
BDD-Based Software Model Checking

with CPAchecker

Dirk Beyer and Andreas Stahlbauer

University of Passau, Germany

Abstract. In symbolic software model checking, most approaches use
predicates as symbolic representation of the state space, and SMT solvers
for computations on the state space; BDDs are sometimes used as auxil-
iary data structure. The representation of software state spaces by BDDs
was not yet thoroughly investigated, although BDDs are successful in
hardware verification. The reason for this is that BDDs do not efficiently
support all operations that are needed in software verification. In this
work, we evaluate the use of a pure BDD representation of integer vari-
able values, and focus on a particular class of programs: event-condition-
action systems with limited operations. A symbolic representation using
BDDs seems appropriate for this particular class of programs. We imple-
ment a program analysis based on BDDs and experimentally compare
three symbolic techniques to verify reachability properties of ECA pro-
grams. The results show that BDDs are efficient, which yields the insight
that BDDs could be used selectively for some variables (to be determined
by a pre-analysis), even in general software model checking.

1 Introduction

The internal representation of sets of reachable abstract states is an important
factor for the effectiveness and efficiency of software model checking. Binary deci-
sion diagrams (BDD) [10] are an efficient data structure for manipulation of large
sets, because they represent the sets in a compressed representation, and opera-
tions are performed directly on the compressed representation. BDDs are used,
for example, to store the state sets in tools for hardware verification [11,12], for
transition systems in general [16], for real-time systems [8, 13], and push-down
systems [14]. There are programming systems for relational programming [2]
based on BDDs, and the data structure is used for points-to program analy-
ses [1]. The current state-of-the-art approaches to software verification [3] are
either based on satisfiability (SAT) and SAT-modulo-theories (SMT) solving,
or on abstract domains from data-flow analysis. BDDs were so far not used as
main representation for the state space of integer variables (only as auxiliary
data structure). For example, software verifiers based on predicate analysis [4,6]
use BDDs for storing truth values of predicates. There exists a version of Java
PathFinder that supports the annotation of boolean variables in the program
such that the analyzer can track the specified boolean variables using BDDs,
which was shown to be efficient for the verification of software product lines [19].

A. Kučera et al. (Eds.): MEMICS 2012, LNCS 7721, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 D. Beyer and A. Stahlbauer

This paper applies BDDs as representation of state sets in the verification of
C programs, with a focus on event-condition-action (ECA) systems that use a
very limited set of operations. Such ECA programs were used as benchmarks in
a recent verification challenge [15] 1. For such a special sub-class of ECA pro-
grams, BDDs seem to be promising as representation for two reasons. First, the
programs that we consider consist of a single loop in which many conditional
branches occur. In each of those branches, a condition is a boolean combina-
tion of equalities and negated equalities between variables and values, and an
action is a sequence of assignments of values to variables. This means that all
required operations are in fact efficiently supported by BDDs, and a symbolic
representation using BDDs seems indeed appropriate for this particular class of
programs. Second, due to the complex control and data flow of these programs,
they are challenging verification tasks for traditional techniques. The formulas
that are used as representation in predicate-based approaches represent many
paths with a complicated control structure, which are sometimes overwhelming
for the SMT solver.

Contribution. We implement a configurable program analysis (CPA) based on
BDDs and experimentally compare three symbolic techniques to verify reacha-
bility properties of ECA programs. The contribution of this work is not to use
BDDs for software verification (which was done before, e.g., in Moped [14]), but
to experimentally show that using BDDs as representation for certain variables
(which are used in a restricted way) can be more efficient than other (more ex-
pressive, but also more expensive) encodings. The insight is that it could be a
promising approach to software verification to analyze the usage of each vari-
able in a pre-analysis and then determine for each variable the most efficient
representation based on the result.

2 Preliminaries

In order to define a verifier, we need an iteration algorithm and a configurable
program analysis, which defines the abstract domain, the transfer relation, as
well as the merge and stop operators. In the following, we provide the definitions
of the used concepts and notions from previous work [5].

Programs. We consider only a simple imperative programming language, in
which all operations are either assignments or assume operations, and all vari-
ables are of type integer.2 We represent a program by a control-flow automaton
(CFA), which consists of a set L of program locations (models the program
counter pc), an initial program location pc0 (models the program entry), and a
set G ⊆ L×Ops×L of control-flow edges (models the operation that is executed
when control flows from one program location to another). The set X of program

1 http://leo.cs.tu-dortmund.de:8100/isola2012/
2 The framework CPAchecker [6], which we use to implement the analysis, accepts
C programs and transforms them into a side-effect free form [18]; it also supports
interprocedural program analysis.

http://leo.cs.tu-dortmund.de:8100/isola2012/


BDD-Based Software Model Checking with CPAchecker 3

variables contains all variables that occur in operations from Ops. A concrete
state of a program is a variable assignment c : X ∪ {pc} → Z that assigns to
each variable an integer value. The set of all concrete states of a program is
denoted by C. A set r ⊆ C of concrete states is called a region. Each edge g ∈ G
defines a (labeled) transition relation

g→ ⊆ C×{g}×C. The complete transition
relation → is the union over all control-flow edges: → =

⋃
g∈G

g→. We write c
g→c′

if (c, g, c′) ∈ →, and c→c′ if there exists a g with c
g→c′. A concrete state cn is

reachable from a region r, denoted by cn ∈ Reach(r), if there exists a sequence
of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all 1 ≤ i ≤ n, we
have ci−1→ci. Such a sequence is called feasible program path. In order to de-
fine an efficient program analysis, we need to define abstract states and abstract
transitions.

Configurable Program Analysis. We use the framework of configurable pro-
gram analysis (CPA) [5] to formalize our program analysis. A CPA specifies
the abstract domain and a set of operations that control the program analysis.
A CPA is defined independently of the analysis algorithm, and can be plugged
in as a component into the software-verification framework without working on
program parsers, exploration algorithms, and other general data structures. A
CPA C = (D,�,merge, stop) consists of an abstract domain D, a transfer re-
lation � (which specifies how to compute abstract successor states), a merge
operator merge (which defines how to merge abstract states when control flow
meets), and a stop operator stop (which indicates if an abstract state is cov-
ered by another abstract state). The abstract domain D = (C, E , [[·]]) consists
of a set C of concrete states, a semi-lattice E over abstract-domain elements,
and a concretization function that maps each abstract-domain element to the
represented set of concrete states. The abstract-domain elements are also called
abstract states.

Using this framework, program analyses can be composed of several compo-
nent CPAs. We will now give the definition of a location analysis; our complete
analysis will be the composition of the location analysis with the BDD-based
analysis that we will define later.

CPA for Location Analysis. The CPA for location analysis L =
(DL,�L,merge

L
, stop

L
) tracks the program counter pc explicitly [5].

1. The domain DL is based on the flat semi-lattice for the set L of program
locations: DL = (C, EL, [[·]]), with EL = ((L ∪ {	}),
), l 
 l′ if l = l′ or l′ = 	,
[[	]] = C, and for all l in L, [[l]] = {c ∈ C | c(pc) = l}.
2. The transfer relation �L has the transfer l

g�Ll
′ if g = (l, ·, l′).

3. The merge operator does not combine elements when control flow meets:
merge

L
(l, l′) = l′.

4. The termination check returns true if the current element is already in the
reached set: stop

L
(l, R) = (l ∈ R).

Analysis Algorithm. Algorithm 1 shows the core iteration algorithm that
is used to run a configurable program analysis, as implemented by tools like
CPAchecker. The algorithm is started with a CPA and two sets of abstract



4 D. Beyer and A. Stahlbauer

Algorithm 1. CPA(D, R0,W0) (taken from [5])

Input: a CPA D = (D,�,merge, stop),
a set R0 ⊆ E of abstract states,
a subset W0 ⊆ R0 of frontier abstract states,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable abstract states,
a subset of frontier abstract states

Variables: two sets reached and waitlist of elements of E
1: reached := R0;
2: waitlist := W0;
3: while waitlist �= ∅ do
4: choose e from waitlist; remove e from waitlist;
5: for each e′ with e�e′ do
6: for each e′′ ∈ reached do
7: // Combine with existing abstract state.
8: enew := merge(e′, e′′);
9: if enew �= e′′ then
10: waitlist :=

(
waitlist ∪ {enew}

) \ {e′′};
11: reached :=

(
reached ∪ {enew}

) \ {e′′};
12: // Add new abstract state?
13: if ¬ stop(e′, reached) then
14: waitlist := waitlist ∪ {e′};
15: reached := reached ∪ {e′};
16: return (reached,waitlist)

states as input: the set R0 (reached) contains the so far reached abstract states,
and the set W0 (waitlist) contains abstract states that the algorithm needs to
process. The algorithm terminates if the set waitlist is empty (i.e., all abstract
states are processed) and returns the two sets reached and waitlist. We start the
algorithm with two singleton sets that contain only the initial abstract state. In
each iteration of the ‘while’ loop, the algorithm processes and removes one state e
from the waitlist, by computing all abstract successors and further processing
them as e′.

Next, the algorithm checks (lines 6–11) if there is an existing abstract state
in the set of reached states with which the new state e′ has to be merged (e.g.,
where control flow meets after completed branching). If this is the case, then the
new, merged abstract state is substituted for the existing abstract state in both
sets reached and waitlist. (This operation is sound because the merge operation
is not allowed to under-approximate.) In lines 12–15, the stop operator checks
if the new abstract state is covered by a state that is already in the set reached,
and inserts the new abstract state into the work sets only if it is not covered.

Binary Decision Diagrams. A binary decision diagram (BDD) [10] represents
a set of assignments for a set of boolean variables. In our analysis, we need to
consider integer variables. We encode the integer assignments as bit vectors, and
the integer variables as vectors of boolean variables, and thus, can represent data
states of integer programs by BDDs.



BDD-Based Software Model Checking with CPAchecker 5

A BDD is a rooted directed acyclic graph, which consists of decision nodes
and two terminal nodes (called 0-terminal and 1-terminal). Each decision node
is labeled by a boolean variable and has two children (called low child and
high child). A BDD is maximally reduced according to the following two rules:
(1) merge any isomorphic sub-graphs, and (2) eliminate any node whose two
children are isomorphic. Every variable assignment that is represented by a BDD
corresponds to a path from the root node to the 1-terminal. The variable of a
node has the value 0 if the path follows the edge to the low child, and the
value 1 if it follows the edge to the high child. A BDD is always ordered, which
means that the variables occur in the same order on any path from the root to
a terminal node. For a given variable order, the BDD representation of a set of
variable assignments is unique.

3 BDD-Based Program Analysis

For implementing the BDD-based analysis, we define a configurable program
analysis (CPA) that uses BDDs to represent abstract states, and implement it
in the open-source tool CPAchecker.

Let X be the set of program variables. Given a first-order formula ϕ over X ,
we use Bϕ to denote the BDD that is constructed from ϕ, and [[ϕ]] to denote all
variable assignments that fulfill ϕ. Given a BDD B over X , we use [[B]] to denote
all variable assignments that B represents ([[Bϕ]] = [[ϕ]]).

The BDD-based program analysis is a configurable program analysis BPA =
(DBPA,�BPA,merge

BPA
, stop

BPA
) that represents the data states of the program

symbolically, by storing the values of variables in BDDs. The CPA consists of
the following components:

1. The abstract domain DBPA = (C, E , [[·]]) is based on the semi-lattice EB of
BDDs, i.e., every abstract state consists of a BDD. The concretization func-
tion [[·]] assigns to an abstract state B the set [[B]] of all concrete states that
are represented by the BDD. Formally, the lattice EB = (B,
) —where B
is the set of all BDDs, Btrue is the BDD that represents all concrete states
(1-terminal node), and Bfalse is the BDD that represents no concrete state
(0-terminal node)— is induced by the partial order 
 that is defined as:
B 
 B

′ if [[B]] ⊆ [[B′]]. (The join operator � yields the least upper bound;
Btrue is the top element 	 of the semi-lattice.)

2. The transfer relation �BPA has the transfer B
g�B

′ with

B
′ =

{
B ∧ Bp if g = (l, assume(p), l′)
(∃w : B) ∧ Bw=e if g = (l, w := e, l′) .

3. The merge operator is defined by merge
BPA

(B,B′) = B ∨ B
′.

4. The termination check is defined by stop
BPA

(B, R) = ∃B′ ∈ R : B 
 B
′.

We construct the complete program analysis by composing the CPA BPA for
BDD-based analysis with the CPA L for location analysis, in order to also track
the program locations. For further details on CPA composition, we refer to [5].



6 D. Beyer and A. Stahlbauer

(a) Control-flow autom. (CFA) (b) Abstract reachability graph (ARG)

Fig. 1. Example program with verification certificate

Example. Consider the program represented by the control-flow automaton
(CFA) in Fig. 1(a). The error location (location 18, indicated by label ’ER-
ROR’) is not reachable in this simple example program, i.e., the program is safe.
Figure 1(b) represents the corresponding abstract-reachability graph (ARG),
which could serve as verification certificate for this analysis. The nodes in the
ARG represent abstract states, which are initial abstract states or constructed
by computing abstract successor states according to the edges of the CFA, using
the CPA algorithm and composition of CPAs as described above. The edges in
the ARG represent successor computations along the control-flow edges of the
corresponding CFA. We label each node of the ARG with the program location
and the BDD that represents the abstract data state. The set of states that are
represented by the nodes of the ARG shown in Fig. 1(b) equals the set reached
after the CPA algorithm has terminated.



BDD-Based Software Model Checking with CPAchecker 7

The analysis starts at the initial program location pc0 = 1 with the initial
abstract data state e0, which is represented by the BDD Btrue. The analysis then
computes the abstract successor states by applying the transfer relation�; in our
example the abstract data state for location pc = 2 is computed by quantifying
the assigned variable in the BDD of the previous abstract state, create a BDD
for the constraint of control-flow edge int a=0 (assignment) and conjunct it
with the former BDD. The transition along the edge (2, int in, 4) does not
change the abstract data state because the variable that is declared by this edge
was not known before; also the transition along (4, in = nondet(), 4) does not
change the data state because it does not restrict the possible concrete states (the
return value of nondet() is non-deterministic). Transitions whose operations are
assumptions, for example, (5, [in != 1], 9) are encoded by conjuncting the BDD
B of the abstract data state of the predecessor location (pc = 5) with the BDD
for the respective assumption (in != 1), i.e., the successor state B′ is computed
as B′ = Ba=0 ∧ Bin != 1. Now we consider, for example, location pc = 14, which
has the BDD Ba=0 ∧ in=1 as abstract data state, and process the control-flow
edge (14, a = 3, 6) (assignment). Assignment operations are processed by first
existential quantifying the variable that gets a new value assigned (a); then the
intermediate BDD Bin=1 is conjuncted with the BDD that represents the new
value of the variable: B′ = Bin=1 ∧ Ba=3.

Abstract states that were computed for the same program location are —as
defined by the CPA operator merge— joined by computing the disjunction of
the BDDs; the abstract data state B(a=0 ∧ in != 1)∨(false)∨(a=3 ∧ in=1) at location
pc = 6 is such a result of a join. After the analysis has terminated, the set reached
of reached states contains at most one abstract state for each program location.

The computation of successors of a given abstract state e stops (the abstract
state is not added to the sets waitlist and reached for further processing), when-
ever the abstract data state is already covered by (implies) an existing abstract
data state; this check is performed by the CPA operator stop. The analysis does
not process successors of locations 11 and 17, because the BDDs evaluate to
false. Thus, the error location 18 is not reached.

4 Evaluation

In order to demonstrate that the BDD-based analysis yields a significant per-
formance improvement on a set of C programs with restricted operations on
integer variables, we compare our simple analysis with two other approaches for
symbolic software model checking.

Experimental Setup. All experiments were performed on machines with a 3.4GHz
Quad Core CPU and 16GB of RAM. The operating system was Ubuntu 12.04
(64 bit), using Linux 3.2.0-30 and OpenJDK 1.6.0 24. A time limit of 5 min and
a memory limit of 15GB were used. We took CPAchecker from revision 6607 of
the trunk in the repository, and MathSAT 4.2.17 as SMT solver; for the BDD-
based analysis we configured it with a Java heap size of 13GB, for the other
analyses we configured it with 10GB, in order to leave RAM for the SMT solver.



8 D. Beyer and A. Stahlbauer

Fig. 2. Quantile functions for the three different approaches

The configuration of the BDD-based analysis is specified in the configuration file
fsmBddAnalysis.properties.

Verification Tasks. For the evaluation of our approach, we use Problems 1 to 6
from the recent RERS challenge, because those programs are in the restricted
class of C programs that we described earlier. Tables with detailed results and
the benchmark programs are publicly available on the accompanying web page
at http://www.sosy-lab.org/∼dbeyer/cpa-bdd.

Compared Verification Approaches. We restrict the comparison to three sym-
bolic techniques that are all implemented in the same verification tool, in or-
der to eliminate influence of the used solver, libraries, parser front-ends, etc.
The first approach is an Impact-based analysis [17]. This analysis is based on
counterexample-guided abstraction refinement (CEGAR) and computes abstrac-
tions using interpolation along infeasible error paths. In contrast to predicate ab-
straction, this analysis does not compute strongest post-conditions and abstracts
those to more abstract formulas, but uses a conjunction of the obtained inter-
polants as abstract states. A detailed comparison of the approach with predicate
abstraction can be found in the literature [9]. The second approach is based on
CEGAR and predicate abstraction, together with adjustable-block encoding [7].
The third approach is the BDD-based analysis that was introduced in this paper.

Discussion. Figure 2 gives an overview over the results using a quantile plot
of the verification times (all verification tasks, no separation between satisfied
and violated properties). A quantile plot orders, for each approach separately,
the verification runs by the run time that was needed to obtain the correct
verification result on the x-axis (n-th fastest result). A data point (x, y) of the
graph means that x verification tasks were successfully verified each in under y

http://www.sosy-lab.org/~dbeyer/cpa-bdd/


BDD-Based Software Model Checking with CPAchecker 9

Table 1. Detailed results for the verification tasks with result ’UNSAFE’

Impact Algorithm Predicate Abstraction BDD-Based Analysis

Problem #
P
ro
p
er
ti
es

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

Problem 1 14 14 86 6.2 14 100 7.4 14 65 4.6
Problem 2 8 8 37 4.7 8 48 6.0 8 33 4.2
Problem 3 14 10 120 12 14 190 13 14 110 8.2
Problem 4 25 1 14 14 25 2600 100 25 490 20
Problem 5 25 25 3600 150 25 3200 130 25 520 21
Problem 6 26 2 100 52 26 2200 85 26 520 20

Table 2. Detailed results for the verification tasks with result ’SAFE’

Impact Algorithm Predicate Abstraction BDD-Based Analysis

Problem #
P
ro
p
er
ti
es

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

S
o
lv
ed

p
ro
p
er
ti
es

T
im

e
(t
o
ta
l)

T
im

e
(m

ea
n
)

Problem 1 47 47 270 5.8 47 310 6.7 47 260 5.5
Problem 2 53 53 320 6.0 53 320 6.0 53 240 4.5
Problem 3 47 17 230 14 47 660 14 47 420 9.0
Problem 4 36 36 950 27 36 2500 70 36 820 24
Problem 5 36 6 790 130 36 2700 75 36 800 22
Problem 6 35 1 51 51 35 2800 80 35 840 24

seconds of CPU time. The integral below the graph illustrates the accumulated
verification time for all solved verification tasks. The Impact-based analysis is
not able to solve all verification tasks (it solves 220 instances), the predicate-
abstraction-based analysis can verify each property within 300 s of CPU time.
The BDD-based analysis, which we introduced earlier in this paper, is able to
solve each of the properties within 25 s.

Table 1 shows more detailed results for the violated properties, i.e., the verifi-
cation tasks for which the verification result is ’UNSAFE’, and Table 2 shows the
details for the satisfied properties. The verification time (total and mean) values
are given in seconds of CPU time with two significant digits. The Impact-based
analysis can solve the verification tasks of the programs Problem 1 and Problem 2



10 D. Beyer and A. Stahlbauer

completely; performance and precision decrease dramatically for Problems 3 to 6.
The predicate-abstraction-based analysis and the BDD-based analysis can both
verify all properties; but the BDD-based analysis is significantly more efficient.
The BDD-based analysis scales best with the problem size (assuming that the
verification tasks for the program ‘Problem n+ 1’ are harder than the tasks for
the program ‘Problem n’).

5 Conclusion

We extended the standard software-verification tool CPAchecker by a config-
urable program analysis (CPA) that uses BDDs as data structure to represent
sets of data states (variable assignments). We have compared the effectiveness
and efficiency of this analysis to other approaches that use symbolic techniques:
a program analysis that computes abstract successor states using predicate ab-
straction after every successor computation [7], and a program analysis that
computes abstract states along paths using interpolation [9, 17] — both being
state-of-the-art approaches for symbolic software verification.

The experiments show that the BDD-based approach is the most efficient
verification approach (by an order of magnitude) for the considered class of pro-
grams. However, as soon as the programs use more general operations, BDDs
would be prohibitively less efficient. This means that BDDs can be more effi-
cient than other representations for certain types of variables (the ones that are
involved in simple operations only). This is an important insight and motiva-
tion for future work: It would be promising to pre-analyze the program in order
to find out for each variable how it is used, and then determine —based on its
usage-type— the most efficient abstract domain to track this variable. The other
variables can be analyzed by an explicit-value analysis or a predicate-analysis;
using a configuration program analysis (CPA) with adjustable precisions; such
combinations of program analyses are easy to construct in CPAchecker.

References

1. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to Analysis
using BDDs. In: Proc. PLDI, pp. 103–114. ACM (2003)

2. Beyer, D.: Relational Programming with CrocoPat. In: Proc. ICSE, pp. 807–810.
ACM (2006)

3. Beyer, D.: Competition on Software Verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

5. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification:
Concretizing the Convergence of Model Checking and Program Analysis. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518.
Springer, Heidelberg (2007)



BDD-Based Software Model Checking with CPAchecker 11

6. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

7. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197 (2010)

8. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-Based Verification
of Real-Time Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

9. Beyer, D., Wendler, P.: Algorithms for Software Model Checking: Predicate Ab-
straction vs. IMPACT. In: Proc. FMCAD (2012)

10. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential Circuit Verifica-
tion using Symbolic Model Checking. In: Proc. DAC, pp. 46–51. ACM (1990)

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
Checking: 1020 States and Beyond. In: Proc. LICS, pp. 428–439. IEEE (1990)

13. Campos, S.V.A., Clarke, E.M.: The Verus Language: Representing Time Effi-
ciently with BDDs. In: Rus, T., Bertrán, M. (eds.) ARTS 1997. LNCS, vol. 1231,
pp. 64–78. Springer, Heidelberg (1997)

14. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction Refinement with Craig Inter-
polation and Symbolic Pushdown Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

15. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS Grey-Box
Challenge 2012: Analysis of Event-Condition-Action Systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer,
Heidelberg (2012)

16. McMillan, K.L.: The SMV System. Technical Report CMU-CS-92-131, Carnegie
Mellon University (1992)

17. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

18. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

19. von Rhein, A., Apel, S., Raimondi, F.: Introducing Binary Decision Diagrams in
the Explicit-State Verification of Java Code. In: Proc. Java Pathfinder Workshop
(2011)


	BDD-Based Software Model Checking with CPAchecker

	Introduction
	Preliminaries
	BDD-Based Program Analysis
	Evaluation
	Conclusion
	References




