
.

Proc. SPIN 2015, (c) Springer

Benchmarking and Resource Measurement

Dirk Beyer, Stefan Löwe, and Philipp Wendler

University of Passau, Germany

Abstract. Proper benchmarking and resource measurement is an im-
portant topic, because benchmarking is a widely-used method for the
comparative evaluation of tools and algorithms in many research areas.
It is essential for researchers, tool developers, and users, as well as for
competitions. We formulate a set of requirements that are indispensable
for reproducible benchmarking and reliable resource measurement of
automatic solvers, verifiers, and similar tools, and discuss limitations of
existing methods and benchmarking tools. Fulfilling these requirements
in a benchmarking framework is complex and can (on Linux) currently
only be done by using the cgroups feature of the kernel. We provide
BenchExec, a ready-to-use, tool-independent, and free implementation of
a benchmarking framework that fulfills all presented requirements, mak-
ing reproducible benchmarking and reliable resource measurement easy.
Our framework is able to work with a wide range of different tools and
has proven its reliability and usefulness in the International Competition
on Software Verification.

1 Introduction

Performance evaluation is an effective and inexpensive method for assessing re-
search results [13], and in some communities, like high-performance computing 1,
transactional processing in databases 2, natural-language requirements process-
ing 3, and others, performance benchmarking is standardized. Tools for automatic
verification, such as solvers and verifiers, are also evaluated using performance
benchmarking [3], i.e., measuring execution time, memory consumption, and
other performance characteristics. Benchmarking is necessary for comparing
different tools of the same domain, evaluating and comparing different features or
configurations of the same tool, or for finding out how a single tool performs on
different inputs or during regression testing. The ability to limit resource usage
(e.g., memory consumption) of a tool during benchmarking is also a requirement
for reproducible experiments. To receive reproducible results from experiments,
a benchmarking infrastructure should guarantee that the data are obtained by
reliable and valid measurement. Also competitions, like SAT-COMP [1], SMT-
COMP [2], and SV-COMP [3], require exact measuring of resource consumption,
and, in order to guarantee fairness, need to enforce the agreed resource limits ac-
curately. For example, in the International Competition on Software Verification
(SV-COMP), all tools are limited to 15min of CPU time and 15 GB of RAM [3].
Results from the tools are only counted if none of these limits exceeded.
1 https://www.spec.org/ 2 http://www.tpc.org/ 3 http://nlrp.ipd.kit.edu/

https://www.spec.org/
http://www.tpc.org/
http://nlrp.ipd.kit.edu/


Results are reproducible if it is guaranteed that the same results can be
obtained later again (assuming a deterministic tool) by re-running the bench-
marks on a machine with the same hardware and the same software versions.
Reproducibility of experimental results requires reliable measurement. We call
a measurement reliable, if the measurement method ensures accuracy (small
systematic and random measurement error, i.e., no bias or “volatile” effects, resp.)
and sufficient precision [7] (cf. also ISO 3534-2:2006). While it may appear that
measuring execution time is trivial, a closer look reveals that quite the contrary
is the case. In many circumstances, measuring the wall time, i.e., the elapsed
time between start and end of a task, is not enough because this does not allow
to compare the resource usage of multi-threaded tools, and may be inadvertently
influenced by input/output operations (I/O). Measuring the CPU time is more
meaningful but also more difficult, especially if child processes are involved.
Furthermore, characteristics of the machine architecture such as hyper-threading
or non-uniform memory access can non-deterministically affect results and need
to be considered carefully in order to obtain reproducible results. Obtaining
reliable measurement values on memory consumption is even harder, because
the memory that is used by a process may increase or decrease at any point in
time. Similarly, the limits on memory consumption must not be exceeded at any
point in time during the execution of the tool. Again, child processes add further
complications. Another important aspect is the potentially huge heterogeneity be-
tween different tools in a comparison: tools are written in different programming
languages, require different libraries, may spawn child processes, write to storage
media, or perform other I/O. All of this has to be considered in the design of
a benchmarking environment, ideally in a way that does not exclude any tools
from being benchmarked.

1.1 Contributions

In this work, we present the following contributions towards reproducible bench-
marking for all scenarios that are described above:

• A set of necessary requirements that need to be fulfilled for reliable measure-
ment and reproducible benchmarking are identified (Sect. 2).

• We show that some existing methods for resource measurements and lim-
itations do not fulfill these requirements and lead to invalid experimental
results in practice (Sect. 3).

• We describe how to implement a benchmarking environment on a Linux
system which fulfills all mentioned requirements (Sect. 4).

• The open-source implementation BenchExec is provided, a set of ready-to-
use tools that fulfill the requirements for reproducible benchmarking. The
tools were already used successfully in practice by competitions (Sect. 5).

1.2 Restrictions

In order to guarantee reproducible benchmarking, we need to introduce a few
restrictions. However, we argue that there are important classes of tools that

https://github.com/dbeyer/benchexec/


need to be benchmarked and for which these restrictions are acceptable, for
example automatic solvers, verifiers, and similar tools. We only consider the
benchmarking of tools that adhere to the following restrictions: The tool (1) is
CPU-bound, i.e., if compared to CPU usage, input and output operations from
and to storage media are negligible, and input and output bandwidth does not
need to be limited nor measured (this assumes the tool does not make heavy
use of temporary files); (2) does not perform network communication during the
execution; (3) does not spread across several machines during execution, but is
limited to a single machine; and (4) does not require user interaction.

These restrictions are acceptable, because (1) reading from storage media,
apart from the input file, is not expected from tools in the target domains.
In case a tool produces much output (e.g., by creating large log files), this
would primarily have a negative impact on the performance of the tool itself,
and thus does not need to be restricted by the benchmarking environment.
Sometimes, I/O cannot be avoided for communicating between several processes,
however, for performance this should be done without any actual storage I/O
anyway (e.g., using pipes). Not supporting network communication is acceptable,
because (2) we expect tools not to use any network communication. While it is
in principle possible for a tool to offload work to remote servers [4], this would
mean to exclude the offloaded work from benchmarking. In contrast to other
ways that are shown in this paper that may allow circumventing limits imposed
by the benchmarking framework, using network communication does not occur
accidentally. Benchmarking a distributed tool (3) is much more complex and out
of scope. However, techniques and ideas from this paper as well as our tool can be
used on each individual host as part of a distributed benchmarking framework.

We do not consider security concerns. We assume the executed tool to be
trusted, i.e., it will not maliciously try to interfere with measurements or other
running processes. This could be addressed by running our benchmarking frame-
work and the tool under different user accounts, but then the benchmarking
framework needs additional rights (usually root access) that may not be available
in every environment. We also do not consider the task of providing the necessary
execution environment to the tool, i.e., the system administrator of the machines
has to ensure that all necessary packages and libraries needed to run a tool are
available in the correct versions. Furthermore, we assume that enough memory is
installed to handle the operating system (OS), the benchmarking environment,
and the benchmarked process(es) without swapping, and that no CPU-intensive
tasks are running outside the control of the benchmarking environment. All I/O is
assumed to be local, because network shares can have unpredictable performance.

These are well-justified requirements, needed for safe operation of our bench-
marking environment, and fulfilled by setups of competitions like SV-COMP.

2 Requirements for Reliable Benchmarking

There exist two major difficulties that we need to consider for benchmarking.
The first problem is that a tool may arbitrarily spawn child processes, and a



benchmarking framework needs to handle this. Using child processes is common
practice. For example, verifiers might start preprocessors, such as CPP, or solvers,
like an SMT-backend, as child processes. Some tools start several child processes,
each with a different analysis or strategy, running in parallel, while some verifiers
spawn a separate child process to analyze counterexamples. In general, a significant
amount of the resource usage can happen in one or many child processes that run
sequentially or in parallel. Even if a tool is assumed to not start child processes,
for comparability of the results with other tools it is still favorable to use a
generic benchmarking framework that handles child processes correctly.4

The second problem occurs if the benchmarking framework should assign
specific hardware resources to tool runs, especially if such runs are executed
in parallel and the resources need to be divided between them. Today’s ma-
chine architectures can be complex and a sub-optimal resource allocation can
negatively affect the performance and lead to non-deterministic and thus non-
reproducible results. Examples for differing machine architectures can be seen on
the supplementary web page.5

In the following, we list five specific requirements that address these problems
and need to be followed for reproducible benchmarking. This list should serve as
a checklist not only for implementors of benchmarking frameworks, but also for
assessing the quality of experimental results in research reports.

2.1 Measure and Limit Resources Accurately
Time. The CPU time of a tool must be measured and limited accurately,
including the CPU time of all child processes started by the tool.

Memory. For benchmarking, we are interested in the peak resource consumption
of a process, i.e., in the smallest amount of resources with which the tool could
successfully be executed with the same result. Thus the memory usage of a process
is defined as the peak size of all memory pages that occupy some system resources.
This means, for example, that the size of the address space of a process should
not be measured and limited, because it may be much larger than the actual
memory usage, for example due to memory-mapped files or due to allocated but
unused memory pages (which do not actually take up resources because the Linux
kernel lazily allocates physical memory for a process only when a virtual memory
page is first written to, not when it is allocated). The size of the heap, however,
may be too low if data are stored on the stack, and the so-called resident set of a
process (the memory that is currently kept in RAM) does not include pages that
are in use but swapped out.

If a tool spawns several processes, these can use shared memory such that
the total memory usage of a group of processes is less than the sum of their
individual memory usages. Shared memory occupies system resources only once
and thus needs to be counted only once by the benchmarking framework.
4 Our experience from competition organization shows that developers of complex
tools are not always aware of how their system spawns child processes and how to
properly terminate them.

5 http://www.sosy-lab.org/~dbeyer/benchmarking

http://www.sosy-lab.org/~dbeyer/benchmarking


Setting a limit on the memory usage is important and should always be done,
because otherwise the amount of memory available to the tool is the amount
of free memory in the system, which varies over time and depends on lots of
external factors, preventing reproducible results.

2.2 Terminate Processes Reliably

If a resource limit is violated, it is necessary to reliably terminate the tool including
all of its child processes. Even if the tool terminates itself, the benchmarking
environment needs to ensure that all child processes are also terminated. Otherwise
a child process could keep running and occupy CPU and memory resources, which
might influence later benchmarks on the same machine.

2.3 Assign Cores Deliberately

Special care is necessary for the selection of CPU cores that are assigned to one
tool run. For the OS, a core is a processing unit that allows execution of one
thread. This means that if the CPU supports hyper-threading (i.e., the execution
of several threads at the same time in the same physical CPU core), each of
the virtual cores is treated as a separate core (processing unit) by the OS, i.e.,
the OS does not distinguish between virtual cores and physical cores. However,
because two threads on different virtual cores in the same physical CPU core can
influence the performance of each other, there should never be two simultaneous
tool executions on two virtual cores of one physical core (just like there should
never be two simultaneous tool executions sharing one virtual core). To show that
this is important, we executed benchmarks using the verifier CPAchecker on a
machine with hyper-threading, and on purpose forced two parallel executions of
the verifier on the same physical core. This increased the used CPU time by 41%.
More details on this benchmark can be found in the appendix.

Another restriction that should be followed is that the cores for one run
should not be split across several CPUs if the run does not need more cores than
one CPU can provide, because communication between cores on the same CPU
is faster than between different CPUs, and cores share certain caches.

2.4 Respect Non-Uniform Memory Access

Systems with several CPUs often have an architecture with non-uniform memory
access (NUMA), which also needs to be considered by a benchmarking environ-
ment. In a NUMA architecture, a single processor or a group of processors can
access parts of the system memory locally, i.e., directly, while other parts of the
system memory are remote, i.e., they can only be accessed indirectly via another
CPU, which is slower. The effect is that once a processor has to access remote
memory, this leads to a performance degradation depending on the load of the
inter-CPU connection and the other CPU. Hence, a single run of a tool should
be bound to memory that is local to its assigned CPU cores, in order to avoid
non-deterministic delays stemming from remote memory access. To show that
this is important, we executed benchmarks using the verifier CPAchecker on
a machine with two CPUs and NUMA, and on purpose assigned the cores of



one CPU and the memory attached to the other CPU to each run of the tool,
such that all memory accesses were indirect. This increased the used CPU time
by 11%. More details on this benchmark can be found in the appendix.

2.5 Avoid Swapping

Swapping out memory must be avoided during benchmarking, because it may
degrade performance in a non-deterministic way. This is especially true for
the benchmarked process(es), but even swapping of an unrelated process can
negatively affect the benchmarking, if the benchmarked process has to wait
for more free memory to become available. Absolutely preventing swapping can
typically only be done by the system administrator by turning off all available swap
space. In theory, it is not even enough to ensure that the OS, the benchmarking
environment, and the benchmarked processes all fit into the available memory,
because the OS can decide to start swapping even if there is still memory available,
for example, if it decides to use some memory as cache for physical disks. However,
for benchmarking CPU-bound tools, with high CPU and memory usage, and
next to no I/O, this is unlikely to happen with modern OS. Thus, the main duty
of the benchmarking environment is to ensure that there is no overbooking of
memory, and that memory limits are enforced effectively. It is also helpful if the
benchmarking environment monitors swap usage during benchmarking and warns
the user of any swapping.

3 Limitations of Existing Methods

Some of the existing tools and methods available on Linux systems for measuring
resource consumption and for enforcing resource limits of processes have several
problems that make them unsuitable for benchmarking, especially if child pro-
cesses are involved. Any benchmarking environment needs to be aware of these
limitations and avoid using naive methods for resource measurements.

3.1 Measuring Resources May Fail

Time. Measuring wall time is simple with high precision using standard tools
and methods that operating systems and most programming languages provide.

Measuring CPU time of the main process of a tool, for example using the
tool time or a variant of the system call wait (which returns the CPU time after
the given process terminated), does not reliably include the CPU time of child
processes that were spawned by the main process. The Linux kernel only adds the
CPU time used by child processes to that of the parent process after the child
process has terminated and the parent process waited for the child’s termination
with a variant of the system call wait. If the child process has not yet terminated
or the parent did not explicitly wait for its termination, the CPU time of the
child is lost. This is a typical situation that might happen for example if a verifier
starts an SMT solver as a child process and communicates with the solver via
stdin and stdout. When the analysis finishes, the verifier would terminate the



solver process, but usually would not bother to wait for its termination. A tool
that runs different analyses in parallel in child processes would also typically
terminate as soon as the first analysis returns a valid result, without waiting for
the other analyses’ termination.6 In these cases, a large share of the total CPU
time is spent by child processes but not included in the measurement.

Memory. Some Linux tools only provide a view on the current memory usage
of individual processes, but we need to measure the peak usage of a group of
processes. Calculating the peak usage by periodically sampling the memory
usage and reporting the maximum is inaccurate, because it might miss peaks of
memory usage. If the benchmarked process started child processes, one has to
recursively iterate over all child processes and calculate the total memory usage.
This contains several race conditions that can also lead to invalid measurements,
for example, if a child process terminates before its memory usage could be read.
In situations where several processes share memory pages (e.g., because each of
them loaded the same library, or because they communicate via shared memory),
we cannot sum up the memory usage of all processes. Thus, without keeping
track of every memory page of each process, manually filtering out pages that do
not occupy resources because of lazy allocation, and counting each remaining
page exactly once, the calculated value for memory usage is invalid.

3.2 Enforcing Limits May Fail
For setting resource limits, some users apply the tool ulimit, which uses the
system call setrlimit. A limit can be specified for CPU time as well as for
memory, and the limited process is forcefully terminated by the kernel if one
of these limits is violated. However, similar to measuring time with system call
wait, limits imposed with this method affect only individual processes, i.e., a
tool that starts n child processes could use n times more memory and CPU
time than allowed. Limiting memory is especially problematic because either
the size of the address space or the size of the data segment (the heap) can be
limited, which do not necessarily correspond to the actual memory usage of the
process, as described above. Limiting the resident-set size (RSS) is no longer
supported.7 Furthermore, if such a limit is violated, the kernel terminates only
the one violating process, which might not be the main process of the tool. In
this case it depends on the implementation of the tool how such a situation is
handled: it might terminate itself, or crash, or even continuously re-spawn the
terminated child process and continue. Thus, this method is not reliable.

It is possible to use a self-implemented limit enforcement with a process
that samples CPU time and memory usage of a tool with all its child processes,
terminating all processes if a limit is exceeded, but this is inaccurate and prone
to the same race conditions described above for memory measurement.
6 We experienced this when organizing SV-COMP’13, for a portfolio-based verifier.
Initial CPU time measurements were significantly too low, which was luckily discov-
ered by chance. The verifier had to be patched to wait for its sub-processes and the
benchmarks had to be re-run.

7 http://linux.die.net/man/2/setrlimit

http://linux.die.net/man/2/setrlimit


3.3 Terminating Processes May Fail

In order to terminate a tool and all its child processes, one could try to (transi-
tively) enumerate all its child processes and terminate each of them. However,
finding and terminating all child processes of a process may not work reliably
for two reasons. First, a process might start child processes faster than the
benchmarking environment is able to terminate them. While this is known as a
malicious technique (“fork bomb”), it may also happen accidentally, for exam-
ple due to a flawed logic for restarting crashed child processes of a tool. The
benchmarking environment should guard against this, otherwise the machine
might become unusable. Second, it is possible to “detach” child processes such
that they are no longer recognizable as child processes of the process that started
them. This is commonly used for starting long-running daemons that should
not retain any connection to the user that started them, but also might happen
incidentally if a parent process is terminated before the child process. In this case,
an incomplete benchmarking framework could miss to terminate child processes.

The process groups of the POSIX standard (established with the system call
setpgid) are not reliable for tracking child processes. A process is free to change
its process group, and tools using child processes often use this feature.

4 State-of-the-Art Benchmarking with Cgroups

We listed aspects that are mandatory for reproducible benchmarking, and ex-
plained flaws of existing methods. In the following, we present a technology that
should be used to avoid these pitfalls.

Control groups (cgroups) are a feature of the Linux kernel for managing
processes and their resource usage, which is available since 2007 [11]. Differently
from all other interfaces for these tasks, cgroups provide mechanisms for managing
groups of processes and their resources in an atomic and race-free manner, and
are not limited to single processes. All running processes of a system are grouped
in a hierarchical tree of cgroups 8, and most actions affect all processes within
a specific cgroup. Cgroups can be created dynamically and processes can be
moved between them. There exists a set of so-called controllers in the kernel,
each of which affects and measures the consumption of a specific resource by the
processes within each cgroup. For example, there are controllers for measuring
and limiting CPU time, memory consumption, and I/O bandwidth.

The cgroups hierarchy is made accessible to programs and users as a directory
tree in a virtual file system, which is typically mounted at /sys/fs/cgroups.
Usual file-system operations can be used to read and manipulate the cgroup
hierarchy and to read resource measurements and configure limits for each of the
controllers (via specific files in each cgroup directory). Thus, it is easy to use
cgroups from any kind of tool, including shell scripts. Alternatively, one can use

8 Actually, independent hierarchies are currently supported. We restrict ourselves to
the single-hierarchy case because independent hierarchies are going to be deprecated.



a library such as libcg 9, which provides an API for accessing and manipulating
the cgroup hierarchy. Settings for file permission and ownership can be used to
fine-tune who is able to manipulate the cgroup hierarchy.

When a new process is started, it inherits the current cgroup from its parent
process. The only way to change the cgroup of a process is direct access to
the cgroup virtual file system, which can be prevented using basic file-system
permissions. Any other action of the process, whether changing the process group,
detaching from its parent, etc., will not change the cgroup. Thus, cgroups can be
used to reliably track the set of (transitive) child processes of any given process
by putting this process into its own cgroup. We refer to the manual for details.10

The following cgroup controllers are relevant for reliable benchmarking:
cpuacct measures the accumulated CPU time that is consumed by all processes
in each cgroup. A time limit cannot be defined, but can be implemented in the
benchmarking environment by periodically checking the accumulated time.
cpuset allows to restrict the processes in each cgroup to a subset of the available
CPU cores. On systems with more than one CPU socket and NUMA, it allows
to restrict the processes to specific parts of the physical memory.
freezer allows to freeze all processes of a cgroup in a single operation. This can
be used for reliable termination of a group of processes by freezing them first,
sending all of them the kill signal, and afterwards unfreezing (“thawing”) them.
This way the processes do not have the chance to start other processes because
between the time the first and the last process receive the kill signal none of
them can execute anything.
memory allows to restrict maximum memory usage of all processes together in
each cgroup, and to measure current and peak memory consumption. If the
defined memory limit is reached by the processes in a cgroup, the kernel first
tries to free some internal caches that it holds for these processes (for example
disk caches), and then terminates at least one process. Alternatively, instead
of terminating processes, the kernel can send an event to a registered process,
which the benchmarking framework can use to terminate all processes within the
cgroup. The kernel counts only actually used pages towards the memory usage,
and because the accounting of memory is done per memory page, shared memory
is handled correctly (every page the processes use is counted exactly once).
The memory controller allows to define two limits for memory usage, one on the
amount of physical memory that the processes can use, and one on the amount
of physical memory plus swap memory. If the system has swap, both limits need
to be set to the same value. If only the former limit is set to a specific value,
the processes could use so much memory plus all of the available swap memory
(and the kernel would automatically start swapping out the processes if the
limit on physical memory is reached). Similarly, for reading the peak memory
consumption, the value of physical memory plus swap memory should be used.
Sometimes, the current memory consumption of a cgroup is not zero even after
9 http://libcg.sourceforge.net/

10 https://www.kernel.org/doc/Documentation/cgroups/

http://libcg.sourceforge.net/
https://www.kernel.org/doc/Documentation/cgroups/


all processes of the cgroup have been terminated, if the kernel decided to still
keep some pages of these processes in its disk cache. To avoid influencing the
measurements of other runs by this, a cgroup should be used only for a single
run and deleted afterwards, with a new run getting a new, fresh cgroup.11

The numbering system of the Linux kernel (which is also used for restricting
CPU cores with the cpuset controller) for a system with n physical cores across
all CPU sockets is as follows: The id i for i ∈ [0, . . . , n − 1] is assigned to the
first virtual core (processing unit) of the i-th physical core in the system, and,
in case there are physical cores with more than one virtual core, the id i + n
is assigned to the second virtual core of the i-th physical core, and so on. For
example, consider a system with 2 CPU sockets with 8 physical cores each and
2 virtual cores per physical core. There are 16 physical cores in the system, so
ids 0–15 refer to the first virtual core of each of the physical cores, and ids 16–31
refer to the other virtual cores. The ids belonging to the first CPU are 0–7
and 16–23, the ids 8–15 and 24–31 belong to the second CPU. The ids of a pair
of processing units on the same physical core differ by 16 in this machine, e.g.,
(virtual) cores 0 and 16 belong to the same physical core and should be used
together. This information can be extracted from certain files in the directories
/sys/devices/system/cpu/cpu<id>/topology/ or from /proc/cpuinfo.

5 BenchExec: A Framework for Reliable Benchmarking

In the following, we describe our implementation of a cgroups-based benchmarking
framework that fulfills the requirements from Sect. 2 by using the techniques from
Sect. 4. It is available as open source under the Apache 2.0 License on GitHub 12.

BenchExec consists of two parts, both written in Python. The first is re-
sponsible for benchmarking a single run of a given tool, including the reliable
limitation and accurate measurement of resources. This part is also designed such
that it is easy to use from within other benchmarking frameworks. The second
part is responsible for benchmarking a whole set of runs, i.e., running one or
more tools on a collection of input files by delegating each run execution to the
first part, which is responsible for a single run, and then aggregating the results.

5.1 System Requirements

In order to use the cgroup-based benchmarking framework BenchExec, a few
requirements are necessary that may demand for assistance by the administrator
of the benchmarking machine. Apart from running a Linux kernel, cgroups
including the four controllers listed in the previous section must be enabled and
the account for the benchmarking user needs the permissions to manipulate
(a part of) the cgroup hierarchy. Any Linux kernel version of the last years is
acceptable, though there have been performance improvements for the memory
controller in version 3.3 13, and cgroups in general are still getting improved, thus,
11 Or clear the caches with drop_caches.
12 https://github.com/dbeyer/benchexec/ 13 http://lwn.net/Articles/484251/

https://github.com/dbeyer/benchexec/
http://lwn.net/Articles/484251/


using a recent kernel is recommended. If the benchmarking machine has swap,
swap accounting must be enabled for the memory controller. For enabling cgroups
and giving permissions, we refer to standard Linux documentation.

After these steps, no further root access is necessary and everything can
be done with a normal user account. Thus, it is possible to use machines for
benchmarking that are not under own administrative control. By creating a
special cgroup for benchmarking and granting rights only for this cgroup, it is
also possible for the administrator to prevent the user from interfering with other
processes and to restrict the total amount of resources that the benchmarking
may use. For example, one can specify that a user may use only a specific subset
of CPU cores and amount of memory for benchmarking, or partition the resources
of shared machines among several users.

5.2 Benchmarking a Single Run

We define a run as a single execution of a tool, with the following input:

• the full command line, i.e., the path to the executable with all arguments,
and optionally,

• the content supplied to the tool via stdin,
• the limits for CPU time, wall time, and memory, and
• the list of CPU cores and memory banks to use.

Executing a run produces the following output:

• the exit code of the main process,
• output written to stdout and stderr by the tool, and
• the CPU time, wall time, and peak memory consumption of the tool.

The program runexec executes a run with the given input, provides the output,
and ensures (using cgroups) adherence to the specified resource limits, reliable
cleanup of processes after execution (i.e., no process survives), and accurate
measurement of the resource usage. This program is runnable stand-alone, in
which case the inputs are passed as command-line parameters. Alternatively,
runexec is usable as a Python module for a more convenient integration into
other Python-based benchmarking frameworks.

An example command line for executing a tool on all 16 (virtual) cores of
the first CPU of a dual-CPU system, with a memory limit of 16GB on the first
memory bank and a time limit of 100 s is:

runexec --timelimit 100 --memlimit 16000000000
--cores 0-7,16-23 --memoryNodes 0 -- <TOOL_CMD>

The output of runexec then looks as follows (log on stderr, result on stdout):

2015-01-20 10:35:35 - INFO - Starting command <TOOL_CMD>
2015-01-20 10:35:35 - INFO - Writing output to output.log
exitcode=0
returnvalue=0
walltime=1.51596093178s
cputime=2.514290687s
memory=130310144



In this case, the run took 1.5 s of wall time, and the tool used 2.5 s of CPU time
and about 130MB of RAM before returning successfully (exit code 0). The same
could be achieved from within a Python program with three lines of code by
importing runexec as a module as explained in the documentation.14.

5.3 Benchmarking a Collection of Runs

Benchmarking typically consists of processing tool runs on hundreds or thousands
of input files, and there may be several different tools or several configurations of
the same tool that run on the same input files.
The program benchexec executes a collection of runs. It receives as input

• a collection of input files,
• the name of the tool to use,
• command-line arguments for the tool to specify the configuration,
• any limits for CPU time, wall time, memory, and number of CPU cores, and
• the number of runs that should be executed in parallel.

These inputs are given in XML format; an example can be seen in the tool
documentation 14. Additionally, a tool-specific Python module needs to be written
that contains functions for creating a command-line string for a run (including
input file and user-defined command-line arguments) and for determining the
result from the exit code and any output of the tool. Such a module typically
has under 50 lines of Python code, and needs to be written only once per tool.
We are often also interested in classifying the result into expected and incorrect
answers. BenchExec currently supports this for the domain of automatic software
verification, where it gets as input a property to be verified in the format used
by SV-COMP [3] 15.

As an extension, benchexec and its input format also allow to specify different
configuration options for subsets of the input files, as well as several different tool
configurations at once, each of which will be benchmarked against all input files.

The program benchexec first tries to find a suitable allocation of the available
resources (CPU cores and memory) to the number of parallel runs. It checks
whether there are enough CPU cores and memory in the system to satisfy the
core and memory requirements for all parallel runs. Then it assigns cores to each
parallel run such that a run is not spread over different CPU sockets and different
runs do not use virtual cores that belong to the same physical core, if this is
possible. For memory, it ensures that enough memory is available for all runs and
that every run uses only memory that is directly connected to the CPU socket(s)
on which the run is executed (to avoid measurement problems due to NUMA).
Thus, benchexec automatically guarantees valid resource allocations.

Afterwards, benchexec uses runexec to execute the benchmarked tool on
each input file with the appropriate command line, resource limits, etc. It also
interprets the output of the tool and determines whether the result was correct.
14 https://github.com/dbeyer/benchexec/blob/master/doc/INDEX.md
15 Tools that do not support this specification format can also be benchmarked. In this

case, the specification is used by BenchExec only to determine the expected result.

https://github.com/dbeyer/benchexec/blob/master/doc/INDEX.md


The result of benchexec is a table (in XML format) that contains all information
from the executed runs: returned result, exit code, CPU time, wall time, and
memory usage. The output of the tool for each run is available in separate files.
Additional information such as current date and time, the host and its system
information (CPU and RAM), and the effective resource limits are also recorded.

The program table-generator allows to produce tables from the results of
one or more executions of benchexec. If several result sets are given, they are
combined and presented one per column group in the table, allowing to easily
compare the results, for example, across different configurations or revisions of a
tool, or across different tools. Each line of the generated table contains the result
for one input file. There are columns for the output of the tool, the CPU time,
the wall time, the memory usage, etc. These tables are written in two formats.
A CSV-based format allows further processing, such as with gnuplot or R for
producing plots and statistical evaluations, a spreadsheet program, or LATEX
for producing a paper by using a package for CSV import. The second format
is HTML, which allows the user to view the tables conveniently with nothing
more than a browser. The HTML table is interactive and generates scatter and
quantile plots for selected columns, allows columns and rows to be filtered, and
provides access to the text output of the tool for each individual run. Examples
of such tables can be seen on the supplementary webpage.16

If a tool outputs more interesting data (e.g., time statistics for individual
parts of the analysis, number of created abstract states, or SMT queries), those
data can also be added to the generated tables if a function is added to the
tool-specific Python module which extracts such data values from the output
of the tool. All features of the table (such as generating plots) are immediately
available for the columns with such data values as well.

5.4 Discussion

We would like to discuss a few of the design decisions and goals of BenchExec.
BenchExec aims at not impacting the external validity of benchmarks by

avoiding to use an overly artificial environment (such as a virtual machine) or
influencing the benchmarked process in any way (except for the specified resource
limits). Resource limitations and measurements are done using the respective
kernel features that are present and active on a standard machine anyway.

We designed BenchExec with extensibility and flexibility in mind. Support
for other tools and result classifications can be added with a few lines of Python
code. The program runexec, which does the actual benchmark execution and
resource measurement, can be used separately as a stand-alone tool or a Python
module, for example within other benchmarking frameworks. Result data are
present as CSV tables, which allows processing with standard software.17

We choose not to base BenchExec on a container solution such as LXC
or Docker because, while these provide resource limitation and isolation, they
16 http://www.sosy-lab.org/~dbeyer/benchmarking#tables
17 For example, BenchExec is used to automatically check for regressions in the integra-

tion test-suite of CPAchecker.

http://www.sosy-lab.org/~dbeyer/benchmarking#tables


typically do not focus on benchmarking. With containers, a fine-grained controlling
of resource allocation as well as measuring of resource consumption may be difficult
or impossible. Furthermore, requiring a container solution to be installed would
significantly limit the amount of machines on which BenchExec can be used, for
example, because on many machines (especially in bigger HPC clusters) the Linux
kernel is too old, or such an installation is not possible due to administrative
restrictions. Using cgroups directly minimizes the necessary version requirements,
the installation effort, and the necessary access rights.18

We use XML as input and output format because it is a structured format that
is readable and writable by both humans and tools, and it is self-documenting.
Users can also use comments in the input file. We can store not only customized
result data, but also additional meta data in the result file. This allows to
document information about the benchmarking environment, which is important
in scientific work because it increases the reproducibility and trust of the results.

Python was chosen as programming language because it is expected to be
available on every relevant Linux machine, and it is easy to write the tool-specific
module even for people that do not have much experience in programming.

6 Related Work

Besides the issues that we discussed, there are more sources of non-deterministic
effects that may influence performance measurement, such as size of environment
variables and order of objects during linking [9].

For computer networking, the Mininet Hi-Fi project [6] also advocates repro-
ducible experiments in their community. In order to achieve resource isolation of
processes that belong to different virtual hosts, the project relies on cgroups.

In the verification community, there exist several benchmarking tools that
have the same intent and features as our benchmarking framework. However,
as of April 2015, no tool we investigated fulfills all requirements for reliable
benchmarking, which are presented in Sect. 2. In the following, we discuss several
existing benchmarking tools in their latest versions as of April 2015. Our selection
is not exhaustive, because there exist many such tools.

The tool RunLim19, in version 1.7, allows to benchmark another executable
and limits both CPU time and memory. It does so by sampling time and memory
consumption recursively for a process hierarchy, and thus cannot guarantee
accurate measurements and limit enforcement. The tool cannot terminate a
process hierarchy reliably, because it only terminates the main process with kill.
The tool pyrunlim20, a port of RunLim to the Python programming language,
has a few more features, such as setting the CPU affinity of a process, and aims
at killing process hierarchies more reliably. However, in the latest version 2.11,
18 We successfully use BenchExec on four different clusters, each under different admin-

istrative control and with software as old as SuSE Enterprise 11 and Linux 3.0, and
on the machines of the student computer pool of our department.

19 http://fmv.jku.at/runlim/
20 http://alviano.net/2014/02/26/

http://fmv.jku.at/runlim/
http://alviano.net/2014/02/26/


it does not use cgroups and also takes sample measurements recursively over
process hierarchies, which —like all sampling-based methods— is not accurate.

The Satisfiability Modulo Theories Execution Service (SMT-Exec) 21 was
a solver execution service provided by the SMT-LIB initiative. For enforcing
resource limits, SMT-Exec used the tool TreeLimitedRun22. It uses the system
calls wait and setrlimit, and thus, is prone to the restrictions argued in Sect. 3.

StarExec [12], a web-based service developed at the Universities of Iowa and
Miami, is the successor of SMT-Exec. The main goal of StarExec is to facilitate
the execution of logic solvers. The Oracle Grid Engine takes care of queuing and
scheduling runs. For measuring CPU time and memory consumption, as well as
enforcing resource limits, StarExec delegates to runsolver23 [10], available in
version 3.3.5, that also is prone to the limitations (Sect. 3).

The CProver Benchmarking Toolkit (CPBM) 24, available in version 0.5, ships
helpers for verification-task patch management and result evaluation, and also
supports benchmarking. However, the limits for CPU time and memory are
enforced by ulimit 25, and thus, the benchmarking is not accurate.

The Versioning Competition Workflow Compiler (VCWC) [5] is an effort to
create a fault-tolerant competition platform that supports competition maintain-
ers in order to minimize their amount of manual work. This project, in the latest
development version 26, defines its own benchmarking container, also relying on
ulimit to enforce time limits. If the administrator of the benchmarking machine
manually designed and created a cgroup hierarchy that enforces an appropriate
partitioning of CPU cores and memory nodes, and defined a memory limit, the
scripts of VCWC can execute runs within these existing cgroups, but they cannot
automatically create the appropriate cgroups like BenchExec. Furthermore,
measurement of CPU time and memory, as well as termination of processes, is
not implemented with cgroups, and hence, may fail.

The tool BenchKit [8], available in version β2, is also used for competitions,
where participants submit a virtual-machine (VM) image with their tool and all
necessary software. BenchKit executes the tool within an instance of this VM
and measures the resource usage of the tool and the OS in the VM together. Our
framework executes all tools natively on the host system and allows precise mea-
surement of the resource consumption of the tool in isolation, without influence
from factors such as the VM’s OS. BenchKit measures CPU time and memory
consumption of the VM using sampling with the performance monitoring tool
sysstat 27. BenchKit does not ensure that the CPU cores and the memory for a
run are assigned such that hyper-threading and NUMA are respected. For each
single run with BenchKit, i.e., each pair of tool and input file, a new VM has to

21 http://smt-exec.org
22 http://smtexec.cs.uiowa.edu/TreeLimitedRun.c
23 http://www.cril.univ-artois.fr/∼roussel/runsolver/
24 http://www.cprover.org/software/benchmarks/
25 c.f. verify.sh in the CPBM package
26 git revision 9d58031 from 2013-09-13, c.f. https://github.com/tkren/vcwc/
27 http://sebastien.godard.pagesperso-orange.fr/

http://smt-exec.org
http://smtexec.cs.uiowa.edu/TreeLimitedRun.c
http://www.cril.univ-artois.fr/~roussel/runsolver/
http://www.cprover.org/software/benchmarks/
https://github.com/tkren/vcwc/
http://sebastien.godard.pagesperso-orange.fr/


be booted, which on average takes 40 s to complete [8]. Execution of a tool inside
a VM can also be slower than directly on the host machine. Our approach based
on cgroups has a similar effect of isolating the resource usage of individual runs
but comes at practically zero overhead. Our tool implementation was successfully
used in SV-COMP’15, in which 54 000 runs were executed, consuming a total
of 120 CPU days [3]. Using BenchKit in this competition would have imposed
an overhead of 25 CPU days for the 54 000 runs. When also counting runs that
were executed by the competition organizers during the testing phase, the total
increases to 170 000 runs and a prohibitive overhead.

7 Conclusion

The goal of this work is to establish a technological foundation for performance
evaluation of tools that is based on modern technology and makes it possible to
reliably measure and control resources in a reproducible way in order to obtain
scientifically valid experimental data. First, we established reasons why there is
a need for such a benchmarking technology in the area of automatic verification.
Tool developers, as well as competitions, need reliable performance measurements
to evaluate their research results. Second, we motivated and discussed several
requirements that are indispensable for reproducible benchmarking and resource
measurement, and also identified limitations and restrictions of existing methods.
We demonstrate, using rather simple experiments on a large set of tool runs, the
high risk of invalidating measurements if certain technical constraints are not
taken care of. Such problems have been detected in practice, and nobody knows
how often they went unnoticed, and how many wrong conclusions were drawn
from flawed benchmarks. In order to overcome the existing deficits and estab-
lish a scientifically valid method, we presented our lightweight implementation
BenchExec, which is built on the concept of Linux cgroups. The implementation
fulfills all requirements for reproducible benchmarking, since it avoids the pitfalls
that existing tools are prone to. This is a qualitative improvement over the state-
of-the-art, because existing approaches may produce arbitrarily large (systematic
and random) measurement errors, e.g., if sub-processes or NUMA are involved.

BenchExec is not just a prototypical implementation. The development of
BenchExec was driven by the demand for reproducible scientific experiments in
our research projects (for the CPAchecker project, we execute about 2 million
tool runs per month in our research lab) and during the repeated organization of
the International Competition on Software Verification (SV-COMP). Especially
in the experiments of SV-COMP, we learned how difficult it can be to accurately
measure resource consumption for a considerable zoo of tools that were developed
using different technologies and strategies. BenchExec makes it easy to tame the
wildest beast, and was successfully used to benchmark 22 tools in SV-COMP’15 28,
with all results approved by the 77 authors of these tools.

Acknowledgement. We thank Hubert Garavel, Jiri Slaby, and Aaron Stump for
their helpful comments regarding BenchKit, cgroups, and StarExec, respectively.
28 list on http://sv-comp.sosy-lab.org/2015/participants.php

https://github.com/dbeyer/benchexec/
http://sv-comp.sosy-lab.org/2015/participants.php


Appendix: Impact of Hyper-Threading and NUMA

To show that hyper-threading and non-uniform memory access (NUMA) can
have a negative influence on benchmarking if not handled appropriately, we
executed benchmarks using the predicate analysis of the verifier CPAchecker29

in revision 15 307 from the project repository 30. We used 4011 C programs from
SV-COMP’15 [3] (excluding categories not supported by CPAchecker) and a
CPU-time limit of 900 s. Tables with the full results and the raw data are available
on our supplementary webpage.31

Note that the actual performance impact will differ according to the resource-
usage characteristics of the benchmarked tool. For example, a tool that uses only
very little memory but fully utilizes its CPU core(s) will be influenced more by
hyper-threading than by non-local memory, whereas for a tool that relies more
on memory accesses it might be the other way around. In particular, the results
for CPAchecker that are shown here are not generalizable and show only that
there is such an impact. Because the quantitative amount of the impact is not
predictable and might be non-deterministic, it is important to rule out these
factors for reproducible benchmarking in any case.

 1

 10

 100

 1000

 1  10  100  1000

C
PU

 T
im

e 
(s

) 
w

it
h
 2

 R
u
n
s 

p
er

 P
h
ys

ic
al

 C
o
re

CPU Time (s) with a Separate Physical Core per Run

Fig. 1: Scatter plot showing the influ-
ence of hyper-threading for 2 472 runs of
CPAchecker: the data points above the
diagonal show a performance decrease
due to an inappropriate assignment of
CPU cores during benchmarking

Impact of Hyper-Threading. To
show the impact of hyper-threading,
we executed benchmarks on a ma-
chine with a single Intel Core i7-4770
3.4GHz CPU socket (with four phys-
ical cores and hyper-threading) and
33GB of memory. We executed the ver-
ifier twice in parallel and assigned one
virtual core and 4.0GB of memory to
each run. In one instance of the bench-
mark, we assigned each of the two par-
allel runs a virtual core from separate
physical cores. In a second instance of
the benchmark, we assigned each of
the two parallel runs one virtual core
from the same physical core, such that
both runs had to share the hardware
resources of one physical core. A scat-
ter plot with the results is shown in
Fig. 1. For the 2 472 programs from
the benchmark set that CPAchecker
could solve on this machine, 13 hours of CPU time were necessary using two
separate physical cores and 19 hours of CPU time were necessary using the same
physical core, an increase of 41% caused by the inappropriate core assignment.
29 http://cpachecker.sosy-lab.org
30 https://svn.sosy-lab.org/software/cpachecker/trunk
31 http://www.sosy-lab.org/~dbeyer/benchmarking#benchmarks

http://cpachecker.sosy-lab.org
https://svn.sosy-lab.org/software/cpachecker/trunk
http://www.sosy-lab.org/~dbeyer/benchmarking#benchmarks


Impact of NUMA. To show the impact of non-uniform memory access, we
executed benchmarks on a NUMA machine with two Intel Xeon E5-2690 v2
2.6GHz CPUs with 63GB of local memory each. We executed the verifier twice
in parallel, assigning all cores of one CPU socket and 60GB of memory to each
of the two runs. In one instance of the benchmark, we assigned memory to each
run that was local to the CPU the run was executed on. In a second instance of
the benchmark, we deliberately forced each of the two runs to use only memory
from the other CPU socket, such that all memory accesses were indirect. For the
2 483 programs from the benchmark set that CPAchecker could solve on this
machine, 19 hours of CPU time were necessary using local memory and 21 hours
of CPU time were necessary using remote memory, an increase of 11% caused by
the inappropriate memory assignment. The wall time also increased by 9.5%.

References

1. A. Balint, A. Belov, M. Heule, and M. Järvisalo. Proc. of SAT competition 2013:
Solver and benchmark descriptions. Technical Report B-2013-1, University of
Helsinki, 2013.

2. C. Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump. 6 Years of
SMT-COMP. Journal of Automated Reasoning, 50(3):243–277, 2012.

3. D. Beyer. Software verification and verifiable witnesses (Report on SV-COMP
2015). In Proc. TACAS, LNCS 9035, pages 401–416. Springer, 2015.

4. D. Beyer, G. Dresler, and P. Wendler. Software verification in the Google App-
Engine cloud. In Proc. CAV, LNCS 8559, pages 327–333. Springer, 2014.

5. G. Charwat, G. Ianni, T. Krennwallner, M. Kronegger, A. Pfandler, C. Redl,
M. Schwengerer, L. Spendier, J. Wallner, and G. Xiao. VCWC: A versioning
competition workflow compiler. In Proc. LPNMR, LNCS 8148, pages 233–238.
Springer, 2013.

6. N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. Reproducible
network experiments using container-based emulation. In Proc. CoNEXT, pages
253–264. ACM, 2012.

7. JCGM Working Group 2. International vocabulary of metrology – basic and
general concepts and associated terms (VIM), 3rd edition. Technical Report JCGM
200:2012, BIPM, 2012.

8. F. Kordon and F. Hulin-Hubard. BenchKit, a tool for massive concurrent bench-
marking. In Proc. ACSD, pages 159–165. IEEE, 2014.

9. T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing wrong data
without doing anything obviously wrong! In Proc. ASPLOS, pages 265–276. ACM,
2009.

10. O. Roussel. Controlling a solver execution with the runsolver tool. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), 7:139–144, 2011.

11. B. Singh and V. Srinivasan. Containers: Challenges with the memory resource
controller and its performance. In Proc. Ottawa Linux Symposium (OLS), page
209, 2007.

12. A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: A cross-community infrastructure
for logic solving. In Proc. IJCAR, LNCS 8562, pages 367–373. Springer, 2014.

13. W. F. Tichy. Should computer scientists experiment more? IEEE Computer,
31(5):32–40, 1998.

http://dx.doi.org/10.1007/s10817-012-9246-5
http://dx.doi.org/10.1007/s10817-012-9246-5
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-319-08867-9_21
http://dx.doi.org/10.1007/978-3-319-08867-9_21
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1109/ACSD.2014.12
http://dx.doi.org/10.1109/ACSD.2014.12
http://dx.doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1109/2.675631
http://dx.doi.org/10.1109/2.675631

