
Inside a Verified Flash File System:
Transactions & Garbage Collection ? ??

Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg, Germany

{ernst,pfaehler,schellhorn,reif}@isse.de

Abstract. The work presented here addresses a long-standing concep-
tual gap in flash file system verification: We map an abstract graph-
based representation down to the flat blocks of bytes of the storage
medium. Specifically, we consider grouping of file system objects into
atomic transactions together with layout, allocation and garbage collec-
tion of on-flash storage space. Two major concerns guide the design and
verification: proper handling of errors and, more importantly, guaranteed
recovery from unexpected power cuts. Finding useful specifications of in-
termediate interfaces to address these concerns realistically dominates
the verification effort.

Keywords: Flash File Systems, Formal Verification, Specification, Trans-
actions, Garbage Collection, Write Buffer, KIV

1 Introduction

NASA’s proposal [19] to build a verified file system (FS) for flash memory has
been received with a lot of interest and has prompted a great body of work. Many
file system concepts have been modeled, formalized and verified by different
researchers, with varying degrees of abstraction, such as a path-based interface in
[17], and a graph-based view in [8]. Most of these approaches study some selected
aspects in isolation only. The inner workings of realistic flash file systems have
received relatively little formal treatment in comparison to high-level concepts.

As part of our ongoing effort [26] to construct a verified flash FS,1 we bridge
the remaining conceptual gap between a high-level structured representation
of file system objects towards an encoding within the erase blocks and pages of
flash hardware. We present the specifications and verified implementations of two
intermediate file system layers: A transactional journal provides atomic writes
of groups of file system objects alongside free-space management by garbage

? This work is part of the project “Verifikation von Flash-Dateisystemen”
(RE828/13-1) sponsored by the Deutsche Forschungsgemeinschaft (DFG).

?? The final publication is available at Springer via http://dx.doi.org/10.1007/

978-3-319-29613-5_5
1 http://isse.de/flashix

http://dx.doi.org/10.1007/978-3-319-29613-5_5
http://dx.doi.org/10.1007/978-3-319-29613-5_5
http://isse.de/flashix

collection of obsolete objects. A persistence layer provides the transition down to
bytes, caching partial writes for efficiency. The two layers are fully integrated into
the rest of our development by mechanized proofs, conducted in the interactive
verification system KIV [10].

Besides functional correctness, it is of great interest that the file system can
deal with power cuts anytime during the run of an operation. Whenever an op-
eration is aborted in an intermediate state, a designated recovery procedure can
reconstruct a state sufficiently similar to the pre- resp. post-state of the respec-
tive operation. The journal and the persistence layer work in close cooperation
to provide strong guarantees in the presence of such power cuts and similarly for
nondeterministic hardware errors, which have to be taken into account as well.

Alongside the presentation of the formal models we will demonstrate that
artifacts tend to leak through abstractions and interfaces, disrupting “obvious”
verification approaches, even when the implementation concerns are cleanly sep-
arated. We will show how we have addressed such difficulties in this specific case
study, especially focusing on power cuts.

Section 2 provides an overview of our approach and of the core concepts
of flash file systems. Section 3 explains the formal models that represent the
boundaries and capture the requirements for this work. Sections 4 to 7 present
the formal models and some verification artifacts with the details necessary to
expose several intricate aspects. Sec. 8 discusses related work and Sec. 9 draws
insights from the verification. In summary, the contribution of this paper consists
of a significant step towards a realistic, fully verified file system for flash memory.

2 Background

This section gives an overview over the project, the basic idea behind modern
flash file system implementations and how the various parts of the system play
together in Sec. 2.1. The formalism that backs the verification of functional
correctness and power cut safety is summarized in Sec. 2.2.

2.1 Project Overview & Flash File System Concepts

This work is part of an ongoing long-term project to construct a verified, POSIX-
compliant [29] file system for flash memory, taking up NASA’s proposal [19]. We
take the existing UBIFS [18] as a design blueprint, which realizes state-of-the-
art techniques to address the inherent access limitations of flash hardware. To
tackle such a complex verification task we follow an incremental, correct-by-
construction approach: a top-level specification of the textual POSIX standard
is gradually refined towards an implementation.

The resulting layers are (partially) visualized in Fig. 1. These correspond to
the various logical parts of the file system, and to different levels of abstraction.
Technically, each box represents an Abstract State Machines (ASMs) [4], which
are used to encode both specifications (white) and the implementations (gray) in
an operational way. The interface symbol denotes that one component uses

2

another. Correctness is established by a series of nested refinements, depicted by
dotted lines.

Index Journal Spec.

Transact. Journal

Persistence Specification

B+ tree

Flash file system core

Persistence with write buffer

Erase Block Management

Abstract FS VFS

POSIX top-level Spec.

this
work

Sec. 3

Sec. 6

GC, Sec. 5

Sec. 4

Fig. 1: System Structure

In the first refinement step [12,13] a for-
mal top-level POSIX specification is bro-
ken down into generic concepts (such as
path lookup) realized by a Virtual Filesys-
tem Switch (VFS) and flash-specific con-
cepts realized by the flash file system core.
An abstract specification of the behavior of
the latter decouples the two.

A POSIX-compliant file system can be
thought of as a tree-like structure consist-
ing of directories with files as leaves.2 File
and directory names are attached to the
edges in the tree. As an example, Fig. 2
shows an excerpt of a typical file system
hierarchy. Directories are visualized as grey
circles, files as white ones. The root node at
the top corresponds to the path /.

The VFS decomposes the tree structure
shown in Fig. 2 into three types of file system objects: One for directories and files
(storing metadata, such as size, access rights and timestamps), one for directory
entries (carrying a name and a reference to the target object) and one for each
segment of file data. In response to each top-level POSIX operation, the VFS
instructs the file system core to create, modify, or delete a number of these
objects. Creating a new file /tmp/test.txt, for example, yields three updates,
corresponding to the part of Fig. 2 with a dotted contour: one for the new file,
one for the new directory entry, and one to update some metadata of the parent
directory /tmp.

Storing these file system objects has to take into account the restricted access
characteristics of flash memory already at a very high level. Flash memory is
structured into erase blocks, each consisting of a number of pages. Random
reads are supported, but writes must be page aligned and sequential within a
block. Overwriting is not supported and space can be reclaimed by erasing whole
blocks only, which is slow and physically wears out the flash memory cells over
time. These difficulties are addressed incrementally by our models.

The flash file system core in Fig. 1 tackles the problem that updates need
to be written out-of-place to flash. For uniformity, file system objects (and their
updates) are encoded within so-called nodes, which are ultimately written to
flash memory through the journal layer. An index (implemented as a B+-tree)
tracks current versions of data by mapping keys to the respective addresses of
the most recent node for a given object. The core relies on the index component
to store this mapping in memory for efficient access and on flash (in an outdated
version) to speed up startup time.

2 With hard-links (which we support) this structure becomes an acyclic graph.

3

usr tmp

sh test.txt

Fig. 2: File system tree,
creation of /tmp/test.txt

flash
store

flash
index

RAM
index

... test.txt

log

Fig. 3: Conceptual view of the index, flash store,
and log; showing the update corr. to Fig. 2.

The integration of the index and the journal is shown in Fig. 3. At the
bottom the flash memory is visualized as an unstructured storage, except that
“recent” writes are recorded in a sequential log. At the top, the index is shown:
a current version in main memory encompasses all modifications, but there is
also an outdated version stored on flash. Informally, the log corresponds exactly
to the difference between the two indices. At specific points, called commits, the
current index is stored on flash and the log is emptied.

The flash file system core thus already introduces the concepts necessary to
deal efficiently with out-of-place updates and recovery from power failures (by re-
playing the log starting from the flash index). However, the following aspects are
delegated to lower layers: the core assumes that the journal 1) can write several
nodes atomically, 2) can perform a commit atomically together with the index
and 3) takes the block structure and sequential writes into account. Further-
more, garbage collection is just specified abstractly, because an implementation
is meaningful only once blocks are considered.

In this paper we show how this can be achieved in two steps: The transac-
tional journal provides the atomicity of multiple updates based on blocks and
includes garbage collection. The transition down to bytes is realized within the
persistence layer, which in turn relies on the erase block management as a logical
view of the flash hardware (which is similar to UBI [16], see [23]). It writes the
nodes buffered and sequentially to flash. Additionally, atomicity of the commit
and free space management is provided.

From the implementation ASMs (gray in Fig. 1) we generate executable
Scala3 code (for simulation and testing purposes) and C code, which is integrated
into Linux via FUSE.4

2.2 Methodology

The formal foundations of our work are Abstract State Machines (ASMs) [4] and
a corresponding refinement theory [3,25] with a recent extension [11] to support
encapsulated submachines and the modular verification of power cuts.

3 http://scala-lang.org
4 http://fuse.sourceforge.net

4

http://scala-lang.org
http://fuse.sourceforge.net

A

C L
Referring back to Fig. 1, the development follows a

recurring pattern as shown on the right: an abstract model
A is decomposed into an implementation part C which realizes a specific subtask,
whereas some concepts remain abstract, encoded by a (local) subcomponent L.
Such a hierarchical construction of systems is modular in the sense that any
correct implementation of L can be plugged in instead without compromising the
proof that C adheres to A. The critical aspect wrt. power cuts is how persistent
data is modeled as a not-necessarily separable part of L.

Technically, we encode components uniformly as Abstract State Machines
M = ((OPi)i∈I ,St , Init ,Cr , Rec). These expose some operations OPi as external
interface, which have input and output parameters and preconditions. Opera-
tions are defined by abstract imperative programs that compute on an internal
state s : St , with the usual constructs such as assignments, conditionals, loops,
recursion, nondeterministic choice, and calls to submachines. Power cuts are
specified by a crash predicate Cr ⊆ St×St , subsequent recovery is implemented
by the designated recovery operation Rec. A run of an ASM starts in an initial
state s0 : St with Init(s0) and repeatedly executes operations, that either termi-
nate normally, or are interrupted in an intermediate state followed by a crash
and execution of the recovery operation.

Correctness of a concrete ASM C = ((COPi)i∈I ,CSt ,CInit ,CCr , CRec) is de-
fined not by giving a postconditions per operation, but instead in terms of an-
other, more abstract ASM A = ((AOPi)i∈I ,ASt ,AInit ,ACr , ARec) that encodes
the specification and requirements. Intuitively, C refines A, if for each run of C
there is a matching run of A with the same inputs and outputs. Formally, we
follow the contract approach to refinement [31]. We prove refinement by forward
simulation with a coupling relation R ⊆ ASt × CSt and commuting diagrams
(we omit the standard proof obligations for each pair COPi and AOPi).

On a semantic level, it is easy to integrate correctness of power cuts into the
refinement approach with a small-step semantics for operations: a crashed call
to a concrete operation and its recovery must be matched by a crashed call of
the corresponding abstract operation and recovery. This would lead, in principle
to a temporal proof obligation of the form � crashsafe that must hold during
the run of any COP. Such a property would lead to a huge number of verification
conditions and cannot be expressed in weakest-precondition/Hoare calculus. One
can, however, express the recovery condition in between completed operations as
a variant of the standard forward simulation condition prefixed with a crash

recovery:

R(as, cs) ∧ CCr(cs, cs ′)

→ 〈|CRec(; cs ′)|〉 (∃as ′. ACr(as, as ′) ∧ 〈ARec(; as ′)〉R(as ′, cs ′)) , (1)

where 〈|p|〉ϕ denotes the weakest precondition (total correctness) of the pro-
gram p with respect to postcondition ϕ and 〈p〉ϕ asserts the existence of some
terminating execution of p satisfying ϕ in its final state.

Surprisingly, this property is sufficient, which can be derived on a purely
semantic level given simple conditions about the concrete machine C. This re-

5

duction exploits a close relationship between error handling and power cuts (see
[21] for a similar idea): Intuitively, at the lowest level, each operation of the hard-
ware has the possibility to fail without altering the flash memory. Conversely,
all other state is in RAM and will be completely arbitrary after a crash (for a
suitable definition of CCr). This means that each partial run has at least one
completion that leaves the flash untouched, which implies that the crashed flash
states are a subset of the final ones, reducing the verification burden to an en-
tirely big-step setting (i.e., expressible with standard verification methodology).

This observation can be generalized to a state space of some intermediate
machine that does not clearly separate flash and RAM data, which is important
for flexibility in modeling. Formally, an operation COPi of C is crash-neutral, if
there is the possibility to postpone the effect of a crash to some final state of
COPi, which leads to the additional proof obligation

crash-neutrality:

preCOPi
(in, cs) ∧ CCr(cs, cs ′)→ 〈COPi(in; cs, out)〉 CCr(cs, cs ′) (2)

For a state that is entirely in RAM, this condition is trivial, since CCr is not
constrained then, i.e., admits arbitrary transitions. In practice this means that
(2) must only be proved for abstract submachines L called by C, which is typically
easy. The formalization of this approach and the proofs are detailed in [11].

In the remainder of the paper, we use the following notational conventions:
We write variables in italic and operations/functions/predicates in typewriter

font. We frequently use partial functions/finite maps f : A 7→ B. For key a ∈
dom(f) the value associated to it by f is written f [a]. Function override is denoted
by f [a 7→ b]. The assignment f [a] := b abbreviates f := f [a 7→ b].

3 Formal Specification of the Journal and Index

This section presents the formal model of the journal, which defines the require-
ments for the work of this paper. It is based on our previous work [28]. The model
reflects the limited access characteristics of flash memory. Operations presented
here should be interpreted as atomic transitions, which captures the requirement
of transactional behaviour to be implemented in Sec. 4. The model furthermore
admits that the hardware may sporadically refuse to perform an operation. We
present several invariants that can be expressed (and proved easily) at this level
of abstraction and can be assumed later on for the verification of the refinement.

The abstract state is given by an unordered flash store fs and a list log of
addresses that have been written to since the last commit (c.f. Fig. 3)

spec var fs : Address 7→ Node, log : List〈Address〉.

The journal has an operation to read a node from flash, and operations to store
groups of n nodes,5 extending the log . All operations may fail nondeterministi-

5 A maximum group size of n = 4 nodes is sufficient for all operations of the FS core.
Note that an entire write operation is already decomposed into fixed-size writes of
individual segments by higher components.

6

cally without changing the state,6 this can be observed with the returned error
code err (recall that output parameters follow the semicolon). In case of success,
the outputs adr1···n contain the addresses of the new nodes on flash, which are
later stored in the index.

jnl spec get(adr ; nd , err)

{ nd := fs[adr], err := ESUCCESS } or { err := EFAIL }

jnl spec appendn(nd1, . . . ,ndn; adr1, . . . , adrn, err)

{ choose adr1···n 6∈ dom(fs) distinct

fs := fs[adr1 7→ nd1] · · · [adrn 7→ ndn] (?)

log := log + adr1 + · · ·+ adrn

err := ESUCCESS }
or { err := EFAIL }

We also need a formal model of the index (its implementation is out of scope of
this paper, though). The state of the corresponding ASM maintains two maps

spec var ri , fi : Key 7→ Address,

the RAM index ri and the flash index fi . All operations, except commit and
recovery which are explained later on, access the RAM index only. There are
ASM operations to lookup, store, and remove mappings that directly refer to
their algebraic counterparts, e.g.,

idx lookup(key ; adr) { adr := ri [key] }
idx store(key , adr) { ri [key] := adr }
idx remove(key) { ri := ri − key }

The system maintains several invariants, for example that the RAM index does
not contain unallocated addresses; and that all addresses in the log are valid.

invariant ran(ri) ⊆ dom(fs) and {adr | adr ∈ log} ⊆ dom(fs)

Addresses adr 6∈ ran(ri) are obsolete and can be cleaned up by garbage collection
(see Sec. 5). However, the index is accessible (efficiently) only by keys. Each node
nd stores its respective key, denoted by nd .key, and thus one can equivalently
check fs[adr].key 6∈ dom(ri). The induced invariant is

invariant ∀ key ∈ ri . fs[ri [key]].key = key (3)

The RAM index determines exactly, which part of the flash memory constitutes
the observable file system state. However, in the event of a power cut the RAM
state is lost. We model this by setting ri to an arbitrary value, without changing
fs. Formally, the effect of a crash is specified by

Cr idx(ri ,fi , ri ′,fi ′) ↔ fi = fi ′

Cr jnl(fs, log , fs ′, log ′) ↔ fs = fs ′ ∧ log = log ′ (4)

6 The failure case also witnesses the crash-neutral run wrt. (4) as required by (2).

7

end start

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

Fig. 4: Detecting partially written nodes and groups

(where the overall effect is the conjunction of the two predicates). That the RAM
index is truly redundant and can be recovered to its previous state after a power
cut is expressed by

invariant ri = replay(log ,fi , fs), (5)

where replay is part of the recovery operation Rec of the FS core. It traverses the
log from oldest to newest and (re-)applies all missing operations to the outdated
fi . As a consequence, the log must be computable by the implementation (see
Fig. 10), even though it is not part of the actual concrete state.

The size of the log determines how long it takes to mount the file system
initially. In order to keep the log reasonably small, a periodic commit writes
the current index to flash and empties the log. This has to happen atomically,
otherwise power cuts in between can lead to inconsistent states. Note that a
commit trivially establishes the recovery invariant. Commit is modeled as follows:

spec commit() { fi := ri , log := [] }

4 Transactions in the Journal

The transactional journal layer introduces a structured view of the flash storage
that takes the block structure of flash memory into account. It implements the
specification given in Sec. 3 by mapping fs to an array of blocks, each of which
contains a list of nodes. The log is represented implicitly within the blocks: since
blocks already give a sequential ordering for the contained nodes, it is sufficient
to maintain a list of those blocks which constitute the nodes referred to by
the abstract log . The main difficulty is that the journal needs to implement
transactions of multiple nodes atomically wrt. hardware errors and power cuts,
based on a (abstract specification of the) persistence layer that caches writes
until a page boundary is reached.

8

jnl append2(nd1,nd2; adr1, adr2, err)

let size = size(nd1) + size(nd2)

jnl allocate(size; loghead , err)

if err = ESUCCESS then

persistence add node(loghead , gnode(nd1, true, false); adr1, err)

if err = ESUCCESS then

persistence add node(loghead , gnode(nd2, false, true); adr2, err)

if err = ESUCCESS then

persistence flush(loghead , err)

if err 6= ESUCCESS then validhead := false

Fig. 5: Journal implementation to store two nodes on flash.

In order to guarantee this atomicity, the journal groups nodes per operation.
The whole group must have been written successfully in order to make a valid
contribution to the observable file system state. Atomicity at the level of indi-
vidual nodes is required as well, but for the sake of modularization this concept
is not addressed in the journal but in the persistence layer. This approach per-
mits the journal to treat its underlying storage as a simple sequence of nodes in
contrast to a more complicated view.

Figure 4 puts the two layers in relation. A single erase block is shown at the
bottom, the grey area denotes the part that has already been written to (omitting
its partitioning into pages). Within the block the persistence layer stores the
sequence of nodes, each of which is marked by a header and a trailer. A node
group has a start/end marker at the first/last node. The ragged delimitations
at the right in Fig. 4 indicate a failed write or power cut, accordingly the last
node lacks its trailer, hence it is invalid and so is the entire group.

Transactional Journal. Appending n = 2 nodes to the transactional journal
is then implemented as shown in Fig. 5 (the cases n = 1, 3, 4 are similar). The
algorithm first selects a block number loghead with sufficient remaining space to
hold the new data.

state var loghead : N, validhead : B

The current block can be reused if the last write did not fail, leaving partially
written nodes at the end. So for example the erase block in Fig. 4 can not be
reused.7 We store in validhead whether the current block is still usable. Each
node is then written individually wrapped in a group node

data type GroupNode = gnode(nd : Node, start?: B, end?: B) ,

7 We need to be able to read all nodes from the erase block in order to perform garbage
collection, but detecting partially written nodes reliably in between completely writ-
ten ones is not possible.

9

with the additional start and end marker. The first flag indicates whether this
node is the first one of a group, the second flag indicates whether it is the last one
(c.f. Fig. 4). A singleton group has both flags set. Every call to the persistence
layer can fail so the returned error code is checked after each step.

At the end of the operation, the corresponding block is flushed to ensure
that all nodes have actually been written. The persistence layer has a write
cache in order to improve efficiency—no guarantees are given about what has
been written until a block is flushed. Note that the returned addresses adr i are
chosen by the persistence layer and are simply passed through.

Persistence Specification. The journal uses the persistence layer to write
nodes. The specification of the persistence layer maintains the finite map blocks
from block numbers to block content of type GroupBlock . Each block consists
of a list of group nodes and additional data, that exposes some details of the
persistence implementation in a controlled way in order to express preconditions
and invariants precisely.

spec var blocks : N 7→ GroupBlock

data type GroupBlock = gblock(nodes : List〈GroupNode〉, (6)

addrs : List〈Address〉,
flushindex : N, rsize : N)

Field addrs gives for each node in nodes the address where it is stored; rsize
stores the total size of all nodes in a block that are still referenced by the in-RAM
index. It is used to determine blocks suitable for garbage collection as explained
in Sec. 5. Finally, the flushindex exposes, which part of the list nodes has been
persisted; nodes nodes[i] at a position i ≥ flushindex are (conceptually) still
cached in RAM and lost on a power cut. Flushing increases flushindex to the
length of nodes.

The log itself is implicit in the final file system. It can be determined from
the blocks that contain new nodes. For this purpose the persistence layer keeps
their numbers in a list logblocks.

spec var logblocks : List〈N〉

Whenever the journal requests a fresh erase block to be used as part of the log,
this block is recorded at the end of logblocks. Each such addition needs to be
persisted to flash immediately in the implementation.

Verification. For the correspondence between fs and log on the one hand
and blocks and logblocks on the other, unflushed nodes and partial groups need
to be omitted. The abstraction considers valid nodes only, which are part of
a proper group that has been flushed entirely. We write blocks↓ for the state
blocks stripped of all invalid nodes (at the end of each erase block, c.f. Fig. 4)
and corresponding addresses. The abstraction relation is formalized as

coupling fs = abs-fs(blocks↓) and log = abs-log(logblocks, blocks↓)

10

where

abs-fs(blocks)[adr] = nd (7)

iff blocks[n].nodes[i].nd = nd and

blocks[n].addrs[i] = adr for some n, i within bounds

and abs-log collects the addresses of the blocks in logblocks recursively

abs-log([], blocks) = [] (8)

abs-log(n+logblocks, blocks) = blocks[n].addrs + abs-log(logblocks, blocks)

The difficulty during the verification of jnl appendn is that assertions in in-
termediate states can not be expressed adequately in terms of abs-fs(blocks↓)
and abs-log(logblocks, blocks↓). Both abstractions only reflect the changes after
flushing the cache. Intermediate assertions therefore refer to blocks↓loghead , which
removes all invalid nodes from all blocks except for the block loghead , where all
the changes take place.

The other aspect crucial for the verification of jnl appendn is that if the
journal head is valid, it is the last block in the log and it ends on a complete,
flushed group, i.e., if validhead is true then invariant

loghead ∈ blocks ∧ logblocks 6= [] ∧ loghead = logblocks.last

∧ (blocks[loghead].nodes 6= []→ blocks[loghead].nodes.last.end?)

∧ #blocks[loghead].nodes = blocks[loghead].flushindex

also holds. Otherwise, it would be possible that a newly appended node completes
a previously invalid node group.

5 Garbage Collection

The out-of-place updates of the transactional journal will necessarily accumulate
a lot of obsolete data over time, i.e., data that is no longer referenced by the
index. Garbage collection (GC) of the journal area remedies this problem by
moving and compacting live data at the granularity of nodes. The GC procedure
thus depends on and modifies the RAM index; furthermore, it is the only point
where flash memory space is actually reclaimed.

The difficulties from a formal perspective are twofold: caching of writes of
nodes is crucial for the effectiveness of garbage collection, but again considerably
complicates the verification. Furthermore, choosing a block for garbage collec-
tion requires additional information and ties several layers closer together than
already necessary, especially with respect to the recovery from power failures as
explained in more detail in Sec. 7.

Specification. Again referring to the view in terms of fs and ri of the journal
specification (Sec. 3), we can denote the central correctness property of the GC
that no data is lost. Formally,

fs ◦ ri = fs ′ ◦ ri ′ and dom(ri) = dom(ri ′) (9)

11

must hold for the primed state after the run of the GC, where ◦ denotes
function composition. The GC algorithm roughly corresponds to a number of
transitions of the form

fs[adr ′] := fs[ri [key]], ri [key] := adr ′, log := log + adr ′,

for some key ∈ dom(ri) and adr ′ fresh in fs. The first assignment moves live data
to a different location, the second assignment updates the index, and the third
records the operation in the log. Subsequently, some addresses adrs ∩ ran(ri) = ∅
can be deleted by

fs := fs \ adrs.

Implementation. In practice, a number of side conditions need to be satisfied,
though. For example, a block that is part of the log cannot be collected until it
is merged into the ordinary part of the journal during a commit, because it is
needed for recovery (Sec. 7). Also, while the whole block is collected in one go, the
corresponding index updates must be deferred: Due to caching, low-level write
failures may not be detected immediately and only at the end (after flushing) it is
clear whether the copying succeeded. The implementation of garbage collection
is shown in Fig. 6. It first selects a block for garbage collection. Then the live
nodes of the selected block are copied, which yields a list keys of affected keys
and corresponding new addresses dstadr that are to be updated in the index.
Finally, the now obsolete block is deallocated.

The heart of the garbage collection is the procedure jnl copy block. It reads
all nodes nds and their addresses srcadrs from flash. In a loop, each node nd in
nds is checked whether it is still in the index, i.e., if the key nd .key exists in the
index and still maps to the node’s address srcadr . Note that the index does not
support queries by address, only by key, therefore each node has to store its own
key, and by invariant (3) the keys match. If the node is not obsolete, we append
a new copy to the journal and keep the index update key 7→ dstadr for later. At
the end, we ensure that all nodes are persisted by flushing the block.

Verification. In the invariant (not shown) for the while loop in jnl copy block,
it is necessary to state that keys and dstadrs collected so far correspond to the
nodes that are still referenced by the index. Furthermore, not all of the nodes
written are actually persisted immediately, so in the actual abstraction only a
prefix of the written nodes appears in fs and log . It is therefore necessary to
reason about the abstraction “after” a flush to the current journal head. Ad-
ditionally, there may not always be a current journal head, leading to several
distinct cases in the invariant.

Choosing Blocks for GC. From the perspective of functional correctness it
is sufficient to choose any block of the journal that is outside the log,8 but we
certainly want to ensure that garbage collection picks a reasonable one. The

8 Note that wear-leveling is performed by a lower layer and therefore is not limited by
the choice of block of the garbage collection, i.e., blocks in the log can be moved by
wear-leveling.

12

jnl garbage collection()

persistence get gc block(; block)

jnl copy block(block ; keys, dstadrs, err)

if err = ESUCCESS then idx update all(keys, dstadrs; err)

if err = ESUCCESS then persistence deallocate(block ; err)

jnl copy block(block ; keys, dstadrs, err)

let srcadrs = [],nds = []

persistence read block(block ; srcadrs,nds, err)

while srcadrs 6= [] ∧ err = ESUCCESS do {
let srcadr = srcadrs.head,nd = nds.head.nd, exists, idxadr , dstadr in

idx lookup(nd .key; exists, idxadr , err)

if err = ESUCCESS ∧ exists ∧ idxadr = srcadr then

. . . // if necessary move the log head and flush the old block

if err = ESUCCESS then

persistence add node(loghead , gnode(nd , true, true); dstadr , err)

keys := keys + key , dstadrs := dstadrs + dstadr

srcadrs := srcadrs.tail,nds := nds.tail

}
if err = ESUCCESS then persistence flush(loghead ; err)

Fig. 6: Garbage collection procedures

information necessary for a good choice is for each block how many bytes still
belong to live data, encoded in the rsize field (Sec. 4).

Here we have an example of coupling between components: although stored
within the persistence layer, rsize is updated alongside index operations, which
ultimately determines what data (addresses) are referenced. In order to make
the index aware of the size of nodes without the need to access them directly,
addresses carry the number of bytes the corresponding node occupies on flash.
Addresses therefore are structured, they contain an erase block, a byte-offset in
the block, and the size of the node stored:

data type Address = @(block : N, offset : N, size : N)

If an index update replaces address adr stored under key with new adr ′, the
rsize field of the block adr belongs to is decreased by adr .size. Symmetrically,
the field of adr ′’s block is increased. For the quality of the garbage collection
this information should match the one we could obtain (inefficiently) from the

13

index. Therefore, we prove the invariant

blocks[n].rsize =
∑{

adr .size | adr ∈ ran(ri), adr .block = n
}

(10)

for all n ∈ dom(blocks). The range operator yields the set of addresses in the
index, we restrict to those addresses in block n and then sum up all their size

fields. Note that invariant (10) is independent of the question of how many nodes
are actually stored on flash in block n, i.e., it does not mention blocks↓ but only
the size stored in addresses. This simplifies reasoning about changes to rsize.

6 Persistence: Atomic Commit & Write Buffering

The persistence layer encodes all data structures of the flash file system to bytes.
It maintains the disk layout in order to decide which erase blocks are allocated
for which purpose.

One challenge for the implementation and verification is again atomicity; this
time in the form of the commit operation and writing of individual nodes. The
second challenge is that free space management and the garbage collection (in
the form of the rsize field) requires additional information stored per block.
This information is kept in the Block Property Table (BPT) that is maintained
in RAM and (in an outdated form) on flash, stored during the commit. As shown
in Sec. 7, recovering the BPT after a power failure is quite delicate.

Disk Layout & Atomic Commit. The disk is partitioned into two parts:

main area: journal & index BPT 1 logblocks 1 superblock BPT 2 logblocks 2

The first part spans the superblock, a copy of the internal management data
BPT from the last commit and the list of blocks allocated for the log (corre-
sponding to logblocks in Sec. 4). For the BPT and log blocks, space for two
versions is provisioned. The superblock references the “current” one to be read
at startup time. The spare one is written during commit, a subsequent change
of the superblock ensures atomic transition to the new state. Assuming the flash
index is also written out-of-place by the index model, this already yields a correct
implementation of the commit operation from Sec. 3.

The second part of the device consists of all erase blocks with group nodes,
i.e., the blocks occupied by the journal, and erase blocks storing the on-flash
index (not covered in this paper).

The Block Property Table (BPT) is an array with some data for each erase
block of the main area:

state var bpt : Array〈BPTEntry〉
data type BPTEntry = bptentry(size : N, rsize : N, type : BPTType)

data type BPTType = FREE | GROUP NODES | INDEX NODES

14

pages written cached partial
page in RAM

erase
block

Fig. 7: Write buffer

The BPT is consulted to find a FREE block when
a fresh one is requested by the journal layer. The
rsize field corresponds to the abstract counter-
part shown in (6). The size field stores how
many bytes have been written to the block.

Write Buffering. The main functionality re-
quired by the journal is appending a single (group-) node to a block. The imple-
mentation is shown in Fig. 8. It is based on a write buffer, which stores one flash
page as a cache in RAM to aggregate non-aligned writes. Figure 7 visualizes
how this cache is overlaid with the data on flash: the whole part marked in grey
designates written bytes. Write buffers are allocated on demand and stored in
the map wbufs.

state var wbufs : N 7→WBuf

data type WBuf = wbuf(off : N, buf : Array〈Byte〉, nbytes : N)

In order to create a write buffer the offset where we want to start writing
data must be known, which is readily available in the BPT as size. Proce-
dure persistence add node then writes a header containing the length of the
encoded node, the node itself and a trailer. The block number, offset and size are
assembled into the returned address adr . A partially written node is detected
by a missing trailer. Flushing of a block (persistence flush) requires a write
of a padding node that spans the space until the next page boundary.

Verification. The abstraction relation between the specification and imple-
mentation of the persistence layer basically states that

– the current version of logblocks is stored on flash,
– the BPT from the last commit is stored on flash,
– all group nodes are stored in the main area and
– the flushindex of each block corresponds to the exact number of nodes that

have been written to flash and are no longer held in the write buffer.

Difficult in terms of verification and specification is that the encoding of all nodes
in one block is not functional, since the abstraction needs to filter out padding
nodes and partially written nodes at the end of each block.

7 Power Cuts & Recovery

In this section we describe how the various models interact in the event of a
power cut. It is modeled as assigning arbitrary values to all in-RAM data struc-
tures. The persistent storage is left unchanged. In bottom-up fashion we give
each model a chance to recover to a consistent and desirable state via the re-
covery operation. The machine of the journal layer, for example, starts with the
recovered state of the persistence layer.

In general we show recovery property (1) for each refinement, i.e., the power
cut and subsequent recovery between abstract and concrete model match, in the

15

persistence add node(block , gnode; adr , err)

if ¬ wbuf is buffered(block) then wbuf create(block , bpt [block].size)

let buf = encode-group-node(gnode)

let buf 0 = encode-header(nodeheader(#buf , false))

wbuf write(block , HEADER SIZE, buf 0; err)

if err = ESUCCESS then wbuf write(block ,#buf , buf ; err)

if err = ESUCCESS then wbuf write(block , HEADER SIZE, trailer; err)

if err = ESUCCESS then

let size = 2 · HEADER SIZE + #buf

adr := @(block , bpt [block].size, size), bpt [block].size += size

else bpt [block].size = BLOCK SIZE

Fig. 8: Writing a single Group Node

persist recover(; bpt , logblocks)

read superblock(; superblock)

read log(superblock ; logblocks)

read bpt(superblock ; bpt)

fix bpt(logblocks; bpt)

Fig. 9: Recovery of Persistence

jnl recover(logblocks; log)

log := []

while logblocks 6= [] do

persistence read blk(logblocks.head; adrs,nds)

remove nonend nodes(; adrs,nds)

log := log + adrs, logblocks := logblocks.tail

Fig. 10: Recovery of the Log

sense that invariants and abstraction relations hold afterwards. The difficulty
from a specification and verification perspective is that different parts of the
state behave differently: Some parts are restored to the state directly before the
power cut while other parts are restored to the state of the last commit. Some
parts need to be fixed and do not resemble any previous state. Furthermore,
several aspects of recovery from power cuts leak through abstractions, making
it an inherently collaborative effort of several models.

By definition (4) the journal and persistence implementation together restore
to the same state and return the list of addresses of the log for its replay (see
invariant (5)). The implementation of the recovery operations is shown in Fig. 9
and Fig. 10 (error handling omitted for brevity). After the persistence layer has
read the necessary data from flash and fixed the outdated BPT (which is the
hard part, as explained below), the journal takes over to scan the erase blocks
that form the log, removing invalid group nodes at the end of each block and
concatenating all the addresses. Not incidentally, this corresponds exactly to the
abstraction abs-log in (8).

The BPT read from flash needs to be adapted in two ways: The blocks that
have been allocated for group nodes since the last commit (subset of those in
the log) need to be marked as allocated. The blocks constituting the log at the

16

time of the power cut must be considered non-writable: it cannot be determined
how far exactly they have been written. Therefore, we treat those blocks as full
and set their size field in the BPT accordingly.

Abstractly, after the recovery by the persistence implementation the journal
implementation sees the following changes to the group blocks blocks:

1. the nodes that were not yet persisted (i.e., are above flushindex) vanish,
2. the rsize field is reverted to the value from the last commit,
3. previously garbage collected and deallocated group blocks reappear.

The first point is no problem, because the abstraction (7) in terms of blocks↓
upwards to the flash store fs only considers the persisted nodes anyway.

The reverted rsize has the consequence that the invariant (10) is violated
if one considers the in-RAM index before the power cut. However, after a power
cut, we read the index from the last commit, too. And the index and the rsize

fields from the last commit obviously satisfied invariant (10) at the point of
commit. This establishes the invariant right after the recovery of the persistence
layer and reading of the on-flash index. Replaying the index afterwards then also
updates the rsize fields correctly.

The reappearing blocks are problematic, because they may contain garbage
data (it is unknown whether they have been erased on flash or not) and realloca-
tion is precluded until they are deallocated once again. We store the blocks that
have been deallocated since the last commit abstractly, exclude their contents in
the abstractions abs-log and abs-fs (and disallow reading and writing), prop-
agating this constraint towards the upper layers. After the replay of the index
by upper layers the RAM index will no longer reference them, since this was the
reason for their deallocation, and we can now safely remove these blocks.

8 Related Work

NASA’s proposal [19] has prompted a large body of related work, covering many
aspects of file systems in general and also specific to flash memory.

High-level specifications include the early work of Morgan & Sufrin [22] and
mechanized models and proofs [1,14,15,17]; a recent model of POSIX which is
very complete and detailed is presented in [24]. These efforts are orthogonal to
this paper, see [13] for a detailed comparison to our development. Formalizations
of flash memory below the models presented here include [5].

Two developments actually connect a high-level view to the pages and blocks
of flash hardware [20,8]. In both cases, only file content is mapped, written, and
garbage collected at the granularity of flash pages, at the expense of extra state
that is kept in memory. An encoding of the directory/file structure and any other
auxiliary data structures (such as the BPT, log and on-flash index) down to flash
and caching of writes are not considered. [20] deals only with crashes during a
write operation and intertwines the recovery strategy with the implementation
of the write operation. Some Flash Translation Layers (FTLs) and [20,8] have
a page-based allocation scheme assuming additional, overwritable bits in each

17

page that track the allocation status. These are not always present or might be
used entirely for error-correction codes [30]. We have to recover newly allocated
blocks and deallocate reappearing blocks after a power cut. Furthermore, the
models do not consider the restriction to sequential writes within an erase block.
[8] reads all pages during mounting/recovery in order to rebuild the index.

Chen et al. [6] discuss different formalisms to express crash and recovery
on a high level, and settle for a pre/post verification in the Hoare-logic style,
augmented with a crash specification and a designated recovery operation at-
tached to individual operations. Very nice follow up work [7] introduces Crash
Hoare Logic in more detail and presents the verification of a small but complete
file system called FSCQ targeting conventional magnetic drives. In comparison,
their approach requires one to reason about intermediate states using a special
logic, whereas we are able to reduce the proof effort on a semantic level.

Sprenger et al. [21] consider a storage system with similar properties of that
of a file system, but with a strong focus on redundancy.

9 Discussion & Conclusion

We have presented two central components for verified flash file systems, covering
concepts not realistically addressed in previous work.

The work has been done in the context of the Flashix project and it is
strongly connected to the design of the overall system. One observation is that
it is non-trivial to find a good decomposition of the system. Since we have taken
the existing implementation UBIFS as a blue-print, many concepts were already
worked out properly, but isolating these from the verification point-of-view took
quite some time—we estimate somewhat less than half a person-year in total for
the models and proofs; the overall project effort is in the order of three to four
person years. At least half can be attributed to errors and power cut safety. The
specifications developed in this work specifically are in the order of 4k lines of
ASM code and algebraic definitions in addition to around 800 theorems.

The large gap in representation of system state (abstract tree down to bytes)
leads to a deeply nested hierarchy of layers, see the full version of Fig. 1 in [26].
It is beneficial to be able to pinpoint the individual concepts as abstract models
(i.e., ASMs) in their own respect: one can verify invariants on the abstract level,
executable specifications were also useful during testing and validation.

However, a deep hierarchy has the issue that models become semantically
entangled, which breaks modularity in a way that is hard to resolve, as noted
before in e.g. [2]. Resilience against hardware errors and abrupt power cuts
aggravates the problem of finding suitable, sufficiently abstract specifications. It
is likewise not obvious, to what extent such effects should be masked within the
implementation of a specific component.

Specification entanglement manifests for example in the flushindex and
rsize fields in Sec. 4 and the extra size field in addresses. Garbage collection
has issues on its own: it should be pointed out that upper layers in the software
stack must be able to deal with it, namely, the file system core should be agnostic

18

to GC (which is established in terms of its specification). Another issue are the
reappearing blocks in Sec. 7 caused by the fact that some internal data structures
are stored only during a commit. We think that this emphasizes that specifying
systems well is at least as hard as the verification itself.

It is doubtful whether it would pay off to further refactor the design, as we
found that even small changes tend to affect large parts of the verification, mainly
due to hardware failures and power cuts. Of course, improving tool support for
such refactoring is one way to mitigate this problem.

With previous work [28,23,13] we have now completed the design of a fully
functional flash file system. All models and proofs are available online at [9]. The
verification is almost done (missing: parts of the B+ trees) and we’re generat-
ing preliminary C code, which is in the order of 10kLoC. An evaluation of the
performance of the file system is currently under way.

Two important features that require further research are caching across
POSIX operations and concurrency. Caching across operations is in principle
supported by our implementation, but a suitable refinement theory still needs
to be worked out. Internal concurrency for garbage collection and erasing of
blocks reduces the latency of operations from the user’s point-of-view. To sup-
port this eventually (�), the semantics of our crash-refinement theory has been
made compatible with the temporal logic RGITL [27] implemented by KIV.

Acknowledgement. We thank the anonymous reviewers for their detailed and
helpful comments.

References

1. K. Arkoudas, K. Zee, V. Kuncak, and M.C. Rinard. On verifying a file system
implementation. In Proc. of ICFEM, pages 373–390, 2004.

2. C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons Learned From
Microkernel Verification – Specification is the New Bottleneck. In SSV, pages
18–32, 2012.

3. E. Börger. The ASM Refinement Method. Formal Aspects of Computing, 15(1–
2):237–257, 2003.

4. E. Börger and R. F. Stärk. Abstract State Machines — A Method for High-Level
System Design and Analysis. Springer, 2003.

5. A. Butterfield and J. Woodcock. Formalising Flash Memory: First Steps. IEEE
Int. Conf. on Engineering of Complex Computer Systems, 0:251–260, 2007.

6. H. C., D. Ziegler, A. Chlipala, M. F. Kaashoek, E. Kohler, and N. Zeldovich.
Specifying crash safety for storage systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV). USENIX Association, 2015.

7. H. C., D. Ziegler, A. Chlipala, N. Zeldovich, and M. F. Kaashoek. Using crash
hoare logic for certifying the FSCQ file system. In Proc. of SOSP. ACM, 2015.

8. K. Damchoom. An incremental refinement approach to a development of a flash-
based file system in Event-B. PhD thesis, University of Southampton, 2010.

9. G. Ernst, J. Pfähler, and G. Schellhorn. Web presentation of the Flash Filesystem.
https://swt.informatik.uni-augsburg.de/swt/projects/flash.html, 2015.

10. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV - Overview
and VerifyThis Competition. Software Tools for Techn. Transfer, pages 1–18, 2014.

19

https://swt.informatik.uni-augsburg.de/swt/projects/flash.html

11. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, Crash-Safe Refinement
for ASMs with Submachines. Science of Computer Programming, ABZ 2014 special
issue, 2015 (submitted).

12. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. A Formal Model
of a Virtual Filesystem Switch. In Proc. of Software and Systems Modeling (SSV),
EPTCS, pages 33–45, 2012.

13. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. Verification of a
Virtual Filesystem Switch. In Proc. of Verified Software: Theories, Tools, Experi-
ments, volume 8164 of LNCS, pages 242–261. Springer, 2014.

14. M.A. Ferreira, S.S. Silva, and J.N. Oliveira. Verifying Intel flash file system
core specification. In Modelling and Analysis in VDM: Proc. of the fourth
VDM/Overture Workshop, pages 54–71, 2008. Technical Report CS-TR-1099.

15. L. Freitas, J. Woodcock, and Z. Fu. Posix file store in Z/Eves: An experiment in
the verified software repository. Sci. of Comp. Programming, 74(4):238–257, 2009.

16. T. Gleixner, F. Haverkamp, and A. Bityutskiy. UBI - Unsorted Block Images.
http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf, 2006.

17. W.H. Hesselink and M.I. Lali. Formalizing a hierarchical file system. Formal
Aspects of Computing, 24(1):27–44, 2012.

18. A. Hunter. A brief introduction to the design of UBIFS. http://www.linux-mtd.
infradead.org/doc/ubifs_whitepaper.pdf, 2008.

19. R. Joshi and G.J. Holzmann. A mini challenge: build a verifiable filesystem. Formal
Aspects of Computing, 19(2), June 2007.

20. E. Kang and D. Jackson. Formal Modelling and Analysis of a Flash Filesystem in
Alloy. In Proc. of ABZ, pages 294–308. Springer, 2008.

21. O. Marić and C. Sprenger. Verification of a transactional memory manager under
hardware failures and restarts. In FM 2014: Formal Methods, volume 8442 of
LNCS, pages 449–464. Springer, 2014.

22. C. Morgan and B. Sufrin. Specification of the UNIX filing system. In Specification
case studies, pages 91–140. Prentice Hall Ltd., Hertfordshire, UK, 1987.

23. J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Formal Specification
of an Erase Block Management Layer for Flash Memory. In Hardware and Software:
Verification and Testing, volume 8244 of LNCS, pages 214–229. Springer, 2013.

24. T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and P. Sewell.
SibylFS: formal specification and oracle-based testing for POSIX and real-world
file systems. In Proc. of SOSP. ACM, 2015.

25. G. Schellhorn. Completeness of Fair ASM Refinement. Science of Computer Pro-
gramming, Elsevier, 76, issue 9:756 – 773, 2009.

26. G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a
Verified Flash File System. In Proc. of ABZ 2014, volume 8477 of LNCS, pages
9–24. Springer, 2014.

27. G. Schellhorn, B. Tofan, G. Ernst, J. Pfähler, and W. Reif. RGITL: A temporal
logic framework for compositional reasoning about interleaved programs. Annals
of Mathematics and Artificial Intelligence (AMAI), 71:1–44, 2014.

28. A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif. Abstract Specification of
the UBIFS File System for Flash Memory. In Proceedings of FM 2009: Formal
Methods, pages 190–206. Springer LNCS 5850, 2009.

29. The Open Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1,
2008 Edition. http://www.unix.org/version3/online.html (login required).

30. UBI - Out-of-Band Data. http://www.linux-mtd.infradead.org/faq/ubi.html.
31. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.

Prentice Hall International Series in Computer Science, 1996.

20

http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.unix.org/version3/online.html
http://www.linux-mtd.infradead.org/faq/ubi.html

	Inside a Verified Flash File System: Transactions & Garbage Collection
	Introduction
	Background
	Project Overview & Flash File System Concepts
	Methodology

	Formal Specification of the Journal and Index
	Transactions in the Journal
	Garbage Collection
	Persistence: Atomic Commit & Write Buffering
	Power Cuts & Recovery
	Related Work
	Discussion & Conclusion

