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Abstract. Many of the current verification approaches can be classified
into automatic and interactive techniques, each having different strengths
and weaknesses. Thus, one of the current open problems is to design solu-
tions to combine the two approaches and accelerate technology transfer.
We outline four existing techniques that might be able to contribute
to combination solutions: (1) Conditional model checking is a technique
that gives detailed information (in form of a condition) about the verified
state space, i.e., informs the user (or tools later in a tool chain) of the out-
come. Also, it accepts as input detailed information (again as condition)
about what the conditional model checker has to do. (2) Correctness
witnesses, stored in a machine-readable exchange format, contain (par-
tial) invariants that can be used to prove the correctness of a system.
For example, tools that usually expect invariants from the user can read
the invariants from such correctness witnesses and ask the user only for
the remaining invariants. (3) Abstraction-refinement based approaches
that use a dynamically adjustable precision (such as in lazy CEGAR
approaches) can be provided with invariants from the user or from other
tools, e.g., from deductive methods. This way, the approach can suc-
ceed in constructing a proof even if it was not able to come up with the
required invariant. (4) The technique of path invariants extracts (in a
CEGAR method) a path program that represents an interesting part of
the program for which an invariant is needed. Such a path program can
be given to an expensive (or interactive) method for computing invari-
ants that can then be fed back to a CEGAR method to continue verifying
the large program. While the existing techniques originate from software
verification, we believe that the new combination ideas are useful for
verifying general systems.

1 Introduction

Automatic verification techniques usually expect the user to set parameters, and
the prover computes the necessary invariants and the proof — the strength of
this technique is that it works for large systems. Interactive verification tech-
niques usually expect the user to provide invariants and the prover establishes
a formal correctness proof — the strength of this technology is that it works
for sophisticated specifications. In order to increase the impact of formal verifi-
cation, we need approaches that combine the advantages of both. The organizers
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of the ISoLA 2016 track on “Correctness-by-Construction and Post-hoc Verifica-
tion” [36] emphasize the importance of bringing together researchers from differ-
ent verification communities, in order to exchange ideas and discuss ways to com-
bine techniques and improve the overall verification process. Bringing together
different communities and develop verification tools that integrate solutions from
various viewpoints takes time and requires a long series of such meetings (for
example, a similar event with the same objective took place at Dagstuhl a few
years ago [15]). A similar “joining effort” of two communities took place in the
past: the research areas of data-flow analysis and software model checking were
originally using separate concepts, techniques, and algorithms, but were unified
in the past two decades [9,33]. Today, tools for automatic software verification
usually combine techniques from data-flow analysis with techniques from soft-
ware model checking (e.g., [11,16,19,22–24,29,34,35,38]).

Maturity Level of Research Areas. Both automatic and interactive ver-
ification are mature research areas. This is not only witnessed by the many
valuable publications (cf. surveys [4,28] for an overview), but in particular by
the large set of available tools that make it possible to actually verify real soft-
ware with the help of new technology [2,30]. There are several well-maintained
software projects that reflect the state of the art in the area of automatic verifi-
cation, for example, Blast [11], Cbmc [19], CPAchecker [16], Slam [3], and
Ultimate [24]; a large list of recent tool implementations can be found in the
SV-COMP competition report [5]. Also in interactive verification, the state of
the art is available in well-maintained software projects, for example, Auto-
Proof [37], Dafny [31], KeY [1], Kiv [20], and VeriFast [27]; a larger list
can be found in the VerifyThis competition report [26].

There are four international competitions in the area of software verification,
which all have the goal to showcase the strengths and abilities of the latest technol-
ogy, and at the same time identify the limits of the existing approaches. Rers [25]
is a competition on verification of generated event-condition-action programs.
This allows to control the features that are used in the program and for which
support is needed during the verification process. The goal is to identify the over-
all current abilities of software verifiers, without any restriction of the process or
of the resources. SV-COMP [5] is a controlled experiment to measure effective-
ness and efficiency of fully-automatic software verification. Verifiers are executed
without interaction on a dedicated computing environment and with limited, con-
trolled computing resources (CPU time, memory). termComp [21] focuses on the
particular specification of termination. VerifyThis [26] concentrates on evaluat-
ing different verification approaches and ideas to formalize a given problem, i.e.,
develop a model and a specification and then prove correctness.

Outline. This article presents a position statement that was prepared for
the ISoLA 2016 meeting. We use a few existing approaches from the view-
point of automatic verification which might be able to contribute to combi-
nation approaches. We outline four solutions to combine automatic verification
with interactive verification by exchanging partial and intermediate verification
results using well-defined interfaces.
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2 Exchanging Partial and Intermediate Results

Conditional Model Checking. In classical model checking, the outcome of
a model checker is either True or False. In practice, however, executions of
classical model checkers often end without delivering any useful result (tool gives
up, component or tool crashes, tool runs out of resources), which means that
the resources that the user spent on the verification task are lost without any
benefit for the user. Conditional model checking [12] is a technique that gives
detailed information (in form of a condition) about the verified state space, i.e.,
informs the user or tools later in the tool chain of the outcome. Also, it accepts
as input detailed information (again as condition) about what the conditional
model checker has to do, i.e., which parts of the state space to verify.

The idea to use a sequential combination of different approaches is not new,
for example, a combination of CCured [32] with Blast [11] was explored more
than ten years ago: in a first phase, CCured added run-time checks to the
program in order to make sure that no memory-safety violation happens without
run-time notification of the user; in a second phase, Blast removed all run-time
checks that it was able to verify statically [10]. All run-time checks that could
not be verified remained in the reduced “cured” program. Conditional model
checking formalized the approach and emphasizes the flow of information about
what is still to be verified between different checkers.

If developers of automatic and interactive verification tools agree on an
exchange format for conditions that describe the state-space that is to be ver-
ified, then many verifiers (both automatic and interactive) can be turned into
conditional model checkers.

Correctness Witnesses. Until recently, model checkers reported counterexam-
ple traces in proprietary formats, mostly in formats that were difficult to read,
not only for users but also for machines, i.e., the reported counterexamples were
sometimes difficult to inspect and thus of limited use. Error witnesses [8], stored
in an exchangeable standard format, overcome this problem. Witnesses can now
be inspected by users and tools without knowledge about the implementation of
the verifier that produced the witness, and the trust in the verification result can
be increased by independent witness validators. The witnesses can also be visu-
alized and used for debugging [6]. Further extending this concept, correctness
witnesses [7] store hints for establishing a correctness proof. Program invariants
(perhaps partial invariants) are stored in a machine-readable exchange format.

In a combination scenario, tools that usually expect invariants from the user
can be provided with invariants from correctness witnesses. This way, automatic
tools can compute as many invariants as possible automatically, the resulting
invariants are provided to the interactive tool as input, and the interactive tool
needs to ask only for the remaining invariants. While interactive tools already
compute some invariants automatically, the exchange with automatic verifiers
accelerates technology transfer and adoption of implementations with less effort.
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Precisions. One of the key challenges in automatic software verification is to
algorithmically compute an abstract model that is precise enough to be able to
prove that the specification holds and that is at the same time coarse enough to
make the verification process efficient. The level of abstraction of the abstract
model can be expressed as a precision [14]. The precision is often computed
using counterexample-guided abstraction refinement (CEGAR) [18]. An infeasi-
ble error path is an error path through the to-be-verified program that is possible
in the abstract model, but not in the concrete program, i.e., the precision of the
abstract model is too coarse. CEGAR uses infeasible error paths to derive use-
ful information for refining the abstract model, i.e., to increase the precision.
For many abstract domains that are used with dynamic abstraction refinement
(predicates, variable assignments, shape graphs, intervals), the precision can be
stored for later reuse [17], for example, for regression verification.

1 x = 0;
2 y = 0;
3 while (x < n) {
4 x++;
5 y++;
6 }
7 assert(x==y);

Fig. 1. Code snippet
that requires loop
invariant x = y

In case of an incomplete verification run, an auto-
matic verifier was perhaps identifying the correct vari-
ables that the invariant should talk about, but the
constructed precision was not correctly establishing
the relation of the variables. For example, consider
the code snippet in Fig. 1 (meant as a part of a very
large program) and assume that CEGAR with pred-
icate abstraction brought up an infeasible error path
that goes once through the body of the loop and then
violates the assertion (due to not yet tracking any vari-
ables). For a human it might be easy to see that the
invariant x = y is needed at the loop head in order
to prove the correctness of the program, while the value of the unknown con-
stant n is irrelevant for the safety property and can be abstracted away. But an
interpolation-based refinement procedure might unluckily come up with inter-
polants that contain predicates like x = 0, y = 0, x = 1, y = 1, which are
sufficient to eliminate the current infeasible error path, but in the next CEGAR
iteration, an infeasible error path that goes twice through the loop body will
be brought up, and so on. This (rather simple) automatic approach would fail
because it is not able to generalize the information from the path to the loop
invariant x = y.

So it would be an interesting approach to interactively tell the user (or a
different tool) that an invariant is needed that talks about variables x and y.
Then, either an interactive prover is fed with the invariants that were computed
by the automatic verifier together with the additional invariants from the user,
or the automatic verifier is restarted with the additional invariants. Together,
the different approaches might be able to completely solve the verification task.

Path Invariants. Sometimes, adding a certain information about the path to
the precision is sufficient to eliminate the infeasible error path from further
exploration, but not other error paths that are infeasible for a similar reason (cf.
explanation of the example of Fig. 1 above). The approach of path invariants [13]
constructs a path program (hopefully much smaller than the original program)
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that contains the infeasible error path, and in addition many similar error paths.
Now, such a path program for which an invariant is needed can be given to an
expensive method for computing invariants, and the invariants can then be fed
back to a CEGAR method to refine the precision and continue verifying the large
original program. The loop invariants for the path program will eliminate a whole
series of infeasible error paths, instead of only one single infeasible error path.

If an automatic verifier is not able to derive an invariant and would have to
abort the verification process, it could instead ask the user for an appropriate
invariant. Since the path program is small and focuses on the reason for which
the automatic verifier was not able to construct an invariant, a user can perhaps
use an interactive verifier to construct an invariant for the path program and
feed this back to the automatic verifier. The advantage over the precision-based
solution above is that the user (or interactive tool) is given the isolated, but full
context of a complete (path) program.

3 Conclusion

Currently, automatic techniques can verify large systems, but with rather simple
specifications, while interactive techniques can verify complicated specifications,
but only for systems of rather limited size. To further improve the verification
technology, we need solutions to combine the techniques from automatic and
interactive verification. We have outlined a few new ideas for combining very
different verification approaches using existing techniques that support partial
verification and the exchange of intermediate verification results. To further stim-
ulate the discussion and develop new combination ideas, it is necessary to imple-
ment the above-mentioned combination ideas and report experimental results.
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4. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intell. Syst. 29(1), 20–29 (2014)

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

6. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 502–509. Springer, Heidelberg (2016)



Partial Verification and Intermediate Results as a Solution 879

7. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: FSE 2016. ACM (2016)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: FSE 2015, pp. 721–733.
ACM (2015)

9. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook on Model
Checking. Springer (to appear, 2017)

10. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with Blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005)

11. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5–6), 505–525 (2007)

12. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: FSE 2012. ACM
(2012)

13. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI 2007, pp. 300–309. ACM (2007)
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35. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: Termina-
tion and memory safety of C programs (Competition Contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 417–419. Springer, Heidelberg
(2015)
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