len)
mtd_markbad(n; err)
mtd_erase(n; err) if — pebs[n].bad then
if — pebs[n].bad then pebs[n].bad = true
pebs|n] := peb(EMPTY_PEB, 0, false)

Fig.2: MTD Operations

a corresponding error code EIQ is returned. Similarly, all other operations may
also fail nondeterministically. We omit the respective code in each operation for
brevity.

This model makes the following assumptions about the hardware:

1. Page writes and block erasure can be viewed as atomic operations.

2. Success of an operation can be recognized, i.e., an error is not returned by
mistake.

3. Conversely, hardware failure can also be detected reliably. In particular, reads
that produce garbage can be recognized.

4. An unsuccessful page write/block erasure does not modify the state.
5. An unexpected power failure has no effect on the state of the flash device.

Assumption 4 is not realistic and we will relax it to a certain degree. For example,
checksums can be used to recognize certain kinds of data corruption. However,
on the level of MTD there is no possibility to express such application-specific
concepts.

The model maintains the following invariant for all peb = pebs[i] with ~peb.bad:

invariant = page-aligned(peb.fill) A peb.fill < PEB_SIZE (2)
A Vn. peb.£ill < n < PEB_SIZE — peb.data[n] = EMPTY

It specifies that the fill count is a multiple of PAGE_.SIZE and that all bytes
above (inclusive) are empty. The invariance of this trivially follows from the
preconditions of the operations.
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3 Abstract EBM Layer Specification

The erase block management layer essentially provides the same functionality
as the driver/MTD—namely read, write and erase—though it is based on log-
ical erase blocks (LEBs). These are mapped on-demand to physical ones. This
indirection enables a number of desirable features, namely asynchronous erase,
hiding of bad blocks from the application, wear-leveling and trivial support for
several volumes (i.e., partitions) on one device. However, the way this mapping
is stored on flash leads to subtle differences between the behavior of the EBM
and MTD in the presence of power failures. These effects can not be hidden
completely by the implementation and are consequently present in the formal
EBM specification as well. We therefore informally describe first how the imple-
mentation works, and then define an abstract EBM model.

Figure [3] shows the logical view of the device at the top with consecutive
blocks numbered 0,1,..., and the physical device at the bottom. Bold arrows
denote which physical block is allocated for a logical one. For example, block 0
is mapped to 0, whereas the data of logical block 2 is stored in physical block 1.
This forward mapping is kept in RAM.

An inverse mapping (displayed by thin arrows) is stored on flash in the
grey headers of physical blocks. The in-memory representation of the forward
mapping is initially built during system startup by reading the headers of each
physical block, and it is lost during power-failure.

A logical block that has no associated physical one (such as the dashed
blocks 1 and 3) is implicitly empty, i.e., it has previously been erased. As soon as
a write to such a block occurs, a new physical block is allocated and the mapping
is extended both in memory and on flash.

The mapping to a physical block is in general deallocated by requesting
an asynchronous erase, also called unmapping the LEB. The logical block may
be reused immediately after unmapping, however, the old physical block still
contains the inverse mapping, as it is the case for LEB 1 in the example. When
the system recovers from power failure in such a situation, the mapping for logical
block 1 will re-appear with some old data. Since it would be rather difficult to
prevent this effect without sacrificing the lazy allocation of physical erase blocks,
the application/file system is expected to deal with it; or alternatively use a less
efficient synchronous version of logical block erasure. Note that several PEBs
with the same inverse mapping may exist simultaneously. These are distinguished
by sequence numbers in PEB headers (see Sec. [4).



ebm_write(v,, off, len, buf)
if  avols[v][l].ismapped A avols[v][l].£111 < off A off + len < LEB_SIZE
A page-aligned(off) A page-aligned(len) then
choose n with n < len A page-aligned(n) in
avols[v][l].data = copy(buf, 0, avols|v][l].data, off , n)
if n# 0 then avols[v][l].fill:=off +n
if n = len then err :=ESUCCESS else err:=EIO

ebm_read(v,l, off, len; buf)
if off + len < LEB_SIZE then
if avols[v][l].ismapped then buf :=copy(avols[v][l].data, off , buf,0, len)
else buf :=£ill-buffer(buf, len, EMPTY)

ebm_erase(v, 1)
{ avols[v][l] :=erased,  err:=ESUCCESS }
or { avols[v][l] ;== unmapped, err:=EIO0 }

ebm_map(v, ) ebm_create_volume(n;v)
if — avols[v][l].ismapped then choose vo with —wg € avols in v:=wg
avols[v][l] :== mapped (EMPTY_LEB, 0) avols[v]:= mkarray(Leb)(n)
forall [ <n do
ebm_unmap(v, ) avols[v][l] .= erased

avols[v][l] := unmapped

Fig.4: EBM Operations

We will now formally specify the EBM layer in a way so that it only main-
tains logical blocks but encompasses the effect described above. The state of the
model consists of a partial function avols mapping volume identifiers V to arrays
of logical blocks: A mapped LEB stores an array data of bytes together with the
counter £ill similarly to MTD (|1). However, a LEB has a smaller size than a
PEB due to the inverse mapping stored at the beginning of each physical block by
the implementation. Mapped blocks leb are recognized by the test leb.ismapped.
Otherwise, a logical block has been erased asynchronously (unmapped) or syn-
chronously (erased). Note that the EBM implementation handles bad blocks
transparently, i.e., there is no need to model them in the abstract interface and
state.

state var avols : V -+ Array(Leb) where
data Leb = mapped(data : Array;gg srze(Byte), £i11 : N)

| unmapped | erased

Figure |4 shows the operations on this layer. The preconditions—denoted by
if-statements at the beginning of operations—are similar to the ones of MTD,
namely the respective offsets must be in bounds and a multiple of PAGE_SIZE.
Blocks are addressed by a volume identifier v and the logical block number . We



ebm_reset_recover(; err)
choose avols’, err’ with (err’ = ESUCCESS — inv(avols’) A avols C avols’)
avols = avols’
err =err’

Fig. 5: Effect of a Power-failure on the state of the EBM

tacitly assume that v denotes a valid volume v € avols, and that I < #avols[v].
Additionally, the operation ebm_write requires the block [ to be mappedE

Writing to a block may fail nondeterministically. In contrast to Fig. [2] it is
not realized by a loop but simply by writing a (non-strict) prefix of length n of
the actual data. The operation succeeds if the whole data is written. The field
£il1l is updated only if n # 0.

A physical erase block for an LEB is allocated via the operation ebm map.
Operations ebm_erase and ebm_unmap request synchronous resp. asynchronous
deallocation. Similar to our hardware model, nondeterministic failures may occur
(partly omitted in Fig. [4), and we assume that failure as well as success can
be detected reliably. In the case of such errors the state is not modified by any
operation, with the exception of erase, which may set the respective logical erase
block to unmapped. This means that erase may update the in-memory mapping
although it failed to invalidate the remains of the inverse mapping stored on flash.

Unsurprisingly, an invariant inv analogous to formula is maintained by
all operations. We call a state of the EBM consistent if it satisfies this invariant.

Possible effects of a power failure and the subsequent recovery are specified
by an extra operation ebm_reset_recover shown in Fig.[5] After a power failure,
the EBM implementation reads the mapping stored in each physical erase block
and tries to restore its state. This may fail due to read errors. For an unmapped
logical erase block there may still be a physical erase block storing the inverse
mapping, as for example PEB 2 in Fig. [3] Thus, the logical erase block 1 will
be re-mapped with the contents found in PEB 2. In the model, this leads to a
state avols’ that is “greater” than avols before the crash, formally specified by
the relation C, which holds iff

1. awvols and avols’ contain the same volume identifiers and corresponding vol-
umes have the same size
2. if avols[v][l] # unmapped then avols’[v][l] = avols[v][l].

Thus, both states are identical with the exception of previously unmapped logical
erase blocks, which may be arbitrary after a reset.

4 EBM Implementation

This section describes the implementation of the functionality of Sec. |3 on top
of the MTD hardware model of Sec. The implementation has several sub-
components as visualized by Fig. [6] Grey boxes denote functional components.

! The full model actually checks for this condition and maps the block on-demand.
This is omitted for brevity here.
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Fig. 6: Subsystems of the Implementation

For example, the whole layer is represented by “interface operations” that pro-
vides the EBM interface to applications, as denoted by the knob at the top. It
maintains the in-memory data structure that stores the forward mapping from
logical to physical blocks, labeled “mapping table”.

Allocation “get” and asynchronous erase “put” of physical blocks are man-
aged by the wear-leveling subsystem; it maintains the erase queue and some
information about the state of physical blocks in the “wear-leveling array”. Asyn-
chronous erasure and wear-leveling are background operations.

The I/0 layer provides operations not only to read and write parts of the
flash memory, but also to convert on-disk data structures such as block headers
and the volume table to and from a byte-representation.

This section is structured as follows: First the data structures needed for
an implementation of the interface operations are discussed. Afterwards, the
asynchronous erasure and wear-leveling subsystem are discussed. Finally, we
outline how the in-memory state is recovered from flash.

4.1 Data Structures & Interface Operations

The forward mapping vols (bold arrows in Fig. [3) is stored in RAM. It maps
(- indicates a finite map) each volume identifier v € vols to an array, which
is indexed by logical block numbers. The value stored is either a physical block
number if one has been allocated, or the constant unmapped otherwise.

state var vols : V + Array(PebRef) where
type PebRef = N + unmapped

Fig. [7] shows the layout of a PEB. The first two pages are used to store two
headers. The remaining pages store application data. The first page contains an
erase counter associated with the physical erase block (erase counter- or EC-
header). The erase counter is used for wear-leveling.

The second page of allocated PEBs contains the inverse mapping (thin arrows
in Fig. [3)) as the volume identifier header (VID-header). It stores the correspond-
ing volume identifier and logical block number. Sequence numbers sqn distin-
guish multiple PEBs with equal vol, leb pairs: During system startup/recovery,



write(v,l, off, len, buf) unmap(v, )
if wols[v][l] # unmapped then if wols[v][l] # unmapped then
io_write_data(vols[v][l], off , len, buf) vols[v][l] := unmapped
wl_put_peb(v,, vols[v][l])
read(v,l, off , len; buf)

if wols[v][l] = unmapped then create_volume(n;v)
buf :=fill-buffer(buf, len, EMPTY) choose g
else with vo ¢ vols A vy # VITBL_VOLID in
io_read data(vols[v][l], off, len; buf) v =10
vols[v] := mkarray(PebRef)(n)

erase(v,l) forall [ <n do

unmap(v, 1) vols[v][l] := unmapped

wl_flush(v,1) io_write_vtbl(vols)
map(v, 1)

if wols[v][l] = unmapped then
wl_get_peb(;m)
io_write_vidhdr(m, vidhdr(v,l, maz-sqn,0,0))
max-sqn = mazr-sqn + 1
if err = ESUCCESS then wols[v][l] :=m

Fig. 8: Implementation of the Operations (slightly simplified)

the highest sequence number denotes the newest block for a given inverse map-
ping. An (optional) size and checksum of the contents of the block are used for
atomic block-writes during wear-leveling. Two headers are necessary, because
every PEB must store its erase counter, but only once a PEB is allocated an
inverse mapping is required. Formally, the headers are defined as:

data EcHeader = echdr(ec:N)
data VidHeader = vidhdr(vol: V,1leb: N, sqn: N,size : N, checksum : N)

We specify I/O operations (prefixed by io.) for reading and writing EC/VID-
headers and data pages. Their purpose is twofold: On the one hand encoding from
and to byte-representations is performed. On the other hand the operations do
the necessary offset computations. For example io_write_data(n, off, len, buf)
simply calls mtd_write(n,2 - PAGE_SIZE + off, len, buf). Furthermore, they add
additional hardware failures on top of the hardware model of Sec. |2 Program-
ming a VID-header for example may also fail by writing garbage, i.e., data that
does not contain a valid VID-header, into the second page.

The main operations are shown in Fig.[§in a slightly simplified version. In the
actual implementation a hardware failure triggers several retries of an operation
before giving up and returning an error.

Reading and writing of a logical block (v,[) evaluates the mapping vols[v][l]
to obtain the physical block number and calls the respective I/O-operation. The
operation map requests a new physical block m from the wear-leveling subsystem
by calling wl_get_peb and writes the VID-header using a new sequence number.



wl_put_peb(lebref,n)
wla[n].status = erasing
eraseq ‘= enqueue(eq-entry(n, lebref ), eraseq)

wl_get_peb(;n)
let ecs = {wlaln].ec | wla[n].status = free An < #wla} in
if ecs #( then
choose m with wla[m|.status = free A p(wla[m].ec, ecs) in
n=m
wla[n].status :=used

atomic_change(v,l, m, len, buf, err)
len = datasize(buf)
io_write_vidhdr(m, vidhdr(v,l, maz-sqn, len, checksum(buf, len)); err)
mazx-sqn = mazr-sqn + 1
if err = ESUCCESS A len > 0 then
io_write_data(m,0,align(len, PAGE_SIZE), buf)

Fig.9: The Wear-Leveling Subsystem

If the write was successful, the mapping is updated. Conversely, unmap removes
a logical block (v,1) from the mapping and releases the corresponding physical
block with wl_put_peb which puts the PEB into the erase queue. Similarly, erase
first removes the in-memory mapping. Additionally, all PEBs that still store an
inverse mapping for the LEB are erased synchronously via wl_flush.

A new volume is created by selecting an unused volume identifier, setting
the state of each logical block to unmapped and writing the new volume table to
flash. The volume table encodes a partial function from user-accessible, existing
volumes to their size. Apart from user-accessible volumes, there are also hidden
volumes. We currently only use the hidden volume VTBL_VOLID to store the
volume table itself.

4.2 Asynchronous Erasure & Wear-Leveling

Whether a physical erase block is free, allocated, scheduled for erasure or is
already unusable is stored alongside its erase counter in the wear-leveling array.
It is used to find suitable free PEBs for the interface operations and appropriate
free and used PEBs for wear-leveling.

state var wla : Array( WiEntry) where

data WiEntry = wl-entry(ec : N, status : WiStatus)

data WiStatus = free | used | erasing | erroneous
Every free and used PEB has a valid EC-header and its erase counter stored on
flash and in memory match. The page for the VID-header and the data pages of

a free physical erase block are not yet programmed. Erroneous PEBs are already
marked as bad on flash.
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The PEBs scheduled for erasure are additionally kept in a queue. It is used
to assign work to the background operation for asynchronous erasure. For syn-
chronous erasure of one LEB (v,l) € V x N it is necessary to locate all PEBs
that belonged to (v,l). To easily locate them without reading from flash, each
entry of the queue caches the inverse mapping stored in the corresponding PEB.

state var eraseq : Seq(EraseqEntry) where
data FraseqEntry = eq-entry(pnum : N, lebref : LebRef)
data LebRef =none+V x N

Fig. [9] shows the implementation of allocation and deallocation of a physical
erase block. Allocation choses a free PEB with certain restrictions ¢ on its erase
counter—e.g. medium wear among the free PEBs—and marks it as used. De-
allocation of a PEB n that was mapped at LEB lebref beforehand (or known to
have an invalid VID-header if lebref is none) adds a corresponding entry to the
erase queue.

The background operation for asynchronous erasure (not shown) dequeues
an entry from the erase queue and then tries to erase the PEB synchronously
by calling mtd_erase and to write a new EC-header with an increased erase
counter multiple times. If this fails, the PEB is marked as bad via mtd_markbad.
The operation wl_flush (not shown) iterates over the erase queue and similarly
erases all PEBs that still belong to a specific LEB synchronously.

Wear-leveling is implemented as choosing a used and a free physical erase
block of low resp. high wear. If the difference of the erase counters exceeds a cer-
tain threshold the VID-header and data region of the used PEB are read. The
operation atomic_change as shown in Fig. [J]is the core of the wear-leveling al-
gorithm. Conceptually, it must write a new inverse mapping for the logical erase
block (v,1) and the buffer’s contents into the free physical erase block m. How-
ever, there are two problems that need to be addressed. First, programming all
pages of the data region of the new PEB could preclude successive write opera-
tions from the client that were allowed on the previous PEB. Therefore, only the
contents up to the last non-EMPTY byte are written, calculated as datasize(buf).
From the MTD invariant it follows that successive writes by a client remain
allowed. Second, additional measures are needed to ensure correct recovery from
an unexpected power-loss during wear-leveling. Fig. [L0]shows the different inter-
mediate states of the target physical erase block during wear-leveling. At the top
the contents of a free PEB are shown. The bold arrows denote state transitions
due to a call of an I/O operation. An unsuccessful write to the VID-header is
easily detectable during recovery, either the VID-header is empty or contains
garbage. After a successful write of the VID-header, the recovery would read the
PEB and discover that it stores the newest inverse mapping for the logical erase
block (v, ). However, this is clearly wrong, since the actual data has not yet been
copied to this PEB and successive read operations would just return bytes with
the value EMPTY. Therefore, the data size of the contents of the original PEB is
also stored in the VID-header. Rebuilding the mapping after a reset then only
takes a PEB into consideration if the data size calculated over its data pages is

11
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Fig. 10: States of the new PEB during and after atomic_change

at least as large as the value in the VID-header requires. This measure is also
sufficient to detect a partial write of the data. We store a checksum in the VID-
header and additionally allow failures during programming of the data pages
that can be detected by either the data size or the checksum. If the copying was
successful, the in-memory mapping is updated accordingly. Otherwise, the new
physical erase block is scheduled for erasure and the old PEB is used.

Note that the checksum is only calculated up to the initial data size. Thus, a
successive write to the LEB after wear-leveling maintains that the data size and
checksum stored in the VID-header match the values calculated from the con-
tents of the data region. In summary, these additional fields allow to distinguish
valid (solid) from invalid (dotted) states of the target PEB.

The second problem is not specific to this implementation. Every model that
either 1) updates the mapping before copying the actual data or 2) allows failures
that write a valid mapping but invalid data simultaneously has to deal with this
issue. In our model the inverse mapping must be updated first because it is
stored in the second page and we enforce that pages are written sequentially.

If asynchronous erasure and wear-leveling are scheduled in between oper-
ations, do not fail and there are enough free PEBs to move to, the difference
between erase counters of good PEBs is bounded by a constant. Thus, the device
is worn out evenly.

With the operation atomic_change it is possible to implement an additional
interface operation that atomically exchanges the contents of a logical erase
block. On the abstract layer of Sec. [3] this is then specified as shown in Fig. If
the operation fails the LEB is unchanged. In contrast to ebm_write, ebm_change
is more general and has a more favorable behavior wrt. failures. However, on the
concrete layer this comes at the price of one additional erasure of a block. Thus,
it is only desirable to use ebm_change if the additional guarantees are actually
required. In UBIFS this functionality is for example used to write a new super
block.
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ebm_change(v, [, n, buf)
avols[v][l] := mapped(copy(buf,0,EMPTY_LEB, 0,n),n)

Fig.11: Atomically Exchange the Contents of an LEB

recover(; err)
let recs = () in
scan_all(; recs, err)
if (VTBL_VOLID, VTBL_LNUM) € recs then let uvtbl in
io_read_vtbl(recs[VITBL_VOLID, VTBL_LNUM|.pnum; vtbl, err)
if err = ESUCCESS then
init_volume_sizes(uvtbl;)
init_volume mappings(recs;)

Fig. 12: Rebuilding of the in-memory State from Flash

4.3 Power Failure & Recovery

The state of the EBM implementation is in RAM and only the MTD state is
persistent. An unexpected power failure may invalidate the in-memory state, but
is assumed to preserve everything stored on flash unaltered.

Fig. shows how the in-memory state is rebuilt from the data structures
stored on flash. We assume that after a power failure this operation is first
executed, before any client can issue a call. First, all physical erase blocks are
scanned (scan_all), i.e., it is checked whether a PEB is marked as bad and
has valid EC- and VID-headers. The PEB’s entry in the wear-leveling array, the
erase queue and maximum of the sequence numbers are updated accordingly.
Instead of updating the in-memory mapping wvols directly an intermediate data
structure

recs : V xX N -+ RecoveryEntry where
RecoveryEntry = recovery-entry(pnum : N, sqn : N)

is introduced. In contrast to vols, the data structure contains all encountered
combinations (v, 1) of volume identifiers and logical block numbers and the cor-
responding physical erase block. This includes hidden volumes and logical erase
blocks beyond the—at this point unknown—size of the corresponding volume.
The sequence number of the corresponding PEB is also cached. It is used to
determine during the scanning which one of two PEBs belonging to the same
LEB stores the most recent inverse mapping in case both are valid.

Afterwards, it is checked that a volume layout was found during scanning.
Mounting fails if no layout is present. Otherwise, the volume table is read and
for each non-hidden volume identifier a volume of the stored size initialized to
unmapped is added to vols (init_volume_sizes). Finally, all mapping informa-
tion from the intermediate data structure recs referring to an existing volume
and within its bounds is transferred to vols (init_volume mappings).
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The recovery does not alter the MTD state. A power-loss during the operation
therefore does not need any additional concepts.

It is crucial for the correctness of the recovery that the in-memory map-
ping corresponds to the most recent (inverse) mapping stored on-disk after each
operation, among those PEBs that are wvalid.

To see that it is necessary to have the most recent mapping in RAM, as-
sume the opposite: There are two PEBs A and B and both store a mapping
for a LEB (v,1). In memory (v,!) is mapped to A, although B has the higher
sequence number. If the contents of both data regions are identical, assume that
a write operation is requested by the client on LEB (v,[) with non-empty data.
Afterwards, A and B’s contents definitely differ. In the event of a power failure,
the subsequent recovery will restore a mapping from (v,l) to B. Reading the
mapped LEB (v,!) before and after the power-loss will yield different results.

During wear-leveling there are intermediate states that do not yet have the
correct data, but a newer version of the mapping—the dotted states in Fig.
Therefore, it is not sufficient to only consider the sequence number. The data size
and checksum of the PEB also need to be taken into account, i.e., the mapped
PEB must be valid.

5 Related Work

The models [3I2/4] in Z notation of an ONFI-compliant [II] device are concep-
tually below our model of a driver for flash memory. It would be possible to
provide an implementation of our MTD model on top of their hardware model.

The block manager in the Alloy models [T9/20] maps logical to physical pages
and has a similar task as our EBM. However, storing and updating an on-disk
mapping is not treated. Power failures are only considered during writing of a se-
quence of pages. Their specification of power failures and recovery is intertwined
and uses auxiliary variables for the status of a pages. It is not immediately clear
to us, how one would disentangle the specification in a real implementation.

Flash Translation Layers (FTLs) [B] and some FFSs [6/13] similarly store
information about the state of a page or block in out-of-band (OOB) data,
which allows programming of individual bits. This simplifies the recovery from
power failures during wear-leveling, since it is possible to set a validity bit after
copying the data. However, NOR flash devices do not have OOB data and some
NAND devices use the whole area for error-correction codes [30]. Therefore, our
EBM implementation is more generic. FTLs that support an operation similar to
unmap (see “trim” command in Section 7.10 in [I7], [21] clarifies the semantics)
also have the problem that pages re-emerge after a power failure.

In the refinement-based approach [7] with Event-B, it is assumed that book-
keeping information is stored in every page, i.e., a page knows the version of
the file it belongs to and the offset within the file. Updating the contents of
one page is atomic. If two pages store the same inverse mapping after a power
failure during wear-leveling, its contents are identical and chosing either suffices.
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However, this approach uses more memory for the mapping and requires reading
every page of the flash device during startup in order to rebuild the mapping.

None of the formal models [BIT97] considers the limitation to sequential
writes within an erase block, although non-sequential writes are often not sup-
ported by newer ONFI-compliant devices [S8ITT].

6 Conclusion

We have presented a formal specification of an erase block management layer and
an implementation based on an ONFI-compliant hardware model. Performance
aspects such as asynchronous erasure and quality aspects such as wear-leveling
are hidden from clients of the abstract model. Only power failure is visible, but
its abstract specification is much more tractable for the verification of clients. As
a consequence we can focus on the log-structure, indexing and write buffering of
a FFS in the future.

The refinement proof between the abstract EBM model and the implemen-
tation is already completed and establishes that the implementation’s behavior
is captured by the abstract EBM specification. We also show that the recovery
works as specified if a power failure occurs in between or during operations using
the temporal logic of KIV [27]. Due to space limitations, we could not provide a
description of these proofs in this paper. Quite some time was spent on under-
standing which concepts are relevant and what assumptions regarding failures
are necessary to ensure that power loss during operations is handled correctly.

We are currently working on an automatic translation from our models to
Scala [23] code, allowing us to run and test our implementation on top of a
Memory Technology Device in Linux.

Several aspects remain for future work. In the implementation of UBI wear-
leveling and erasure are performed in a background thread and concurrent write
operations are permitted. The implementation uses locks on a per-LEB level
to ensure that the background operations do not interfere with the interface
operations. We did not yet verify this kind of concurrency. There is also an
unresolved issue with unstable bits [31], resulting from a power cut during an
erase operation. They are not covered by our hardware model.
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