
A Relational Encoding for a
Clash-Free Subset of ASMs

Gerhard Schellhorn, Gidon Ernst, Jörg Pfähler, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg, Germany

{schellhorn,ernst,pfaehler,reif}@isse.de

Abstract. This paper defines a static check for clash-freedom of ASM
rules, including sequential and parallel composition, nondeterministic
choice, and recursion. The check computes a formula that, if provable,
makes a relational encoding of ASM rules possible, which is an important
prerequisite for efficient deduction. The check is general enough to cover
all sequential rules as well as many typical uses of parallel composition.

Keywords: Abstract State Machines, Synchronous Parallelism, Clashes

1 Introduction

ASM rules are very expressive. Compared to other state-based formalisms they
do not just give a transition relation as a formula ϕ(x, x′) in terms of the prestate
x and the post state x′ (like e.g. Z, TLA or Event-B do). The additional con-
cepts like function updates, parallel and sequential composition, nondetermin-
istic choice, and defined rules with recursion give ASMs a lot of additional ex-
pressiveness that allows refinement from very abstract models down to ASMs
which can easily be seen to be equivalent to real programs. For formalisms based
on transition relations translating to real programs is hard, typically only the
reverse is done: encoding programs to transition relations with the help of pro-
gram counters. On the flip side a relational encoding for ASM rules is difficult.
As a consequence, we are not aware of any deduction approach with tool sup-
port for arbitrary ASM rules. Most verification tools, such as e.g. KIV [3], have
allowed the purely sequential fragment only with parallel assignments restricted
to different function symbols. Others have avoided sequential composition and
recursion, and used assignment for functions with arity zero only. With these
restrictions however we are in essence back to transition systems.

As soon as parallel rules R are allowed, it becomes hard to define a relation
rel(R)(f, f ′), which characterizes the effect of R in terms of the dynamic func-
tions f it assigns. Consider the simple parallel rule f(t1) := u1 par f(t2) := u2.
If we define rel(f(ti) := ui)(f, f

′) ≡ f ′(ti) = ui and use conjunction for par then
the relation will not ensure that f is unchanged for arguments other than t1
and t2. The formula will also miss the clash for the case t1 = t2 but u1 6= u2,
which results in undefined behavior. Clashes are the main obstacle for a relational
encoding and in most applications rules with clashes are undesirable anyway.

The contribution of this paper is a predicate con(R) that statically computes
a first-order formula from ASM rules R. If provable, then all executions of rule R
are guaranteed to be clash-free1 and a relational encoding is possible.

The predicate con(R) is related to the one used in the logic for ASMs defined
by Stärk and Nanchen [7] (also given in [2]). While we use the syntax and se-
mantics of ASMs given there, our predicate con(R) differs in several aspects. It
does not use modal constructs ([R] ϕ) but statically computes a formula even for
recursive rules, where the definitions in [7] would lead to an infinite computation
(note that the completeness theorem that permits to eliminate modal constructs
is for hierarchical ASMs only, where recursion is forbidden). Our computation
stops at calls and therefore allows one to check each (sub-)rule separately. Differ-
ent from [7] our con(R) does not imply that executing R terminates (via def(R))
— termination must be shown using well-founded orders otherwise. We support
nondeterministic choice, replaced by choice functions in [7] (making rules and
verification conditions at least harder to read).

The new approach in [4] extends [7] to nondeterminism, but does not consider
recursion at all. The rules of our relational encoding rel have some similarity to
the ones for upd(R,X) in [4], in particular higher-order functions are used in
both. However, our consistency check is purely first-order.

The price we pay for having a computable con(R) for all rules is that our
predicate only approximates clash-freedom. There are clash-free rules which our
predicate rejects. The scheme is however strong enough to trivially return true
for all rules of the sequential fragment, as well as for some typical parallel rules.
In general a theorem prover (or a decision procedure, when the data structures
used by the rule are decidable) is needed to prove the computed con(R), and
an SMT solver should suffice for many practical cases to establish clash-freedom.

2 Syntax and Semantics of ASM Rules

We assume the reader to be familiar with first order logic and the syntax of
ASM rules R and their semantics as given in e.g. [7]. We only repeat a few basic
notations. Given an algebra A and a valuation ξ, term t is evaluated to tAξ and
formula ϕ by A, ξ |= ϕ. An ASM rule R modifies an algebra A to A′. The basic
assignment is f(t) := u for a dynamic function f . The set of assigned functions
in a rule is denoted mod(R). The main rule does not use any free variables, but
subrules within choose x with ϕ(x) in R or forall x with ϕ(x) in R may
use free variables denoted as free(R). Given an algebra A executing a rule R
computes A′ in two steps. First, a set of updates U is computed recursively over
the structure of R as [[R]]

A
ξ .U . An update is of the form (f, a, b). Applying it on

an algebra A modifies function fA at arguments a to be b. A set of updates U is
consistent, if it does not contain two updates (f, a, b1) and (f, a, b2) with b1 6= b2.

1 We regard potential clashes that occur only under some specific non-deterministic
choices to be even worse than guaranteed clashes in every run. Even simulating runs
of the ASM may fail to detect them. We also regard computing the same update
twice as undesirable, and our approach will return con(R) = false in both cases.

2

In this case the whole set U can be applied to give A′ := A⊕U . If a rule always
computes consistent sets of updates, it is called clash-free. A rule is defined if
it computes an update set at all as recursive rules may fail to terminate. In the
following we assume that all dynamic functions are unary, or have no arguments
(“program variables” typically named z). Declarations of a subrule named ρ have
the form ρ(x; z).R where variable x is one value parameter and z is a program
variable. None of these restrictions is essential, they just allow us to save notation
for sequences of arguments. The body R of ρ is restricted to have mod(R) = z,
all updated locations must be explicitly given. A call of ρ is of the form ρ(t; f(u))
where u may contain static function symbols only (to avoid problems with lazy

evaluation), semantically [[ρ(t; f(u))]]
A
ξ . U iff [[R

f(u)
z]]

A
ξ{x 7→tAξ }

. U where R
f(u)
z

replaces all occurrences of z with f(u), so f(u) is read and updated instead of z.

3 Syntactic Consistency

Syntactic consistency uses the function asg(R, f) that computes a formula over
a dedicated variable farg and free(R). The values ξ(farg) for which it hold give
an overapproximation of the arguments where f is assigned.

asg(g(u) := t, f) ≡ asg(ρ(t; g(u)), f) ≡

{
farg = u, f = g

false, otherwise

asg(R1 seq R2, f) ≡

asg(R1, f) ∨ asg(R2, f), mod(R1) ∩ dep(R2, f) = ∅
true, f ∈ mod(R1 seq R2)

false, otherwise

(?)

asg(R1 par R2, f) ≡ asg(R1, f) ∨ asg(R2, f)

asg(if ϕ then R1 else R2, f) ≡ (ϕ ∧ asg(R1, f)) ∨ (¬ ϕ ∧ asg(R2, f))

asg(choose x with ϕ(x) in R, f) ≡ asg(forall . . . , f) ≡ ∃ x. ϕ(x) ∧ asg(R, f)

For assignments to f(u), we keep farg = u. The case for sequential composition
considers whetherR1 assigns to some g that controls the argument of f as f(g(u))
in R2 (g ∈ dep(R2, f)). In this case, possible values for farg are unconstrained
if f is modified at all. Conditionals strengthen the check of the branches by the
assumption from the test. In a forall or choose rule, f could be affected by any
execution of the body for an x that satisfies the condition ϕ. Note that we do
not impose any constraint on ϕ, infinitely many choices for x are possible.

The set of dynamic function symbols dep(R, f) that the final value of f after
execution of R depends on, can be defined recursively as follows:

dep(g(u) := t, f) = dep(ρ(t; g(u)), f) :=

{
{h : h occurs in t or in u}, f = g

∅, otherwise

dep(R1 seq R2, f) := dep(R1, f) ∪ dep(R2, f) ∪
⋃

g∈dep(R2,f)
dep(R1, g)

dep(R1 par R2, f) := dep(R1, f) ∪ dep(R2, f)

dep(if ϕ then R1 else R2, f) := {h : h occurs in ϕ} ∪ dep(R1, f) ∪ dep(R2, f)

dep(choose x with ϕ(x) in R, f)

= dep(forall x with ϕ(x) in R, f) := {h : h occurs in ϕ(x)} ∪ dep(R, f)

3

For assignments, dependencies come from the argument terms and the right
hand sides. Sequential composition chains the dependencies transitively. For if,
choose, and forall, the dynamic functions h occurring in the respective test ϕ
potentially have an influence on the final value of f as well.

Syntactic consistency con(R) of a rule R is defined over the structure of rules:

con(g(u) := t) ≡ con(ρ(t; f(u))) ≡ true

con(R1 seq R2) ≡ con(R1) ∧ con
(
R2

f ′

mod(R1)

)
where the f ′ are globally fresh

con(R1 par R2) ≡ con(R1) ∧ con(R2) ∧
∧

f ¬ ∃ y. asg(R1, f)(y) ∧ asg(R2, f)(y)

con(if ϕ then R1 else R2) ≡ (ϕ ∧ con(R1)) ∨ (¬ ϕ ∧ con(R2))

con(choose x with ϕ(x) in R) ≡ ∀ x. ϕ(x) → con(R)

con(forall x with ϕ(x) in R) ≡ ∀ x. (ϕ(x) → con(R)) ∧∧
f ¬ ∃ x1, x2, y. x1 6= x2 ∧ ϕ(x1) ∧ asg(Rx1

x , f)(y) ∧ ϕ(x2) ∧ asg(Rx2
x , f)(y)

Assignments and calls do not impose any additional constraints. as they do not
provoke clashes when viewed in isolation (provided that the body of procedures ρ
is checked separately). In a sequential composition, consistency of R2 must be
checked for possibly modified values of dynamic functions, expressed by fresh
symbols f ′ that are unconstrained. An example, where we lose precision is

R∗ ≡ g(u1) := u2 seq f(g(u3)) := u4, where the ui are static terms.

For the second assignment, we get dep(f(g(u3)) := u4, f) = {g}. Therefore
case (?) applies and asg(R∗, f) = true. Informally, we do not know statically
whether the first assignment affects the argument of f , i.e., whether g(u1)
aliases g(u3). Note that R∗ is still clash-free (con(R∗) = true).

Parallel execution of R1 and R2 conservatively excludes assignments to the
same location, where asg(R, f)(y) renames farg to a fresh variable y in asg(R, f).
To continue the example, putting R∗ in parallel with any assignment to f will
make con false for the combined rule. Note that this combination of sequential
and parallel composition, and the fact that we assume that the argument f(u)
is always assigned in a recursive call are the only two sources for imprecision
(when assigning the same value to a location twice is regarderd as a clash).

Nondeterministic choice hides the bound variable x and adds the assump-
tion ϕ(x) about the choice for that x to the consistency check of the body. For
forall we additionally exclude conflicts between two pairwise parallel executions
of the body where two fresh distinct representants x1 and x2 of the index x both
cause assignments to f(y) for the same y that replaces farg locally in the body.

Lemma 1. Given that R yields update set U , i.e., [[R]]
A
ξ . U :

• If f 6∈ mod(R) then (f, a, b) 6∈ U for all a, b.
• If gA = gA⊕U for all g ∈ dep(R, f)

then A, ξ |= asg(R, f) iff A⊕ U, ξ |= asg(R, f).
• If (f, a, b) ∈ U for some a, b then A, ξ{farg 7→ a} |= asg(R, f).
• If A, ξ |= con(R) then U is consistent.

The lemma states that mod , dep, asg, resp. con are correct. The second bullet
lifts (not) asg over the first rule in a sequential composition with updates U .

4

4 Relational Encoding

The relational encoding rel(R)(f, f ′) is a predicate over f ≡ mod(R) and primed
versions f ′ of these functions. Its free variables are at most the free variables
of R. Variable y as well as function variables f1, f2, F used below are fresh. We
abbreviate (ϕ → t = u) ∧ (¬ ϕ → t = v) with t = (ϕ ⊃ u; v).

rel(g(t) := u)(f, f ′) ≡ ∀ y. g′(y) = (y = t ⊃ u; g(y)) ∧
∧

f∈f,f 6=g f
′ = f

rel(ρ(t; g(u)))(f, f ′) ≡ ∃ y. y = t ∧ rel(R
g(u),y
z,x)(g, g′) ∧

∧
f∈f,f 6=g f

′ = f

rel(R1 seq R2)(f, f ′) ≡ ∃ f1. rel(R1)(f, f1) ∧ rel(R2)(f1, f
′)

rel(R1 par R2)(f, f ′) ≡ ∃ f1, f2. rel(R1)(f, f1) ∧ rel(R2)(f, f2) ∧ merge(f1, f2, f
′)

where merge(f1, f2, f
′) :=

∧
f,f1,f2∈f,f1,f2 ∀ y. f

′(y) = (asg(R1, f)(y) ⊃ f1(y); f2(y))

rel(if ϕ then R1 else R2)(f, f ′) ≡ (ϕ ⊃ rel(R1)(f, f ′); rel(R2)(f, f ′))

rel(choose x with ϕ(x) in R)(f, f ′) ≡ ∃ x. ϕ(x) ∧ rel(R)(f, f ′)

rel(forall x with ϕ(x) in R)(f, f ′) ≡ ∃ F . (∀ x. ϕ(x) → rel(R)(f, Fx)) ∧∧
f,F∈f,F ∀ y.

(
∀ x. ϕ(x) ∧ asg(R, f)(y) → f ′(y) = Fx(y)

)
∧
(
(∀ x. ϕ(x) → ¬ asg(R, f)(y)) → f ′(y) = f(y)

)
The rule for call renames variable x to y to avoid a conflict when x occurs in t.
The definition solves the problem of parallel rules R1 par R2 from the introduc-
tion by first computing two individual results f1 and f2 for the two rules. Since
we know from the fact that con(R) holds that each location (f, y) is assigned by
at most one of the rules (so at most one of the predicates asg(Ri, f)(y) holds),
the definition chooses the first rule if it assigned the location and otherwise the
second one. The definition for forall generalizes from two results f1, f2 to a
result Fx for every x satisfying ϕ. Note that since x ∈ free(R) the result Fx
may be different for every argument. In the presence of a clash, the formula is
equivalent to false.

If we interpret A ∪ A′ as the algebra that evaluates every unprimed func-
tion f over A and every primed function f ′ over A′, we have:

Theorem 1. Given a rule R with mod(R) = f and A, ξ |= con(R), then

A ∪ A′ |= rel(R)(f, f ′) if and only if there is some consistent U such that [[R]]
ξ
A.U

and A′ = A⊕ U .

5 Conclusion & Outlook

We have defined a clash-freedom check for ASM rules. All sequential rules check
trivially. Typical parallel rules with disjoint tests (e.g. used in the WAM [1])

if instruction = i1 then R1 par if instruction = i2 then R2

are also allowed. Lifting a rule R(; lv) of one process p with process-local state lv
to a parallel rule forall p do R(; lv(p)) for all processes p works, too (e.g. used
for the threads of the Java ASM [8]).

5

We have verified the results in KIV by a predicate logic embedding of ASM
rules (except for calls) and their semantics (see the URL [9]), similar to what
we have done for the temporal logic RGITL [6] (including calls). This uncovered
several mistakes in initial versions of the definitions.

The check presented in this paper could be improved in practice by using
invariants of the ASM or preconditions of recursive rules as assumptions, e.g.,
the rule f(x) := 1 par f(y) := 2 is clash-free when the invariants imply x 6= y.

In parallel to our work, a relational encoding of ASMs to Event-B was devel-
oped in [5]. In contrast to ours, the clash-freedom check is exact and tolerates
rules, which compute the same update several times. The approach has been
evaluated with several examples, while we have only tried mimimal ones. The
approach avoids the use of higher-order functions using set theory instead. On
the other hand the approach is limited to ASM rules without recursion and
sequential composition, so it is not sufficient to support the rules used in KIV.

This work is only the first step towards interactive proofs with a larger set
of rules in KIV. Such deduction needs rules for symbolic execution, as the result
of simply substituting the relation for the rule would be incomprehensible. For
a clash-free rule R1 par R2 our result shows that it is valid to transform the

rule to {f1, f2 := f, f} seq R1
f1
f seq R2

f2
f and compute the final result with

merge from the definition of rel(R1 par R2). When forall iterates over a finite
set, inductive arguments over its size should be possible.

References

1. E. Börger and D. Rosenzweig. The WAM—definition and compiler correctness. In
Logic Programming: Formal Methods and Practical Applications, Studies in Com-
puter Science and Artificial Intelligence 11, pages 20–90. Elsevier, 1995.

2. E. Börger and R. F. Stärk. Abstract State Machines—A Method for High-Level
System Design and Analysis. Springer, 2003.

3. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV - Overview and
VerifyThis Competition. Software Tools for Techn. Transfer, 17(6):677–694, 2015.

4. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A logic for non-deterministic
parallel Abstract State Machines. In Proc. of FoIKS, Springer LNCS 9616, pages
334–354, 2016.

5. M. Leuschel and E. Börger. A compact ecoding of sequential ASMs in Event-B. In
Proc. ABZ of 2016 (this volume). Springer LNCS, 2016.

6. G. Schellhorn, B. Tofan, G. Ernst, J. Pfähler, and W. Reif. RGITL: A temporal
logic framework for compositional reasoning about interleaved programs. Annals of
Mathematics and Artificial Intelligence (AMAI), 71:131–174, 2014.

7. R. F. Stärk and S. Nanchen. A complete logic for Abstract State Machines. Journal
of Universal Computer Science (J.UCS), 7(11):981–1006, 2001.

8. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Defini-
tion, Verification, Validation. Springer, 2001.

9. A relational encoding for a clash-free subset of ASMs: Formalization and proofs.
https://swt.informatik.uni-augsburg.de/swt/projects/Refinement/ASM-clashfreedom.html.

6

https://swt.informatik.uni-augsburg.de/swt/projects/Refinement/ASM-clashfreedom.html

	A Relational Encoding for a Clash-Free Subset of ASMs
	Introduction
	Syntax and Semantics of ASM Rules
	Syntactic Consistency
	Relational Encoding
	Conclusion & Outlook

