
CPAchecker with Support for
Recursive Programs and

Floating-Point Arithmetic

(Competition Contribution)

Matthias Dangl, Stefan Löwe, and Philipp Wendler

University of Passau

Abstract. We submit to SV-COMP’15 the software-verification frame-
work CPAchecker. The submitted configuration is a combination of
seven different analyses, based on explicit-value analysis, k-induction,
predicate analysis, and concrete memory graphs. These analyses use
concepts such as CEGAR, lazy abstraction, interpolation, adjustable-
block encoding, bounded model checking, invariant generation, and block-
abstraction memoization. Found counterexamples are cross-checked by a
bit-precise analysis. The combination of several different analyses copes
well with the diversity of the verification tasks in SV-COMP.

1 Software Architecture

CPAchecker is a software verification framework built on the concept of Config-

urable Program Analysis (CPA). One of the main design goals of the framework
is to ease the development of new analyses and verification approaches. The CPAs
available in the framework can be recombined on a per-demand basis by only
passing the according configuration parameters to CPAchecker, without the
need of changes in the implementation. Commonly needed tasks, like tracking of
program counter, call stack, and function-pointer values, are also implemented as
separate CPAs, and may assist the main CPAs, such as the predicate analysis. The
framework provides a front-end based on the C-parser of the Eclipse CDT project
(http://www.eclipse.org/cdt/), and an interface to SMT solvers (MathSAT5
(http://mathsat.fbk.eu/) in our submission) for solving and interpolation.

2 Verification Approach

The configuration used by CPAchecker in this year’s SV-COMP is conceptually
similar to last year [4]: a sequential combination of five analyses [2], as shown in
Fig. 1, with the addition of an analysis based on k-induction using continuously-
refined auxiliary invariants [1] and the limitation of the predicate analysis to a sin-
gle ABE-l configuration. Each analysis runs for a predefined time, and if it does not
return a result within the time bounds, the next analysis is started. Whenever one
of the analyses finds a counterexample, it is cross-checked and if deemed infeasible,
the analysis that is currently running gets terminated and the next one takes over.

http://www.eclipse.org/cdt/
http://mathsat.fbk.eu/


Value
Analysis

false

Value
Analysis

Interpolation

Predicate
Analysis

BitPrecise

true

unknown

Predicate
Analysis

spurious

k-Induction

unknown

 unknown

unknown

 unknown

unknown

 true

 true

 true

 true

 true

spurious

spurious

spurious

spurious

false 

false 

false 

false 

false 

Fig. 1. Sequential combination to
verify reachability properties

The time limit for each of the first three
analyses is 60 s and the predicate analysis
has no time limit. Similarly to last year, the
counterexample checks are done by a bit-
precise predicate analysis for the first four
analyses, and the bounded model checker
CBMC (http://www.cprover.org/cbmc) for
the last analysis. In order to support the cate-
gory “Floats”, we have added support for pre-
cisely modeling the floating-point arithmetic
to the predicate analysis (the value analysis
cannot model non-deterministic values pre-
cisely enough to solve the programs in this
category). This was made possible because
the SMT solver MathSAT5 now supports
floating-point arithmetic as an SMT theory,
and CPAchecker leverages this by appro-
priately encoding most of the floating-point
semantics of C in SMT formulae. Interpola-
tion for floats is not yet supported, but not
necessary for most programs in this category.

In two cases we deviate from the described
configuration and use specialized approaches.
As last year, we use a bounded analysis
based on concrete memory graphs for verify-
ing memory safety properties. For recursive
programs, we use the predicate analysis with
an extension of block-abstraction memoiza-
tion [5], which uses two operators reduce and
expand to remove information from the ab-

stract state when entering a block (typically a function or loop body) if this
information is not necessary inside the block, and restoring this information when
leaving the block again. This allows a more efficient analysis and caching of the
results for analyzed blocks. We extended this approach to support recursion (a
recursive function call creates a new block). Together with an implementation
of nested interpolation this allows the predicate analysis to analyze recursive
programs with unbounded depth.

3 Strengths and Weaknesses

The sequential combination of several analyses covering different abstract domains
allows CPAchecker to be competitive on a wide range of benchmarks. The bit-
precise analyses help to minimize the number of wrong answers to only 0.6 % of all
programs. Improvements over last year’s version include handling of floating-point
arithmetic using MathSAT, the addition of an analysis based on k-induction with

http://www.cprover.org/cbmc


continuously-refined invariant generation [1], a novel interpolation routine for
the value domain [3], and the use of an extension of block-abstraction memoiza-
tion [5] as an analysis-independent framework for supporting recursive programs.
Weaknesses of CPAchecker are the missing support for concurrent programs and
for checking termination. An abstraction technique for memory graphs would
allow a more efficient analysis in the categories “Arrays” and “MemorySafety”.

4 Setup and Configuration

CPAchecker is available at http://cpachecker.sosy-lab.org and needs a Java 7
runtime environment. We submit version 1.3.10-svcomp15 for all categories.
The command line for running CPAchecker is
scripts/cpa.sh -sv-comp15 -disable-java-assertions -heap 10000m -spec property.prp program.i

Please add the parameter -64 for C programs assuming a 64-bit environment,
and -setprop cpa.predicate.handlePointerAliasing=false for the simple
memory model. For machines with less RAM, the amount of memory given to
the Java VM needs to be set accordingly by the parameter -heap. CPAchecker

will print the verification result and the name of the output directory to the
console. In case CPAchecker finds a property violation the witness is written to
the file named witness.graphml within this directory.

5 Project and Contributors

CPAchecker is an open-source project being developed by the members of
the Software Systems Lab, led by Dirk Beyer, at the University of Passau.
CPAchecker is used and extended by the members of the Institute for System
Programming of the Russian Academy of Sciences, the Universities of Paderborn,
Darmstadt and Vienna, as well as at Verimag, Grenoble. We would like to thank
all contributors for their work on CPAchecker. The full list can be found at
http://cpachecker.sosy-lab.org.

References

1. D. Beyer, M. Dangl, and P. Wendler. Combining k-induction with continuously-
refined invariants. Technical Report MIP-1503, University of Passau, January 2015.
arXiv:1502.00096.

2. D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional model
checking: A technique to pass information between verifiers. In Proc. FSE. ACM,
2012.

3. D. Beyer, S. Löwe, and P. Wendler. Domain-type-guided refinement selection based
on sliced path prefixes. Technical Report MIP-1501, University of Passau, January
2015. arXiv:1502.00045.

4. S. Löwe, M. Mandrykin, and P. Wendler. CPAchecker with sequential combination
of explicit-value analyses and predicate analyses (competition contribution). In Proc.
TACAS, LNCS 8413, pages 392–394. Springer, 2014.

5. D. Wonisch and H. Wehrheim. Predicate analysis with block-abstraction memoization.
In Proc. ICFEM 2012, LNCS 7635, pages 332–347. Springer, 2012.

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org
http://arxiv.org/abs/1502.00096
http://arxiv.org/abs/1502.00045

