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Abstract. This work presents part of our verification effort to construct
a correct file system for Flash memory. As a blueprint we use UBIFS,
which is part of Linux. As all file systems in Linux, UBIFS implements
the Virtual Filesystem Switch (VFS) interface. VFS in turn implements
top-level POSIX operations. This paper bridges the gap between an ab-
stract specification of POSIX and a realistic model of VFS by ASM
refinement. The models and proofs are mechanized in the interactive the-
orem prover KIV. Algebraic directory trees are mapped to the pointer
structures of VFS using Separation Logic. We consider hard-links, file
handles and the partitioning of file content into pages.
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1 Introduction

The popularity of Flash memory as a storage technology has been increasing
constantly over the last years. It offers a couple of advantages compared to
magnetic storage: It is less susceptible to mechanical shock, consumes less energy
and read access is much faster. However, it does not support overwriting data
in-place. This limitation leads to significant complexity in the software accessing
Flash memory. One solution is a Flash translation layer (FTL) built into the
hardware, which emulates the behavior of magnetic storage. Embedded systems,
however, often contain “raw Flash”, which requires specific Flash file systems
(FFS for short) that deal with the memory’s write characteristics. A state-of-
the-art example is UBIFS [15], which is part of the Linux kernel.

The use of Flash memory in safety-critical applications leads to high costs of
failures and correspondingly to a demand for high reliability of the FFS imple-
mentation. As an example, an error in the software access to the Flash store of
the Mars Exploration Rover “Spirit” nearly ruined the mission [22]. In response,
Joshi and Holzmann [16] from the NASA JPL proposed in 2007 the verification
of an FFS as a pilot project of Hoare’s Verification Grand Challenge [14].

We are developing such a verified FFS as an implementation of the POSIX
file system interface [29], using UBIFS as a blueprint. The project is structured
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into layers, as (partially) visualized in Fig. 1. These correspond to the various
logical parts of the file system, and to different levels of abstraction.

POSIX specification 

VFS AFS 

UBIFS 

Fig. 1. Upper layers

The top level is an abstract formal model of the file
system interface as defined by the POSIX standard.
It serves as the specification of the functional require-
ments, i.e., what it means to create/remove a file/di-
rectory and how the contents of files are accessed. The
POSIX interface addresses files and directories by paths
and views files as a linear sequence of bytes. File system
objects are structured hierarchically as a tree. Directo-
ries correspond to the inner nodes of the tree, whereas
files are found at the leaf nodes.

The first contribution of this work is a formal POSIX model that supports all
essential file system operations.

Such high-level concepts are mapped to an efficient pointer-based data repre-
sentation in the file system. In Linux as well as in our approach this mapping
is realized by a Virtual Filesystem Switch (VFS). The analogous component in
Windows is named Installable File System (IFS). This layer implements generic
operations that are common to all file systems, e.g., mapping of file content to a
sparse array of pages, permission checks and management of open file handles.
VFS delegates lower-level operations to concrete file systems, such as UBIFS.

We have recently published a formal VFS model [6]. It contains an abstract
sub-specification AFS of the expected behavior of concrete file systems. The idea
is that AFS can be replaced by a concrete implementation as long as the latter
behaves as specified by AFS. The VFS model calls AFS through an internal
interface, visualized by the symbol in Fig. 1. A benefit of this approach is
that AFS is independent of the characteristics of Flash memory and may serve
as specification for traditional file systems as well, e.g., Ext2-4, ReiserFS or FAT.

Functional correctness is established by nested refinements (visualized as
dashed lines in Fig. 1). For instance, a proof of the topmost refinement im-
plies that the VFS model realizes the POSIX specification, and in particular
that input-/output behavior is preserved.

We describe such a proof in this paper, which is the second contribution.
This refinement is conceptually challenging because of subtle requirements of

the POSIX standard, and technically challenging because of the pointer struc-
tures and partitioning of file content into pages found in VFS. Models and proofs
are mechanized in the interactive theorem prover KIV [23] and can be found on
our website [7]. We also provide executable simulations (written manually in
Scala) that integrate into Linux via FUSE [28]. As a consequence of the verifi-
cation we can focus on the Flash File system’s internals in the future, namely
to refine AFS without further considering VFS. Formally, we refine AFS to
UBIFS (in several steps), which then automatically guarantees correctness of
VFS+UBIFS with respect to POSIX.

The text continues with a description of the approach in Sec. 2. Sections 3 and
4 describe the POSIX and VFS+AFS models; Sec. 5 formalizes the abstraction
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from VFS data structures to POSIX, Sec. 6 describes the proofs. We compare
to related work in each of these three sections individually. Finally, Sec. 7 draws
conclusions and points out ongoing and future work.

2 Scope and Approach

The purpose of this section is to give a high-level description of the approach.
We consider the following structural POSIX system-level operations: create,
mkdir, rmdir, link, unlink, and rename. File content can be accessed by the
operations open, close, read, write, and truncate. Finally, directory listings
and (abstract) metadata can be accessed by readdir, readmeta (= stat), and
writemeta (subsuming chmod/chown etc).

These operations and the data types occurring in parameters constitute the
signature of the system interface. Functionality is realized abstractly in the
POSIX model and “concretely” by the VFS, which delegates low-level modifica-
tions to some concrete file system abstracted by AFS. POSIX and VFS share a
common signature but have their own representation of the file system’s state.
By convention, we prefix operations with posix resp. vfs /afs to distinguish
between the different layers.

2.1 Formalism

Our specification language is based on Abstract State Machines [3] (ASMs). We
use algebraic specifications to axiomatize data types, and a weakest-precondition
calculus to verify properties.

We frequently use freely generated data types. For example, paths are defined
by two constructors: the constant ε denoting the empty path, and an infix oper-
ator / that adds a leading component.1 The corresponding selectors first and
rest retrieve the constructor’s arguments.

data Path = ε | / (first : String , rest : Path)

We overload the symbol / to add a trailing path component p/s resp. to con-
catenate two paths p/p′.

Besides free types, we use partial functions types τ1 �→ τ2 in this work. All
partial functions in this paper have a finite domain by construction as a non-free
data type from the function with empty domain ∅ and function update [ �→ ].
Partial function application f [a] uses square brackets. Removing a from the
domain of f is denoted by f − a. We use the abbreviation a ∈ f for a ∈ dom(f).

ASMs maintain a state as a vector of logical variables that store algebraically
defined data structures. The language features programming constructs such as

1 Paths are actually defined as an instance of algebraic lists Path := List〈String〉 plus
some renaming. This paper deviates from the KIV specifications in minor details to
aid readability. Such differences are noted on the web presentation.
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parallel (function) assignments (where f [a]� b abbreviates f � f [a �→ b]), con-
ditionals, loops, recursive procedures, and also nondeterministic choice. ASMs
are executable, provided that the nondeterminism is resolved somehow and the
algebraic operations on data types are executable.

An ASM M = ((OPi)i∈I , State, INIT) consists of operations OPi(in ; st , out)
that take an input in and the current state st : State, and produce an output
out and a modified state st ′. The semicolon in the parameter list separates
input parameters from reference parameters: assignments to the latter inside
an operation are visible to the caller. Predicate INIT ⊆ State specifies a set of
initial states. A run of an ASM starts in an initial state and repeatedly executes
operations.

A “concrete” machine C = ((COPi)i∈I ,CState, CINIT) refines an “abstract”
machine A = ((AOPi)i∈I ,AState, AINIT) if for each run of C there is a matching
run of A with the same inputs and outputs. Refinement can be proven by forward
simulation with a simulation relation R ⊆ AState × CState.

The calculus is based on sequents Γ � Δ ≡ ∀x.∧Γ → ∨
Δ for a list of

assumptions Γ , potential conclusions Δ and free variables of the sequent x. We
prove properties about ASM operations using the weakest precondition calculus
implemented by KIV. It offers three modalities: the weakest precondition 〈|p|〉ϕ
of p with respect to ϕ (total correctness, all runs of p starting in the current state
terminate in a state satisfying ϕ); the weakest liberal precondition [p]ϕ (partial
correctness); and 〈p〉ϕ ≡ ¬[p]¬ϕ that asserts the existence of some terminating
run of p with a final state satisfying ϕ. For deterministic programs, 〈| |〉 and
〈 〉 are equivalent. The calculus symbolically executes programs in modalities,
reducing goals to predicate logic formulas.

The logic can express relationships between multiple programs, such as pro-
gram inclusion or equivalence. In particular, proof obligations for data refinement
[13] (as an instance of ASM refinement) can be formalized. Concretely, in this
work we prove

initialization: (1)

CINIT(cs) � ∃as . AINIT(as) ∧ R(as , cs)

correctness: (2)

R(as , cs) � 〈|COPi(in; cs , out1)|〉〈AOPi(in ; as , out2)〉 (R(as , cs) ∧ out1 = out2)

for A = POSIX and C = VFS+AFS. These assertions establish a forward sim-
ulation from commuting 1:1 diagrams. Intuitively, “correctness” asserts that for
each run of the concrete operation there is a matching abstract run with the same
output, i.e., that the behavior of the concrete machine is covered by the speci-
fication/abstract machine. The predicate R relates a concrete state cs : CState
to an abstract state as : AState. It is composed of the invariants of the two
machines and an abstraction relation

R(as , cs) ↔ CINV(cs) ∧ AINV(as) ∧ ABS(as , cs)

Background about ASM refinement and its relation to other refinement
approaches can be found in [2,25].
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2.2 Separation Logic

Separation Logic [24] is a logic designed to reason about pointer structures and
destructive updates. It is particularly well-suited for structures with limited alias-
ing, such as the representation of the directory tree in VFS/AFS (Sec. 4).

Formulas in the logic are assertions ϕ : Heap → B about the shape of heaps,
which are mappings from locations to values, Heap := (Loc �→ Val). Heap asser-
tions are built from the constant emp = (λh.h = ∅), the maplet l �→ v describing
singleton heaps, and the separating conjunction ϕ1 ∗ ϕ2 that asserts that the
heap can be split into two disjoint parts satisfying ϕ1 resp. ϕ2.

Ordinary formulas, connectives and quantifiers are lifted over heaps, so that
they can be used in separation logic assertions.

We have formalized separation logic as a straight-forward shallow embedding
into higher-order logic, similar to [21,30]. For this work, we instantiate the sorts
Loc and Val to the pointer structures used in VFS.

In our approach, the heap h is explicitly given as an ordinary program vari-
able. This has the consequence that the frame rule for heap-modular reasoning is
not generally valid. A counterexample is the non-local assignment h := ∅. Inter-
estingly, this does not pose a problem in practice, as one can generalize contracts
by a fresh placeholder variable f for the context, i.e., proving the frame rule for a
particular contract for program p as (ϕ∗ f)(h) � 〈p〉(ψ ∗ f)(h). By the semantics
of sequents, f is universally quantified and can be instantiated arbitrarily.

3 POSIX Specification

This section defines the state, operations and invariants of the POSIX ASM.

3.1 Data Structures

The file system state consists of a directory tree t, a file store fs , and a registry
of open file handles oh. Files are referenced by file identifiers of the abstract sort
Fid . Open files are referenced by natural numbers (“file descriptors” in Unix).

state vars t : Tree, fs : Fid �→ FData, oh : N �→ Handle

The directory tree is specified as an algebraic data type Tree with two construc-
tors: File nodes (fnode) form the leaves and store the identifier of the corre-
sponding file. Directory nodes (dnode) make up the internal nodes and store the
directory entries as a mapping from names to the respective subtrees.

data Tree = fnode(fid : Fid)

| dnode(meta : Meta, entries : String �→ Tree)

The test t.isdir yields whether tree t is a dnode. The abstract sort Meta is
a placeholder for any further associated information. We postulate some selec-
tors for md : Meta, to retrieve for example read, write and execute permissions
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pr(u,md), pw(u,md), px(u,md) for some unspecified user u : User . This formal-
ization of permissions has been taken from [12].

Files are given by the data type FData that stores the content as a list of
bytes, and—analogously to directories—some associated metadata.

data FData = fdata(meta : Meta, content : List〈Byte〉)
File handles store a file identifier fid, and keep track of the current read/write
offset pos in bytes, and a mode, which can be read-only, write-only or read-write.

data Handle = handle(fid : Fid , pos : N, mode : Mode)

data Mode = r | w | rw
The initial state is given by an empty root directory and no files:

initial state t = dnode(md , ∅) ∧ fs = ∅ ∧ oh = ∅ (3)

A path p is valid in a directory tree t, denoted by p ∈ t, if starting from the
root t the path can be followed recursively such that each component is mapped
by the respective subdirectory. Validity is defined by structural recursion over
the path, where ε denotes the empty path, s/p denotes a path starting with
component s : String and remainder p, and ε ∈ t always holds.

s/p ∈ fnode(fid) ↔ false

s/p ∈ dnode(md , st) ↔ (s ∈ st ∧ p ∈ st [s])

Lookup of a valid path p retrieves the respective subtree of t, denoted by t[p]. It
is defined similarly to validity of paths:

t[ε] = t and dnode(md , st)[s/p] = st [s][p] if s ∈ st

It follows that validity of paths is prefix-closed, i.e., if p/p′ ∈ t then p ∈ t,
furthermore t[p] is a directory node if p′ �= ε.

The expression t[p/s �� t′] denotes the tree t with an additional subtree t′ at
path p/s. It is only specified for p ∈ t, i.e., it only adds the last component of the
path to the tree. A converse function t− p denotes the tree t without the whole
subtree at path p. It is only specified for p ∈ t. Note that both modifications are
non-destructive and construct new trees. Let the assignment t[p] � t′ abbreviate
t � t[p �� t′], analogously to function update.

Validity, lookup, insertion and deletion of paths compose with / , e.g.:

p/p′ ∈ t ↔ (t ∈ p ∧ p′ ∈ t[p]) and t[p/p′] = t[p][p′] if p ∈ t

3.2 Operations and Error Handling

Operations realize the POSIX specification by using the algebraic functions on
trees. Additionally, they perform extensive error checks to guard the file system
against unintended or malicious calls to operations. Specifically, all operations
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are total (defined for all possible values of input parameters). Nevertheless, we
use the term “precondition” to characterize valid inputs such that an operation
succeeds. Violation of preconditions leads to an error without modifying the
internal state. The POSIX model is presented in Fig. 4—omitting some generic
error handling code at the beginning of each operation, which we explain by
means of the create operation fully shown in Fig. 2.

Error handling is nondeterministic. It is possible that two errors conditions
occur simultaneously, e.g., the whole path does not exist, or permissions to tra-
verse an existing prefix are violated. The POSIX model does not restrict the
order in which different conjuncts of preconditions are checked. Preconditions
are defined as predicates pre-op(in, err) that specify possible error codes for an
input in given to the operation op. An implementation just has to satisfy the
constraints imposed by these predicates.

Technically, an appropriate error code err ′ is nondeterministically chosen and
assigned to the output variable err . If the operation is determined to succeed
(implying a valid input) the body of posix create picks a fresh file identifier
fid for the new file, updates the directory tree with the corresponding file node
and extends the file store by an empty file with the given initial metadata md .
The operation is visualized in Fig. 3. The grey subtree corresponds to the par-
ent directory t[parent(p)]; the newly created file node and associated data are
denoted by the dashed triangle and box respectively.

Precondition-predicates contribute a significant part of the specification. They
are defined by case distinction on possible error codes, as shown below. Certain
errors, such as hardware failure or memory allocation (denoted by EIO, . . .) are
not restricted, i.e. they may occur anytime. Note that an implementation must
thus recover from such situations to the previous abstract state.

pre-create(p,md , t, fs , e)

↔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p �∈ t ∧ parent(p) ∈ t ∧ t[parent(p)].isdir, if e = ESUCCESS

p ∈ t, if e = EEXIST

true, if e ∈ {EIO, . . .}
. . .

The ASM code relies on several helpers that operate on lists: resize(len; l)
adjusts the size of list l to len, possibly padding l with zeroes at the end; copy
and splice copy len elements of the source list src starting from offset spos into
list dst at offset dpos . The latter operation corresponds exactly to the semantics
of the POSIX write operation, i.e., it may extend dst at the end as shown below.
The length of a list l is denoted by # l.

splice(src, spos , dpos , len; dst)
if len �= 0 then

if dpos + len < # dst then resize(dpos + len; dst)
copy(src, spos , dpos , len; dst)
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As a further twist the operations posix read and posix write may actually
process less than len bytes and still succeed, either because the concrete imple-
mentation runs out of disk-space during the write, or due to an intermediate
low-level error. This is modeled by choose n with n < len in len � n.

Handles may refer to files that are not referenced by the tree any more, subse-
quently called orphans. This facility is actually exploited by applications to hide
temporary files (e.g, MySQL caches, Apache locks) and during system/package
updates.

3.3 Invariants

The POSIX state t, fs , oh has two explicit invariants. The easy one is simply that
the root must be a directory (t.isdir). The second invariant states that the set
of file identifiers referenced by t or oh is equal to dom(fs). It guarantees that for
any fid in use, the associated file data in fs is available, and that fs contains no
garbage. Given an overloaded function

fids : Tree → Multiset〈Fid〉 fids : (N �→ Handle) → Set〈Fid〉
the invariant can be defined formally:

invariant dom(fs) = {fid | fid ∈ fids(t)} ∪ fids(oh)
︸ ︷︷ ︸

fids(t,oh)

(4)

with fids(oh) = {oh[n].fid | n ∈ oh} and

fids(fnode(fid)) = {fid} fids(dnode(md , st)) =
⊎

s∈st

fids(st [s])

where � denotes multiset sum. Multisets are preferred over ordinary sets for the
file identifiers in the tree for two reasons. On one hand, the number of occurrences
of fid in the set fids(t) correlates to the number of hard links to a file. On the
other hand, the effect of insertion or removal of a subtree on fids directly maps
to � respectively \. The proofs for invariant (4) are straightforward. The critical
operations are unlink, rename, and close, that need to check whether the last
link was removed and delete the file content if so.

3.4 Related Work

There exist several file system models with different scope and data structures,
with a degree of abstraction similar to our POSIX model. These approaches
typically make strong simplifications.

The approach to formalize a POSIX file system with an algebraic tree has
been used previously only by Heisel [11] to evaluate specification languages and
specification reuse.

Two other approaches occur in related models. In [19,12,8] the file system is
specified as a mapping from paths to directories and files. This comes at the
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posix create(p,md ; err)
choose err ′

with pre-create(p,md , t, fs, err ′)
in err � err ′

if err = ESUCCESS then

choose fid with fid �∈ fs
in t[p] � fnode(fid)

fs[fid ] � fdata(md , 〈〉)

Fig. 2. POSIX create operation

path lookup 

t 

fs 

Fig. 3. FS tree

posix mkdir(p,md ; err)
t[p] � dnode(md , ∅)

posix rmdir(p; err)
t � t− p

posix link(p1, p2; err)
let fid = t[p1].fid
in t[p2] � fnode(fid)

posix unlink(p; err)
let fid = t[p].fid
in t � t− p

if fid �∈ fids(t,oh)
then fs � fs − fid

posix rename(p1, p2; err)
let t1 = t[p1], t2 = t[p2]

ex = p2 ∈ t
in t � t− p2

t[p2] � t1
if ex ∧ ¬ t2.isdir

∧ t2.fid �∈ fids(t, oh)
then fs � fs − t2.fid

posix truncate(p, len; err)
let fid = t[p].fid
in resize(len ; fs[fid ].content)

posix readdir(p; names, err)
names � dom(t[p].entries)

posix open(p,mode; fd , err)
let fid = t[p].fid
in choose n with n �∈ oh
in fd � n

oh [fd ] � handle(fid , 0,mode)

posix close(fd ; err)
let fid = oh[fd ].fid
in oh � oh − fd

if fid �∈ fids(t, oh)
then fs � fs − fid

posix read(fd ; buf , len, err)
let fid = oh[fd ].fid

pos = oh[fd ].pos
in choose n with n ≤ len

in len � n
copy(fs [fid ].content, pos , 0, len; buf )
oh [fd ].pos � pos + len

posix write(fd , buf ; len, err)
let fid = oh[fd ].fid

pos = oh[fd ].pos
in choose n with n ≤ len

in len � n
splice(buf , 0, pos , len; fs[fid ].content)
oh [fd ].pos � pos + len

Fig. 4. POSIX operations
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cost of an extra invariant that path validity is prefix-closed, which holds by
construction in our model. However, only Hesselink and Lali [12] actually verify
that it is preserved by operations.

Of these three models, only the one of Morgan and Sufrin [19] supports hard-
links, using file identifiers as we do. In [12], equivalence classes of paths are
suggested as an alternative solution. We are not aware of an attempt to realize
this idea, though it would be interesting.

Damchoom et al. [5], in contrast, formalize the hierarchical structure by parent
pointers with an acyclicity invariant. Hard links are inherently not supported
by this design. We think that this approach is too different from the intuitive
understanding of a file system to serve as top-level specification.

Morgan and Sufrin’s work [19] contains a minor error (also found in [17,9]):
they do not specify an equivalent of the test len �= 0 in splice (Sec. 3.2), which
may result in overly large files. The corresponding requirement in the POSIX
standard [29] states that [..] if nbytes [=len] is zero [..] the write() function shall
return zero and have no other results.

Open file handles have not been mechanized before, although these are spec-
ified on paper in [19], including the possibility of orphaned files.

Preconditions are treated similarly to [12], i.e., operations must not modify the
state on errors. Ferreira et al [8] also have a comprehensive error specification
in their POSIX-style specification, however, they fix the order of checks and
allow arbitrary behavior on errors in their refinement proof obligations. To our
knowledge, underspecified hardware failures are not admitted in related work.

4 VFS and AFS Models

We give a short overview over the interplay between VFS and AFS and how
generic file system aspects are separated from FS specific concerns. For details
not covered here the reader is referred to [6] and the web presentation [7].

4.1 Interplay

The task of the VFS layer is to break down high-level POSIX operations to
several calls of AFS operations. Fig. 5 visualizes a typical sequence for structural
operations like vfs create. In this case, it relies on three operations provided
by the file system implementation, namely

1) lookup of the target of a single edge in the graph (afs lookup),
2) retrieve the access permissions at each encountered node (afs iget),
3) and finally the creation of the file.

Since many operations rely on path lookup, it is implemented as a subroutine
vfs walk that repeatedly performs steps 1) and 2). Figure 6 visualizes the rep-
resentation of the file system state and effect of the operation. Analogously to
Fig. 3, the parent directory is shaded in grey and the new parts are indicated
by dashed lines. The cloud-shaped symbol summarizes the remaining directories
and files.
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The interface between VFS and AFS (resp. the concrete file system) is defined
in terms of three communication data structures. Inodes (“Index Nodes”) cor-
respond to files and directories. They are identified by inode numbers ino : Ino
and store some metadata such as permissions but also size information and the
number of hard-links. Dentries (“Directory Entries”) correspond to the link be-
tween a parent directory and the inode of an entry. They contain the target
inode number and a file/directory name. The content of files is partitioned into
uniformly sized pages, which are sequences of bytes. A concrete implementation,
as well as AFS, maps these to some internal state and on-disk structures. This
approach decouples VFS from the file system, which is essential for modularity.

VFS AFS 

vfs_op 

afs_lookup 

afs_iget 

afs_op 

... 

vfs_walk 

Fig. 5. VFS/AFS interplay

“tmp” 

“test” 

path lookup 

dirs 

files 

Fig. 6. FS as pointer structure

4.2 State

Although the VFS code is independent of the AFS state, its behavior is not. To
define the abstraction relation (Sec. 5) and to prove the refinement (Sec. 6), we
need to look into the AFS state, which is a pointer based acyclic graph with
forward links. AFS keeps directories and files in two stores (partial functions)
with disjoint domains, mapping inode numbers to the respective objects:

state vars dirs : Ino �→ Dir , files : Ino �→ File where Ino � N

The separation is motivated by the distinction into structural and content mod-
ifications: the former will affect mainly dirs while the latter will affect only files .

Directory entries are contained in the parent directory, likewise, pages are
contained in the file object they belong to:

data Dir = dir(meta : Meta, entries : String �→ Ino)

data File = file(meta : Meta , size : N, pages : N �→ Page) where

type Page = ListPAGE SIZE〈Byte〉

Inode numbers ino ∈ dirs or ino ∈ files are called allocated, they refer to valid
directories resp. files. The pages of a file need not to be contiguous, there may be
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holes in a file that implicitly contain zeroes. A function links(ino, dirs) returns
a set of pairs (p ino, name) such that dirs [p ino].entries[name] = ino

The VFS state consists of open file handles that are equivalent to the ones in
POSIX:

state var oh : N �→ Handle, where

data Handle = handle(ino : Ino, pos : N, mode : Mode)

The initial state is given by an empty root directory with a fixed inode number
ROOT INO and no files:

initial state dirs = [ROOT INO �→ dir(md , ∅)] ∧ fs = ∅ ∧ oh = ∅ (5)

4.3 Operations

For each POSIX operation there is a corresponding VFS operation with the same
signature, implementing the desired functionality, e.g. vfs create(p,md; err).
Subroutine vfs walk is shown in Fig. 7, as well as afs create. Calls to afs iget

occur during the permission-check in vfs maylookup. On success, vfs walk es-
tablishes validity of a path q (= parent(p) for vfs create), expressed as

vfs walk post: err = ESUCCESS→ path(q, p ino, ino, dirs , files)

The predicate path defined recursively on the path by the axioms

path(ε, p ino, ino, dirs , files) ↔ p ino = ino ∧ ino ∈ (dirs ∪ files)

path(s/p, p ino, ino, dirs , files) ↔ p ino ∈ dirs ∧ s ∈ si

∧ path(p, si [s], ino, dirs , files)

where si abbreviates dirs [p ino].entries.
An overloaded version path(p, p ino, dirs , files) hides ino by existential quantifi-
cation.

vfs walk(q; ino, err)
err � ESUCCESS

while q �= ε ∧ err = ESUCCESS do

vfs maylookup(ino; err )
if err = ESUCCESS then

let dent = negdentry(q.first)
in afs lookup(ino; dent , err)

if err = ESUCCESS then

ino � dent .name
q � q.rest

afs create(p ino,md ; dent , err)
if p ino ∈ dirs

∧ dent .isnegdentry
∧ dent .name �∈ dirs [p ino].entries

then choose ino
with ino �∈ dirs ∧ ino �∈ files ∧ ino �= 0
in dirs [p ino].entries[dent .name] � ino

files [ino] � file(md , 0, ∅)
dent � dentry(dent .name, ino)
err � ESUCCESS

Fig. 7. VFS create operation and path walk
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The VFS read and write operations break file access down to a number of
individual page reads resp. writes in a loop (Fig. 8). It writes at most end−start
bytes of buf to the file specified by inode.ino, beginning at file offset start (in
bytes); total counts the number of bytes already written.

The body of the write loop, vfs write block (Fig. 9), unifies partial writes to
the first and last page alongside writes of entire pages, in order to avoid code for
these special cases and intermediate assertions in the verification. The operation
afs readpage returns page number pageno of the file inode numbered inode.ino
if that page is stored. Otherwise, an empty page is returned. The relevant part
of buf is copied into the page and the page is written back.

Note that less than end − start bytes may be written overall, since the loop
is aborted as soon as an error is returned by AFS. Such an error is recovered by
the test for total �= 0 in Fig. 8, and—if necessary—the file size is adjusted to the
number of bytes actually written.

...

let start = oh[fid ].pos, end = start + len, total = 0, done = false in

while ¬ done ∧ err = ESUCCESS do

vfs write block(start , end , inode; done , buf , total , err)
if total �= 0 then err � ESUCCESS

if err = ESUCCESS ∧ inode.size < start + total then

afs truncate(inode .ino, start + total ; err)

Fig. 8. VFS write operation (omitting error handling)

vfs write block(start , end , inode, buf , dirs; total , done ,files, err )
let pageno = (start + total ) / PAGE SIZE // integer division

offset = (start + total ) % PAGE SIZE // and modulo
page = emptypage

in // bytes to write in this iteration
let n = min(end − (start + total ), // write size boundary

PAGE SIZE − offset) in // current page boundary
if n �= 0 then

afs readpage(inode .ino, pageno, dirs, files; page , err)
if err = ESUCCESS then

copy(buf , total , offset , n; page)
afs writepage(inode .ino, pageno, page , dirs;files , err)
total � total + n

else done � true

Fig. 9. VFS code to write a partial page

4.4 Related Work

Galloway et al. [10] abstract the existing Linux VFS code to a SPIN model to
check correct usage of locks and reference counters. Work with similar focus that
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directly checks the C source code is [20,31]. However, these approaches limit
themselves to specific properties that are weaker than functional correctness
(e.g., memory safety) or cover concepts orthogonal to this work (e.g., correct
usage of locks).

Reading and writing files at byte-level has been addressed in [1,17]. We com-
pare to this work in more detail in Sec. 6.3.

To our knowledge, our model [6] is the first one separating common function-
ality (VFS) and file system specific parts (AFS) with the goal of full functional
verification.

5 Abstraction Relation

The abstraction relation ABS is defined as

ABS(t, fs , oh1, dirs , files , oh2)

↔ fs = fs(files) ∧ tree(t, ROOT INO)(dirs) ∧ oh1 = oh2

where fs : (Ino �→ File) → (Fid �→ File) specifies the abstract file store fs
and tree : Tree × Ino → ((Ino �→ Dir) → B) abstracts the pointer structure
with root ROOT INO to the directory tree t using Separation Logic. By defining
Fid := Ino, open file handles can be mapped by identity. This section formally
defines tree and fs and states several key lemmas connecting the abstract and
concrete states.

5.1 Directory Abstraction

The directory tree is mapped to the store of directories dirs , instantiating the
separation logic theory from Sec. 2.2 with Loc := Ino and Val := Dir . We define
the predicate tree(t, ino) by structural recursion on the tree. The idea is that
whenever tree(t, ino)(dirs) holds, ino is the number of the root inode of a file
system tree in dirs that corresponds to t.

tree(fnode(fid), ino) = (emp ∧ ino = fid) (6)

tree(dnode(md , st), ino) = (7)

∃ si . dom(si) = dom(st) ∧ ino �→ dir(md , si) ∗ �
s∈st

tree(st [s], si [s])

Assertion (6) for file nodes requires that the inode number corresponds to the
fid of the node and that the remaining part of the heap is empty.

Assertion (7) for directory nodes requires a corresponding directory in dirs
that has the same metadata and corresponding directory entries si. The iter-
ated separating conjunction � recursively asserts the abstraction relation for
all subtrees st [s] to children si [s] in pairwise disjoints parts of dirs .

One can show by induction on p that tree(t, ino)(dirs) implies

path(p, ino, dirs , files) ↔ p ∈ t
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We furthermore define the assertion tree|p(t, ino1, ino2)(dirs) that cuts out the
subtree with root ino2 at path p. Equality (8) encodes one main reasoning step
for the proofs. It allows us to unfold the directory that is modified by an opera-
tion, given postcondition path(p, ino1, ino2, dirs , files) of vfs walk

tree(t, ino1)(dirs) ↔ (tree|p(t, ino1, ino2) ∗ tree(t[p], ino2))(dirs) (8)

Another critical lemma discards algebraic tree modifications if p is a (not nec-
essarily strict) prefix of q:

q = p/p′ → tree|p(t[q �� t′], ino1, ino2) = tree|p(t, ino1, ino2) (9)

Finally, the abstraction implies the following equivalence, which ensures correct
deletion of file content in close, unlink and rename:

fid �∈ fids(t) ↔ links(ino, dirs) = ∅ for ino = fid

5.2 File Abstraction

The abstract file store is defined for each fid ∈ files, fid = ino with files [ino] =
file(md , size, pages) by the extensional equation

fs(files)[fid ] = fdata(md , content(pages) to size)

where content : (N �→ Page) → Stream〈Byte〉 assembles a stream of bytes from
the pages of a file. The abstract file must store the finite prefix of length size
of that stream. Streams σ : Stream〈α〉 can either be finite (a list) or infinite (a
total function from natural numbers to values)

type Stream〈α〉 = List〈α〉 + (N → α)

with a function #σ : N + {∞} to retrieve the length of a stream σ, prefix and
postfix selectors σ to n resp. σ from n (defined for n ≤ # σ), and concatena-
tion σ1 ++ σ2.

The abstraction to streams eliminates a lot of reasoning about list bounds
and many case distinctions that would otherwise be necessary in definitions
and proofs. In particular it simplifies the invariants of the loops in operations
vfs read and vfs write, see Sec. 6.2.

We define the content of a file as an infinite stream with trailing zeroes beyond
the end of the file:

content(pages) = λn. getpage(pages, n/PAGE SIZE)[n%PAGE SIZE]

getpage(pages ,m) = if m ∈ pages then pages [m] else 〈0, . . .〉

6 Proofs

Proof obligation “initialization” (1) is trivial: (5) implies (3) for the same meta-
data md of the root directory and all invariants hold.
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Proof obligation “correctness” (2) is established by symbolic execution of the
VFS operation, which yields a state dirs ′, files ′, oh ′

1, out1, followed by symbolic
execution of the POSIX operation to construct a matching witness run with a
final state t′, fs ′, oh ′

2, out2.
During symbolic execution, whenever the VFS chooses some value by the left

rule for 〈| |〉 in (10), the POSIX is free to choose the same value by the existential
quantifier in the right rule for 〈 〉 in (10).

� ∀x.ϕ(x) → 〈|p|〉ψ � ∃x.ϕ(x)
� 〈|choose x with ϕ(x) in p|〉ψ

� ∃x.ϕ(x) ∧ 〈p〉ψ
� 〈choose x with ϕ(x) in p〉ψ (10)

The error code err′ selected by POSIX is determined this way, as well as e.g. the
fid in in the operation create in Fig. 2 corresponding to the new inode number
ino picked in Fig. 7.

The predicate logic goals resulting from symbolic execution have the form

Γ � R(t′, fs ′, oh ′
1, dirs

′, files ′, oh ′
2) ∧ out1 = out2

where Γ = R(t, fs , oh1, dirs , files , oh2), . . . contains the initial instance of the
simulation relation, as well as preconditions and other information that has been
gathered during symbolic execution (e.g., results of the tests in conditionals and
subroutine postconditions). The goals reduce to two core proof obligations:

directories: tree(t, ROOT INO)(dirs), Γ � tree(t′, ROOT INO)(dirs ′)
files: fs = fs(files), Γ � fs ′ = fs(files ′)

6.1 Proof Strategy for Directories

Two types of modifications to the directory tree occur: insertions t′ = t[p �� . . .]
and deletions t′ = t − p at a path p. These correspond to a local modifica-
tion of some directory dirs ′ = dirs [ino �→ dir(md ′, si ′)] (for some new meta-
data md ′ and directory entries si ′) resp. dirs ′ = dirs − ino, where ino is found
at parent(p).

The proof strategy is determined by the symbolic execution rules for assign-
ment and deallocation. The notation ψh′

h denotes renaming of the heap h to
a fresh variable h′ representing the updated heap in the remaining program
modality resp. postcondition ψ.

(l �→ v ∗ ϕ)(h′) � ψh′
h

assign-h
(l �→ ∗ ϕ)(h) � 〈h[l] := v〉ψ

(ϕ)(h′) � ψh′
h

dealloc
(l �→ ∗ ϕ)(h) � 〈h := h− l〉ψ

The first step is to unfold the tree by (8) and (7) so that the maplet for ino
is explicit and the assignment can be applied, propagating the assertion to the
new directory store dirs ′. The dnode predicate for ino is restored wrt. the new
subdirectories si ′, e.g., by introducing an additional fnode assertion in the proof
for create. The context tree|p is rewritten to t′ as well by (9) (applied from
right to left), so that the whole abstraction can be folded by reverse-applying
(8). Most of these steps are automated by rewrite rules.
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6.2 Proof Strategy for Files

For ino = fid and given σ = content(pages) the following two top-level equali-
ties promote the concrete modification through the abstraction fs:

fs(files [ino �→ file(size,md , pages)]) = fs(files)[fid �→ fdata(md , σ to size)]

fs(files − ino) = fs(files)− fid

It remains to establish that σ to size matches the abstract operation, which is
trivial for create (σ to 0 = 〈〉) and difficult for write because of the loop in
VFS, see Fig. 9.

The loop invariant for writing states that the file content can be decomposed
into parts of the initial file content(pages0) at the beginning and at the end,
with data from the buffer in between:

write inv: content(pages) = content(pages0) to start (11)

++ buf to total

++ content(pages0) from (start + total)

The key idea behind the proofs to propagate the invariant through the loop is
to normalize all terms of type stream to a representation with ++. For example,
the effect of afs writepage is captured by the equality

content(pages [pageno �→ page])

= content(pages) to (pageno ∗ PAGE SIZE)

++ page

++ content(pages) from (pageno ∗ (PAGE SIZE+ 1))

A similar theorem exists for copy(buf , total , offset , n; page). Equation (11) is
then restored by distribution lemmas such as (σ1 ++ σ2) from n = σ2 from

(n− #σ1) if n ≥ # σ1, and by cancellation of leading stream components of both
sides of the equation (σ ++ σ1 = σ ++ σ2) ↔ σ1 = σ2 for finite σ. Finally, the
loop invariant is mapped to the respective abstract POSIX operation.

Compared to the canonical alternative—a formulation of the loop invariants
with splice (resp. copy for reading)—our approach is considerably more el-
egant: Invariant (11) does not need to mention the “current” size of the file,
which would lead to case distinctions whether the file needs to grow. Such case
distinctions (also found in max) produce a quadratic number of cases in the proof
as one needs to consider the previous and the new version of the invariant.

6.3 Related Work

Hesselink and Lali [12] refine the mapping from paths to files to a pointer-based
tree that is structurally similar to our AFS model. Their abstraction function
is a point-wise comparison on path lookup. Our verification bridges a wider
conceptual gap, since we start with a more abstract data structure (algebraic
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tree) and our VFS model is closer to a real implementation (e.g., uses a while-
loop for path lookup, separates AFS). We have specified and verified additional
operations, namely, access to files via file handles and the operations read, write
and truncate.

Damchoom et al. [5] introduce several concepts such as the distinction between
files and directories and permissions by small refinement steps. These aspects
are covered by our POSIX model, except that their model is more detailed
wrt. metadata (file owners, timestamps). Furthermore, in [4] the same authors
decompose file write into parallel atomic updates of single pages, though not
down to bytes.

Arkoudas et al. [1] address reading and writing of files in isolation (without file
handles). Their model of file content is similar to ours (i.e., non-atomic pages).
They prove correctness of read and write with respect to an abstract POSIX-
style specification. However, their file system interface allows only to access single
bytes at a time, which is a considerable simplification.

The work of Kang and Jackson [17] is closest to our work with respect to
read and write—it provides the same interface (buffer, offset, length). However,
their model only deals with file content but not with directory trees or file
handles. They check correctness with respect to an abstract specification for
small bounded models. In comparison, their read and write algorithm is less
practical than ours, because it relies on an explicit representation of a list of
blocks that needs to be modified during an operation.

The VeriFast tool2, which is based on Separation Logic, ships with some
examples for binary trees, in particular, a solution to the VerifyThis competition3

that specifies an equivalent to tree|p for binary trees. Finally, [18] is a nice
application of Separation Logic to the verification of B+ trees in the Coq prover.

7 Discussion and Conclusions

We have presented a formal specification of the POSIX file system interface,
and a verified refinement to a formal model of a Virtual Filesystem Switch as a
major step in the construction of a verified file system for Flash memory. As a
consequence we can focus on the flash specific aspects in the future.

The different models have been developed more or less simultaneously in order
to clarify the requirements for VFS, and to ensure that refinements will work
out (the one presented in this paper as well as future ones).

We estimate that the net-effort put into this work was about six person-
months: Understanding the POSIX requirements as well as the design of the
Linux VFS and its source code took roughly one month. The remaining time
was spent for design and specification of the models (about three months) and
verification of invariants and refinement (two months). As a reference, we think
that the verification was about three times as complex as the original Mondex
challenge [27]. The size of the models is roughly as follows. The state machines

2 www.cs.kuleuven.be/~bartj/verifast/
3 http://fm2012.verifythis.org

www.cs.kuleuven.be/~bartj/verifast/
http://fm2012.verifythis.org
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consist of 50 lines in the POSIX model, 500 for VFS and 100 for AFS. Addition-
ally, there are around 450 of lines algebraic specification for POSIX and 200 for
VFS+AFS on top of the KIV libraries.

For this particular verification, state invariants were fairly easy to prove, while
the simulation proofs were challenging. Paying attention to details (short read-
/write, orphans, errors) introduced additional complexity. We experienced that
choosing the right data structures simplified both specification and verification
(fids as multisets, file abstraction to streams).

Several orthogonal aspects remain for future work. Concurrency in VFS has
been intentionally left out so far. Caching of inodes, dentries and pages in VFS
could be realized without changing the AFS code. Fault tolerance against power
loss is of great interest and we are currently proving that the models can deal
with unexpected power loss anytime during the run of an operation, using the
temporal program logic of KIV [26]. Translation of the models to C code is still
an open issue.
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