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Abstract. This paper presents formal proof obligations for data refine-
ment in the presence of unexpected crashes, notably due to a power
failure. The work is part of our effort to construct a verified file system
for flash memory. We apply the theory to one of the components in the
flash file system, namely the erase block management layer. We show its
functional correctness with respect to a high-level specification. We prove
that the system can always recover from power loss to a desired state.
We observe two simplifications that greatly reduce the proof effort for
crashes in practice. Proofs are mechanized in the theorem prover KIV.
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1 Introduction

Flaws in the design and implementation of file systems already lead to serious
problems in mission-critical systems. A prominent example is the Mars Explo-
ration Rover Spirit [21] that got stuck in a reset cycle. In 2013, the Mars Rover
Curiosity also had a bug in its file system implementation, that triggered an
automatic switch to safe mode. The first incident prompted a proposal to verify
a file system for flash memory [17,10] as a small step towards Hoare’s Grand
Challenge [14]. We are developing such a verified flash file system (FFS) as an
implementation of the POSIX file system interface [27,8].

Flash file systems differ from traditional ones as the hardware doesn’t support
overwriting data in-place (in contrast to magnetic disks). In our approach, we
follow the design of UBIFS [16]. It is part of the Linux kernel and implements
state-of-the-art strategies to deal with the characteristics of flash memory.

In order to tackle the complexity of the verification of an entire file system
implementation, we refine a top-level abstract POSIX specification in several
steps down to an implementation. Figure 1 shows the high-level structure of
the project. There are four conceptual layers. Each consists of one or more sub-
components, which are modeled with different degrees of abstraction. At the top-
level is a specification of the functional correctness requirements. At the bottom
is a driver interface model that encodes our assumptions about the hardware.
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Fig. 1: FFS Layers

The file system implementation in between relies on a
separate layer, the Erase Block Management, to provide
advanced features on top of the hardware interface.

Besides functional correctness, it is of great interest
that the file system can deal with unexpected power-
failures anytime during the run of an operation. Con-
cretely, “crash-safety” means that whenever an opera-
tion is aborted in an intermediate state, a special recov-
ery operation can reconstruct a state sufficiently sim-
ilar to the pre- resp. post-state of the operation. In particular, consistency of
on-flash data structures must be preserved, and no previously written data may
be lost. The contributions of this paper are:

– We develop an extension of data refinement [13] that supports the analysis
of power-failures. Briefly, possible effects of power-loss and subsequent re-
construction of the state are defined by an abstract crash specification and
recovery operation, which allows us for example to specify to which extent
crashes must be handled transparently by the implementation. In addition
to the normal simulation proof obligations the theory requires one to show
similar commutations for each intermediate state.

– We apply the theory to the Erase Block Management layer presented in our
previous work [20]. For this particular application we observe that the inter-
mediate states of the flash memory are actually a subset of the final states of
normal runs, due to the way nondeterministic hardware errors are handled.
Therefore, for the verification a standard big-step approach is sufficient.

– We formalize the conditions for this reduction and we expect that the same
reduction can be applied uniformly to the analysis of crash-safety of all
refinements in our project.

– The verification can be modularized further, resulting in a single additional
proof obligation for the recovery operation. This is a considerable simplifi-
cation over the general case.

The theory furthermore applies to a larger class of problems where programs are
aborted in response to external events, for example signals sent by the UNIX
kill command, Java’s (unsafe) Thread.stop method and unchecked exceptions.

The paper has three main parts, describing the application domain in Sec. 2,
the crash-safe data refinement theory in Sec. 3, and invariants and the refinement
proofs in Sec. 4. We compare to related work and draw conclusions in Sec. 5.

2 Background

This section explains the purpose of Erase Block Management (EBM) and briefly
shows the formal models that are related to this layer. Namely, we describe the
implementation in Sections 2.1 to 2.3 and the specification in Sec. 2.4. These
correspond to the “concrete” resp. “abstract” data types CDT and ADT in
terms of data refinement. The models are inspired by the Unsorted Block Image
(UBI) [12] layer of UBIFS and the Memory Technology Device (MTD) layer of
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Linux. An in-depth description of the models can be found in [20]. All models
and proofs are browsable online [19].

Our specification language is based on Abstract State Machines [3] (ASMs).
We use algebraic specifications to axiomatize data types, and the weakest-pre-
condition calculus implemented in KIV [22] to verify properties. ASMs main-
tain a state as a vector of logical variables that store algebraically defined data
structures. Operations are defined by abstract programs (“rules” in ASM termi-
nology), featuring parallel (function) assignments, conditionals, loops, recursive
procedures, and also nondeterministic choice.

To study crashes, we distinguish between state held in volatile memory
(denoted by RAM state subsequently) and state stored on the flash device
(flash state). Conceptually, all information in RAM is lost during a crash. We
assume that the flash state is unaltered by crashes.

2.1 Flash Hardware

Flash memory is physically partitioned into blocks, each consisting of pages that
can be empty or programmed with data. There are three main operations:
1. Read a consecutive part of a block, possibly across page boundaries. Empty
pages yield default values, typically bytes 0xFF.
2. Write/Program data to a whole page that was previously empty. There may
be an additional constraint that pages in a block must be written in order [9,7].
3. Erase a whole block, i.e., empty all of its pages. This operation enables reuse
of memory, though it comes at considerable costs: Erasing is slow and physically
degrades the memory. The number of erase cycles until a block breaks down is
thus limited—typically between 104 and 106. Such broken blocks are called bad.

In practice, flash memory exhibits nondeterministic errors. A failed access
does not mean that a block is ultimately unusable. The file system may retry
an operation several times or backup the data to a different block after a failed
write, since a block may work perfectly again after one erase cycle. Once the file
system determines a block as broken, it can set a hardware-supported bad-block
marker to prevent further use of the block.

We formalize flash memory in our hardware model as an array of physical
erase blocks (PEBs) stored in the state variable pebs. It is the only persistent
variable in our models on this level of abstraction.

flash state pebs : Array〈Peb〉 where

data Peb = peb(data : ArrayPEB SIZE〈Byte〉, fill : N, bad : B)

Peb is an algebraic data type with one constructor, peb. It contains the block’s
data as an array data of bytes of uniform length PEB SIZE. The page-aligned
counter fill denotes how many bytes have been written to data, subsequent
bytes are empty. Subdivision into pages is represented implicitly.

The operations that model the interface to the hardware are defined by ASM
rules (abstract programs) that modify the flash state pebs. Nondeterministic
errors are incorporated into each operation: Either the modification of flash
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mtd erase(n; err)
{ pebs[n]B peb(EMPTY PEB, 0, false),

err B ESUCCESS }
or { err B EIO }

mtd markbad(n; err)
{ pebs[n].badB true,

err B ESUCCESS }
or { err B EIO }

Fig. 2: Hardware operations (MTD)

erase(l, v)
for e ∈ eraseq do

if e.lebref = (v, l) then

eraseq -= e
let ec = // get erase counter

in mtd erase(e.pnum; err)
mtd write ec(e.pnum, ec + 1; err)
if err 6= ESUCCESS

then mtd markbad(e.pnum; err)

Fig. 3: Synchronous erase (EBM)

memory is successful, or there is an EIO error and the flash state is unmodified.
In the full model, this assumption is relaxed by permitting certain kinds of data
corruptions as long as they can be recognized, e.g., by checksums.

As an example, Fig. 2 shows the ASM rule to erase physical block number n,
and the rule to mark a block as bad. We assume that flash (MTD) operations can
be viewed as atomic state transitions, consequently, the model updates pebs[n]
by a single assignment in each operation.

2.2 Logical and Physical Blocks

The Erase Block Management layer provides an abstraction of flash memory
based on logical erase blocks (LEBs) instead of physical ones. The primary task
of the EBM is therefore to maintain a mapping from logical to physical blocks.

Several advanced features can be implemented with such a mapping. For ex-
ample, bad blocks can be hidden from upper layers. More importantly, the EBM
layer can transparently migrate a logical block to a different physical location.
This enables wear-leveling, a method to distribute erase cycles evenly between
physical blocks to prolong the hardware’s lifetime. The basis for wear-leveling is
an atomic write of a whole logical block, which breaks down to multiple physical
writes internally. This operation is useful for applications, too.

Another benefit is that erasing of blocks (which is slow) can be performed
asynchronously in the background (called unmapping). An application may thus
reuse a logical block directly after an erase request, even before the corresponding
physical erase has been performed. Finally, several volumes (i.e., partitions) on
one device can trivially be supported. In summary, the EBM operations are read,
write, map (allocate), unmap (asynchronous), erase (synchronous, see below).

The forward mapping from logical blocks to physical ones is kept in RAM,
given for each volume v : V as an array indexed by logical block numbers:

RAM state vols : V 7→ Array〈PebRef 〉 where

type PebRef = N + unmapped

Figure 4 shows the logical view of the device at the top with consecutive
blocks numbered 0, 1, . . ., and the physical device at the bottom. Bold arrows
denote which physical block is allocated for a logical one. For example, logical
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Fig. 4: Mapping of logical blocks to physical ones

data pages 

EC ... 

headers 

VID 

Fig. 5: Layout of a PEB

block 0 is mapped to 1, and logical blocks 1, 2 are unallocated, and we would
have vols[v] = [1, unmapped, unmapped, . . .] for some volume v.

An inverse mapping (displayed by thin arrows) is stored on flash in the
grey headers of physical blocks. The in-memory representation of the forward
mapping is initially built during system startup (resp. recovery).

A logical block that has no associated physical one (such as the dashed
blocks 1 and 2) is implicitly empty, i.e., it has previously been erased. As soon
as a write to such a block occurs, a new PEB is allocated and the mapping is
extended in both directions.

Note that the stored inverse mapping need not to be injective (as suggested
by PEB 0 and 1 in Fig. 4). The recovery algorithm scans the headers of all
physical blocks and resolves such ambiguities by sequence numbers. For example,
the inverse mapping from PEB 0 (to LEB 0) has sequence number 21, which is
lower than the sequence number 42 of PEB 1.

In summary, physical blocks can have the following states. En-passant we
introduce several critical invariants of the erase block management layer.

– Mapped PEBs, such as block 1, have a valid header with an inverse mapping.
Their respective sequence number is the highest among all PEBs with the
same inverse mapping. These blocks are the only ones referred to by the
forward mapping vols in RAM.

– Obsolete blocks, such as block 0, have a valid header, however, there is
another PEB with a higher sequence number. Such blocks are not mapped
and are scheduled for erase.

– Pending obsolete blocks have a valid header, however, in contrast to truly
obsolete blocks they have the highest sequence number but are not referred
to by vols. These blocks were recently asynchronously erased but the corre-
sponding physical erase has not occurred yet. Pending obsolete blocks are
remapped by the recovery operation, as described in Sec. 2.3.

– Available blocks, such as block 2, do not store an inverse mapping and can
be allocated.

– Invalid blocks, such as block 3, contain partially written data of a failed
atomic update. In order to recognize partial writes, a checksum (of the rel-
evant prefix of the block) is stored as well. These blocks are never mapped
and must be scheduled for erase, too.

– Bad blocks are not allocated and their content is ignored.

Pending obsolete blocks are an artefact that could be prevented with difficulty
and additional flash state only. Our EBM implementation refrains from the extra
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recover(pebs; vols, eraseq)
sqn : V× N 7→ N
for i = 1...pebs.length do

let peb = pebs[i] in

if peb.bad then . . .
else if peb.isavailable then . . .
else let v = peb.vol, l = peb.leb in

if peb.isinvalid then eraseq += eq-entry(i, none)
else if peb.sqn < sqn(v, l) then eraseq += eq-entry(i, (v, l)) // obsolete

else // peb ∈ {mapped, pending, obsolete}, previous PEB obsolete

{ eraseq += eq-entry(vols[v][l], (v, l)); vols[v][l]B i; sqn(v, l)B peb.sqn }

Fig. 6: Recovery from Crashes (conceptually)

effort. Instead, the problem is pushed into the application (which is not a problem
in practice). Alternatively, a less efficient synchronous erase can be used, which
disposes of all pending blocks for a given mapping.

Fig. 5 shows the layout of a PEB. The first two pages store two headers. The
remaining pages store application data. The first page contains an erase counter
(EC) associated with the physical block. The second page of allocated PEBs
contains the inverse mapping (thin arrows in Fig. 4) in the volume identifier
header (VID). Two headers are necessary, because every PEB stores an erase
counter, but only once a PEB is allocated an inverse mapping is required.

Both kinds of obsolete blocks are kept in the erase queue. It is used to assign
work to the corresponding background operation. For synchronous erasure of
one LEB (v, l) ∈ V×N it is necessary to locate all PEBs that belonged to (v, l).
To easily locate them without reading from flash, each entry of the queue caches
the inverse mapping stored in the corresponding PEB.

RAM state eraseq : Seq〈EraseqEntry〉 where

data EraseqEntry = eq-entry(pnum : N, lebref : LebRef )

type LebRef = none + V× N
The ASM rule for synchronous erasure is shown in Fig. 3. All relevant entries in
the erase queue are erased and a new EC header is written. If an error occurs,
the block is marked as bad. The actual model performs several retries, which
is omitted here. Note that this operation inherits from the failure cases of the
MTD operations that there is a run that doesn’t modify the flash state. We will
need such runs in Sec. 3.4.

2.3 Recovery

Recovery rebuilds the RAM state from flash after a crash. Fig. 6 shows con-
ceptually how the recovery operation works. The actual implementation calls
flash operations instead of directly using selectors on PEBs. It scans the headers
of every physical block and incrementally rebuilds the mapping table vols. The
sequence number of the most recent mapping encountered during the scan is
cached. For each physical block it is determined in which state according to the
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classification of Sec. 2.2 it is, taking into consideration the mappings (and their
sequence numbers) that were already seen. Obsolete blocks may be mapped
temporarily until the block with the higher sequence number is encountered.
Pending obsolete blocks can not be distinguished from mapped blocks and are
therefore also mapped.

2.4 The Specification

The specification of the Erase Block Management layer is designed to be as
simple as possible. Its state collapses the in-RAM mapping and the contents of
a LEB into one data structure avols.

state avols : V 7→ Array〈Leb〉 where

data Leb = mapped(data :ArrayLEB SIZE〈Byte〉, fill : N) | unmapped | erased
The operations are specified as an atomic modification of the state. Asyn-
chronous and synchronous erasure for example just set the given LEB to unmapped
resp. erased. The limitation to sequential writes is achieved by the precondition
that the offset of every write must be above fill.

The distinction between unmapped and erased is introduced to specify the
effects of a crash and subsequent recovery (which is complex in the implemen-
tation) as simple as possible:

abstract recover(avols)
choose avols ′ with avols ⊆ avols ′ in

avols B avols ′

Informally, the relation ⊆ says that the state afterwards has ”more information“
than before. More formally, the same volumes are present in both states and
have the same size. The only difference between the states is that LEBs that
were unmapped in avols, may be arbitrary in avols ′. This captures the effect that
pending obsolete blocks may reappear during the recovery.

3 Crash-Safe Refinement

This section reviews standard data refinement and introduces the notation for
program semantics. In Sec. 3.3 we present the theoretical contribution: an ex-
tension of data refinement for the analysis of crash-safety. The immediate proof
obligations for (forward) simulation of crashing operations consider all inter-
mediate states of both the abstract and concrete run. The proof effort can be
reduced in practice, and we present an approach to do so in Sec. 3.4.

3.1 Data Refinement

Data refinement [13,6] is a formal theory that permits substitution of an abstract
data type ADT (the specification) by a concrete (refined) version CDT (the
implementation). CDT “refines” ADT , written CDT v ADT , if the two cannot
be distinguished just by invoking sequences of operations.
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Formally, a data type DT = (S , Init ,Fin, (Opi)i∈I ) defines the space S of
its values, initialization Init ⊆ G × S , finalization Fin ⊆ S ×G (for some global
state G), and a family of operations Opi ⊆ S × S indexed by a set of names I .

A concrete data type CDT = (CS ,CInit ,CFin, (COpi)i∈I ) refines an ab-
stract data type ADT = (AS ,AInit ,AFin, (AOpi)i∈I ) iff for all sequences of
indices is = i1, . . . , in ∈ I ∗:

CInit o
9 COpis

o
9 CFin ⊆ AInit o

9 AOpis
o
9 AFin (1)

where o
9 denotes relational composition and Opi1,...,in := Opi1

o
9 . . . o

9 Opin .
Refinement can be proved per operation by forward simulation with a simu-

lation relation R ⊆ AS × CS that has the following properties:

initialization CInit ⊆ AInit o
9R

correctness R o
9 COpi ⊆ AOpi

o
9R for all i ∈ I (2)

finalization R o
9 CFin ⊆ AFin

3.2 Semantics

A data type specification (S , Init ,Fin, (Pi)i∈I ) is similar to a data type, but the
operations are given as programs (corresponding to ASM rules in this work).

Such a specification induces a data type DT = (S , Init ,Fin, (Opi)i∈I ) where
operation Opi is defined in terms of the semantics of program Pi. To reason
about intermediate steps later on in Sec. 3.3, we base this work on a small step
semantics with atomic steps 〈p, σ〉→〈p′, σ′〉 of program p from state σ to σ′ with
remaining program p′. Atomic steps are for example assignments and evaluation
of conditionals.

Opi is simply the pairs of states that are produced by terminating runs1 of
Pi, i.e, any number of steps of Pi terminating with empty remaining program ε:

Opi := {(σ, σ′) | 〈Pi, σ〉→∗ 〈ε, σ′〉}
A standard definition of→ can be found in [1]. In KIV, we actually use the more
elaborate trace-based semantics of RGITL [24], which also supports concurrent
reasoning. The semantics of control-state ASMs [3] is adequate, too. Note that
for simplicity we assume local variables, input/output, and call stacks to be part
of S . For information on the use of ASMs for refinement see [2,23].

As a special case, we consider all flash operations as atomic steps, since their
effect occurs atomically. For example, the trace of P ≡ erase shown in Fig. 3
interleaves 1) steps that assign to RAM variables only and 2) MTD operations.

3.3 Extension to Crashes

A data type specification with crash behavior is a tuple

(S , Init ,Fin, (Pi)i∈I ,Crash, Recover)

with state space S , initialization Init and finalization Fin, where programs Pi
define the operations, similar to an ordinary data type specification in Sec. 3.1.

1 This relational view is sufficient here and in the rest of the paper, since we prove
that all programs terminate, i.e., wp(p, true), liftings with ⊥ are thus unnecessary.
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The relation Crash ⊆ S×S specifies the effect of a crash. Intuitively, its purpose
is to remove from the current state all information stored in volatile memory
(RAM). In particular, we assume that the output of a crashed operation is lost.

Recovery is implemented by the program Recover, which must be called after
a crash (and only then) and before any subsequent operation on the data type.
The behavior observed by a program using the data type is therefore that either
a call to an operation is executed normally (and may or may not terminate) or
an operation is interrupted in an intermediate state immediately followed by the
effects of a crash and subsequent recovery.

The data type DT specified by (S , Init ,Fin, (Pi)i∈I ,Crash, Recover) is de-
fined in terms of two semantics for its operations. Normal runs of an operation
Opi are defined as usual

Opi := {(σ, σ′) | 〈Pi, σ〉→∗ 〈ε, σ′〉} and (3)

Recover := {(σ, σ′) | 〈Recover, σ〉→∗ 〈ε, σ′〉}
Crashed runs Opi ⊆ S × S execute program Pi only partially, followed by the
crash and a complete2 execution of the recovery operation:

Opi := {(σ, σ′) | ∃ p. 〈Pi, σ〉→∗ 〈p, σ′〉} o
9 Crash o

9 Recover (4)

Observable indices of the data type DT are therefore I := I ∪ {i | i ∈ I }
and the runs produced by a program using the data type can then be character-
ized by Init o

9 Opis 
o
9 Fin with is ∈ I ∗ .

Definition 1 (Data types with crash behavior). A data type specifica-
tion (S , Init ,Fin, (Pi)i∈I ,Crash, Recover) with crash behavior induces a stan-
dard data type DT as follows

DT := (S , Init ,Fin, (Opi)i∈I )

From this embedding all properties of standard data refinement hold. Specif-
ically, it is possible to prove a refinement CDT v ADT by a forward simulation
R ⊆ AS × CS satisfying (2) and the additional condition

correctness wrt. crashes R o
9 COpi ⊆ AOpi 

o
9R for all i ∈ I (5)

However, this property is difficult to establish, because it is necessary to reason
about every intermediate step of the execution. Therefore, theorems reducing
the proof effort in specific settings are desirable.

3.4 Reduction to Completed Operations

Purpose of this section is to get rid of the crash-semantics Opi in practice and
thus to eliminate the need for small-step reasoning. Furthermore, crash-safety
proofs can be modularized so that it is sufficient to consider the refinement of
crash+recovery in isolation: R o

9 CCrash o
9 CRecover ⊆ ACrash o

9 ARecover o
9R.

The first simplification is not tied to a particular application: The abstract
run witnessing proof obligation (5) can always be chosen to be a complete run.

2 Crashes during recovery can be neglected if Crash o
9 Recover does not modify persis-

tent state. Of course, a suitable proof obligation could be defined.
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(rs, fs) (rs , fs
′) (rs?, fs

′) (rs ′′, fs ′′)
Pi →∗ p Crash Recover

(rs ′, fs ′)

p →∗ ε Crash

Fig. 7: Completion of a trace with unaltered flash state.

Lemma 1 (complete abstract runs). The following proof obligation for crashed
runs is sufficient and can be employed instead of (5):

R o
9 COpi ⊆ (AOpi ∪ Id) o

9 ACrash o
9 ARecover o

9R

where Id is the identity relation (witnessing concrete runs that crash without
any flash modifications). Furthermore, the condition is trivially complete if the
program defining AOpi has one step only.

Proof. From (3) and (4) for p := ε we have AOpi
o
9 ACrash o

9 ARecover ⊆ AOpi .
Similarly, taking the whole program for p in (4) justifies the inclusion of Id .
Lemma 1 then holds by transitivity of ⊆ and monotonicity of o

9R wrt. ⊆. ut

The hardware model in Sec. 2.1 has the property that there is always a run
with a hardware error, leaving the flash state unaltered. Consequently, the same
holds for all sequences of flash operations and thus all erase block management
operations. This makes the set of intermediate flash states a subset of the final
ones and one has to consider only these for the verification.

This second simplification is specific to the separation of S = RS × FS into
volatile RAM state RS and persistent Flash state FS with σ = (rs, fs). Crashes
change the RAM state arbitrarily but leave the flash state intact:

Crash := {(rs, fs, rs ′, fs ′) | fs = fs ′} (6)

Figure 7 illustrates the basic idea. Assume a partial run of program Pi resulting
in state (rs , fs

′), crashing to (rs?, fs
′) with an arbitrary RAM state rs?. The

final state after recovery is (rs ′′, fs ′′). We can construct the alternative dashed
run by executing the remaining program p without modifying the flash state:
for all subsequent flash operations we pick the error cases (c.f. Fig. 2).

Definition 2 (unaltered state assumption). A program Pi satisfies the un-
altered state assumption, if for every partial run 〈Pi, rs, fs〉 →∗ 〈p, rs , fs

′〉 a
completion 〈p, rs , fs

′〉→∗ 〈ε, rs ′, fs ′〉 with the same final flash state fs ′ exists.

Lemma 2 (completion of crashed runs). If Pi satisfies assumption 2, then

Opi ⊆ Opi
o
9 Crash o

9 Recover for all i ∈ I

Proof. Let (rs, fs, rs ′′, fs ′′) ∈ Opi be arbitrary. Then by definition (4) there

is a partial run 〈Pi, rs, fs〉 →∗ 〈p′, rs , fs
′
1〉 with (rs , fs

′
1, rs?, fs

′
2) ∈ Crash and

(rs?, fs
′
2, rs ′′, fs ′′) ∈ Recover . By assumption, there is also a final state (rs ′, fs ′1)

of the complete run of Pi. By (6) fs ′1 = fs ′2, and—since Crash admits arbitrary
RAM transitions—we furthermore have (rs ′, fs ′1, rs?, fs

′
2) ∈ Crash. It follows

that (rs, fs, rs ′′, fs ′′) ∈ Opi
o
9 Crash o

9 Recover . ut
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Corollary 3 (complete concrete runs) Given that CDT satisfies assump-
tion 2, the following proof obligation for crashed runs is sufficient and can be
employed instead of (5):

R o
9 COpi

o
9 CCrash o

9 CRecover ⊆ AOpi 
o
9R

Proof. By Lemma 2, transitivity of ⊆ and monotonicity of R o
9 wrt. ⊆. ut

The unaltered state assumption 2 can be broken down to a property about
single steps as follows:

Lemma 4 (trace existence) If Pi always terminates and all call to flash op-
erations mtd op(. . .) can leave the flash unmodified, then Pi satisfies definition 2.

Proof. Let 〈Pi, rs, fs〉→∗ 〈p, rs , fs
′〉 be a partial run. We show that for every n

there is a remaining program p′′ 6= ε and RAM state rs ′′ with

a) 〈p, rs , fs
′〉 →≤n 〈ε, rs ′′, fs ′〉 or b) 〈p, rs , fs

′〉 →n 〈p′′, rs ′′, fs ′〉 (7)

This means that it is possible to construct a run that leaves the flash state
unmodified, and a) terminates in at most n steps or b) has length n. The proof
is by induction over n. In the inductive case n 7→ n+ 1:

Given case a) of the induction hypothesis, (7) trivially holds for n + 1, too.
Otherwise, b) yields 〈p, rs , fs

′〉 →n 〈p′′, rs ′′, fs ′〉 with p′′ 6= ε.
If p′′ = mtd op(. . .); p′′′ for some flash operation mtd op, then 〈p′′, rs ′′, fs ′〉→

〈p′′′, rs ′′′, fs ′〉 holds for some rs ′′′ by assumption. Otherwise, no potential first
step of p′′ modifies the flash state and at least one such step exists, since all runs
terminate (and therefore do not get stuck). In both cases the trace is extended
by one step and either a) or b) for n+ 1 follows.

Since all runs of Pi terminate by assumption, (7) implies that a completion
without further flash modifications exists as required by definition 2. ut

Theorem 5 (reduction) If CDT satisfies the unaltered state assumption, and
all operations of CDT and ADT terminate, a refinement CDT v ADT holds
if in addition to the ordinary proof obligations given in Sec. 3.1, just one addi-
tional property for crash and subsequent recovery can be shown:

recovery R o
9 CCrash o

9 CRecover ⊆ ACrash o
9 ARecover o

9R (8)

Proof. By combining the above commutation with correctness (2) of each oper-
ation i ∈ I , Lemma 1, and Corollary 3. ut

4 Correctness of the EBM Implementation

This section outlines the invariants and proofs for crash-safe refinement of the
specification (Sec. 2.4) to the EBM implementation (Sections 2.1 to 2.3). The op-
erations are I = {read, write, map, unmap, erase, wearlevel, backgrounderase}
as outlined in Sec. 2.2, where the last two are background operations invisible
on the abstract layer.
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The abstract data type ADT has only one state variable, avols, that is
considered to be persistent, and thus ACrash = Id , and recovery is specified by
the program abstract recover shown in Sec. 2.4.

The concrete data type CDT has persistent state pebs. The RAM state in-
cludes the block mapping vols, the erase queue and other data structures that
we have omitted from this paper. CCrash only guarantees that pebs is unmod-
ified, all other state becomes arbitrary. We have shown the recovery operation
recover in Fig. 6.

Every operation of our hardware model (Sec. 2.1) has the possibility to fail
nondeterministically without effect. In particular, it is easy to check for all MTD
operations the syntactic shape atomic modification or fail. According to
Lemma 4 and Theorem 5 the standard data refinement proof obligations and
separately (8) for crash followed by the recovery remain to be shown. Of course,
we prove termination and that all system invariants stated here (and others) are
preserved by all operations.

4.1 Refinement of Normal Operations

Abstract and concrete states are related as follows. A logical block l in volume v
that is mapped to a physical block n is also mapped in the abstract states avols
with the same (application) data. Unmapped LEBs are erased or unmapped
abstractly. Formally:

avols[v][l] = mapped(data,fill) when vols[v][l] = n

avols[v][l] ∈ {erased, unmapped} when vols[v][l] = unmapped

where data is the sub-array of pebs[n] starting at the third page, and the abstract
counter fill ≥ pebs[n].fill is at least as high as the concrete counter.3 These
two conditions are sufficient for correctness (2) of all seven operations in I. ut

4.2 Refinement of Recovery

The proofs for the correctness of recovery (8) are much more involved and require
additional knowledge about the state. A major difficulty is to come up with a
loop invariant for recover. The intermediate value of vols is not necessarily
related to the mapping before the crash, since vols may refer to obsolete PEBs
temporarily. The following maximality criterion establishes the connection:

Definition 3 (maximal mappings). A candidate for the mapping of a logical
block (v, l) is a physical block that stores (v, l) as inverse mapping in its header
and is mapped, pending obsolete, or truly obsolete. The best candidate has the
highest sequence number among these.

A mapping table vols is maximal, if vols[v][l] is the number of the best can-
didate for all (v, l), if it exists, and unmapped otherwise.

A mapping vols is partially maximal, if vols[v][l] 6= unmapped implies that
vols[v][l] is the best candidate.

3 During wear-leveling the fill count may decrease as part of the migration of data.
Allowing a higher fill count in the specification hides the effect of wear-leveling.
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A partial maximal mapping vols is not necessarily maximal, since some logical
blocks may be unmapped, namely those blocks that are pending obsolete.

Proposition 6 The recovery loop of concrete operation recover has the invari-
ant that vols is maximal with respect to the subrange {1, . . . , i}, where i is the
loop counter, and thus the result is a maximal mapping for pebs.

Theorem 7 (recovery) recover refines abstract recover, i.e., (8) holds.

Proof. The high-level argument can be summarized as follows:
1. Establish the system invariant that vols is partially maximal
2. The mapping vols ′ produced by recover is maximal by Proposition 6
3. Uniqueness of best candidates implies vols ⊆ vols ′, defined by

∀v, l. vols[v][l] 6= unmapped→ vols ′[v][l] = vols[v][l]

(There is an additional system invariant that sequence numbers are unique.)
4. Show that ⊆ propagates through the simulation relation R:

avols ⊆ avols ′ holds, as required by the abstract recovery in Sec. 2.4. ut

Step 4. needs another property that must be included in R, namely that pend-
ing obsolete blocks are not erased in the abstract layer, because only unmapped

blocks may reappear. This can be formalized by referring to the erase queue:

avols[v][l] = erased implies eq-entry(n, (v, l)) /∈ eraseq for all n

5 Related Work & Conclusion

In this paper, we present the mechanized verification of an erase block man-
agement layer for flash memory, dealing with nondeterministic hardware errors,
including data corruption. We demonstrate safety of the layer against unexpected
power loss. We develop a novel extension to data refinement for this purpose,
which considers crashes as an additional and orthogonal concept. We provide
reduction criterions to greatly reduce the proof effort in practice, based on a
correspondence between crashes and nondeterministic hardware failures.

Recovery from failure has been studied quite a bit in the context of transac-
tions. However, we are not aware of an approach that supports a uniform way
to specify unexpected crashes or that integrates into refinement. The main dif-
ference is that we have to consider crashes at each program location, whereas
rollback of transactions is triggered explicitly, see for example Hoare’s work on
compensable transactions [15]. Freytag et. al. [11] use a specialized predicate
transformer semantics to study crashes, but their approach is very specific to
databases and too restricted for our purpose.

The main challenges of the verification are that mappings can reappear after
a power loss as a consequence of asynchronous erase and that wear-leveling can
produce invalid blocks.

Related work on verification of flash memory access includes [18] (using Al-
loy), [26] (Promela/Spin), and [5] (Event-B). We think that the limitations of
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real hardware are not addressed adequately. In particular, all three formaliza-
tions specify mappings at the granularity of pages, which is in principle less
space-efficient and leads to longer mount times. More importantly, the existence
of additional bits per page is assumed to (in-)validate mappings. This simplifies
atomic migration of blocks greatly, but modern hardware tends not to support
such bits [28]. The same criticism applies to the assumption made by all three
models that pages in a block can be written in any order.

Models [18,26] are validated by bounded model-checking and they are tuned
accordingly to prevent state space explosion. In [18] the effect of power-loss
is intertwined with the write operation, and it is therefore hard to judge the
adequacy of the model.

Except for the low-level flash model [4], existing work neglects data corrup-
tions as far as we know. We are not aware of the verification of an application
layer (i.e., the EBM) that has to deal with such corruptions.

The size of the formal models is around 2300 lines, half of which is ASM
code, the rest can be attributed to algebraic specifications (i.e., data types, func-
tions and predicates including invariants, not including the KIV libraries). We
estimate that the net-effort for specification and verification was seven person-
months.

Ongoing work integrates the models with the actual Linux MTD interface
so that we can run our EBM on real hardware. In the future, we will apply the
crash-safe refinement theory to other layers in our flash file system, e.g. [25,8].

Acknowledgement. We thank Timo Hochberger for digging through the UBI
documentation and source code and creating the initial models.
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