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Abstract. Symbolic execution, a standard technique in program anal-
ysis, is a particularly successful and popular component in systems for
test-case generation. One of the open research problems is that the ap-
proach suffers from the path-explosion problem. We apply abstraction to
symbolic execution, and refine the abstract model using counterexample-
guided abstraction refinement (Cegar), a standard technique from model
checking. We also use refinement selection with existing and new heuris-
tics to influence the behavior and further improve the performance of our
refinement procedure. We implemented our new technique in the open-
source software-verification framework CPAchecker. Our experimental
results show that the implementation is highly competitive.

1 Introduction

Symbolic execution was introduced in 1976 for program testing and verifica-
tion [27]. By extending the interpreter of a programming language to handle
symbolic values without changing the program syntax, programs can be executed
in such interpreter using symbolic values as input. If a fork in the program’s
control flow occurs, e.g., due to a branching statement for which both branches
are possible, the execution splits into two separate executions, recording the
particular branching condition. Each such execution represents the execution of
the program for a set of concrete input values, which can be derived based on all
recorded branching conditions of an execution. This way, a lot fewer symbolic
executions are necessary for reaching a certain test coverage in comparison to
executions with concrete input values. The main problem of symbolic execution is
that the number of separate executions is exponential in the number of branching
statements in the program. Because every visit of a loop head can be seen as a
branching statement, the number of separate executions for a single program
may easily exceed feasible amounts. This is known as the path-explosion problem.
Figure 1 demonstrates this via a simple example program. It uses a function ?
that returns a non-deterministic, arbitrary value at every call. In a real-world
application this could be, for example, a system call or user input. The program
counts a program variable a from 0 to 100 in a non-deterministic number of loop
iterations (caused by the non-deterministic assumption in the loop body). After
that, it checks whether the non-deterministic, but unchanged value stored in b is
still smaller than its increment stored in c. This is always true. Although the
number of iterations through the loop has no influence on this property, an eager



1 a := 0 ;
2 b := ? ;
3 c := b + 1 ;
4 while a < 100 do
5 i f ? do
6 a++;
7 i f c <= b do
8 e r r o r ;

(a) Example program

a := 0, b := ? , c := b + 1

[a < 100 && ? ] [a < 100 && !( ? )]

a++ -

[!(c ≤ b)] [c ≤ b]

branching
happens
n times

n assumptions ⇒ 2n states

(b) Example analysis tree

Fig. 1: A simple program demonstrating the path-explosion problem

approach like symbolic execution will explore the complete state-space before
proving the property violation (symbolized by the dashed nodes) as infeasible. We
propose a lazy approach that, in this example, ignores the loop conditions if they
are not necessary to verify a given property or to satisfy a given coverage criterion.
Different approaches exist to mitigate the path-explosion problem, but none of
them tries to weaken the precision of the symbolic execution. In formal software
verification, abstraction is a widely-used technique to reduce the state-space,
with counterexample-guided abstraction refinement (Cegar) [18] being a popular
and successful approach for computing an abstract model.

We present SymEx+, a combination of symbolic execution with abstraction,
which automatically refines the abstract model using Cegar [18] in a lazy man-
ner [22]. The automatic precision adjustment [7] with lazy Cegar allows us to
use a precision as weak as possible (to manage the state-space) and as strong as
necessary (to prove a program safe or find a bug). Considering the example above,
an analysis using Cegar will not track the value of program variable a, because
it is not necessary for proving that the error is not reachable. This idea makes
it possible to prove the property after only one iteration of Cegar and without
unrolling the loop (and thus keeping the state-space significantly smaller).

Further, we are able to benefit from improvements to Cegar. As a first
improvement, we apply refinement selection [11] to our precision adjustment to
have control over the choice of precision from multiple candidate precisions, and
using this method, we can better control the overall symbolic-execution process.

Since symbolic execution is the composition of two abstract domains, namely
(1) tracking explicit and symbolic values of variables and (2) tracking constraints
over symbolic values, we apply Cegar to two abstract domains at once instead of
only to one abstract domain, as in previous work. We extend Cegar to refining
several abstract domains simultaneously by using a composite strongest-post
operator of the configurable program analysis (CPA) [6]. This special case of
using Cegar can be generalized to any composition of abstract domains, allowing
novel applications. Until now, Cegar was applied to only one single abstract
domain independently for one error path, even in composite setups [7].



Availability. We implemented symbolic execution with Cegar in the open
software-verification framework CPAchecker [8]. All experimental results are
available on our supplementary web page.3

Structure. After clarifying the preliminaries in Sect. 2, we formalize the applica-
tion of Cegar and interpolation to symbolic execution in Sect. 3. In Sect. 4, we
perform a thorough evaluation to show the applicability and high competitiveness
of our approach to reachability analysis in software verification. The results
show a major speed-up compared to traditional symbolic execution for most
verification tasks.

Related Work. There are four major ways to address the path-explosion problem
of symbolic execution: (1) search heuristics for achieving a high level of branch or
path coverage as fast as possible, (2) compositional execution, creating summaries
of functions or paths, and reuse them instead of recomputing already explored
states, (3) handling of unbounded loops, and (4) using interpolants for tracking
reasons why a certain path is infeasible. While many concepts are presented in
the context of testing, they can be applied to verification as well.

Search Heuristics. Burnim and Sen [14] propose three different heuristics for
reaching a target region or uncovered branches faster in state-space exploration,
in contrast to the standard depth-first search. Klee [15] is a tool for automatic
test-case generation that runs one symbolic execution for each branch separately.
The implementation uses two different heuristics to decide at a certain program
location which execution to continue first. While heuristics can assist in speeding
up the process of finding an error, they do not mitigate the problem of path-
explosion for proving that a program is error-free.

Compositional Execution. Compositional symbolic execution [20] tests functions in
isolation in order to create summaries of the functions for reuse. It is implemented
in Smart, an extension of the symbolic-execution-based testing tool Dart [21].
Demand-driven compositional symbolic execution extends compositional symbolic
execution by lazy and relevant exploration [1].

Handling of Unbounded Loops. Lazy Annotation [29] tackles potentially infinite
analyses that are caused by loops, by computing inductive invariants for loops.
A major downside of this approach is that it will only terminate if such invariants
can be found. Based on this insight, loop invariants can be computed induc-
tively, in order to speed up computation by using speculative loop invariants [25].
Strongest possible invariants are used to keep the analysis as eager as possible,
while keeping the analysis tree finite. If invariants are too coarse to prove the
infeasibility of an inconclusive counterexample, a refinement procedure similar to
Cegar (restricted to loop headers) is used. This is a compromise between per-
forming eager symbolic execution and lazy Cegar when encountering unbounded
loops. Compact symbolic execution [30] analyzes cyclic paths in the control-flow
automaton (CFA) and computes a so called template for each one, describing all
possible program states that may leave the cycle after any number of iterations.

3 http://www.sosy-lab.org/~dbeyer/cpa-symexec/
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This mitigates the path-explosion problem considerably, because no more loops
exist in the execution. However, due to quantifiers in formulas, the complexity
of formulas that have to be solved is increased significantly. The experimental
evaluation shows that despite this trade-off, the analysis performance is still
considerably improved compared to the previous approaches.

Using Cegar with symbolic execution, as proposed in this work, may also
avoid the problem of path-explosion in the presence of unbounded loops, be-
cause information altered by loops is not always necessary for reasoning about
programs. Since we implemented symbolic execution in the verification frame-
work CPAchecker, we are able to make use of the possibility to combine several
different analyses that are implemented in the framework. For handling un-
bounded loops, an analysis that is specialized on this could be used in parallel.

Interpolation. The technique of interpolation [19,28] is often used to identify
reasons for path infeasibility. If a path is found to be infeasible, an interpolant is
computed for each program location on the path and stored as “precision” of
the analysis. If such a program location is re-visited on a different path, it is
checked whether the interpolant is implied by the current abstract state. If it
is, execution on this path may halt, if it is known that the path is infeasible
based on the interpolant. This concept was used in the context of the constraint-
logic programming scheme [23,26]. There were experiments on using weakest
pre-conditions instead of strongest post-conditions for the computation of weaker
interpolants [25], on various search heuristics [24], and on adding the notion of
laziness to symbolic execution [17]. Instead of computing interpolants immediately
after a path is determined as infeasible, the symbolic execution might continue on
this path ignoring the infeasibility, in order to be able to learn better interpolants.

Lazy Annotation [29] uses interpolants to store conditions for nodes and edges
on the CFA under which no target region is reachable from this node or using
this edge. Instead of annotating all edges on an infeasible path with interpolants
in a separate procedure, interpolants are computed bottom-up during state-space
exploration.

A main difference that persists between symbolic execution with Cegar and
symbolic execution using interpolants is the amount of information stored. Cegar

is lazy, starting with a coarse precision and refining it, while traditional symbolic
execution is eager, tracking all information and computing interpolants for
subsuming new states only. Using Cegar, refinements to compute the needed level
of abstraction and iterative analysis replace unnecessary state-space exploration.
This pays off if only few program variables or constraints have to be tracked, or
only few possible error paths exist.



2 Background

Control-Flow Automaton, State, Path, Semantics, and Precision. For
presentation, all theoretical concepts are based on a simplified programming
language where all operations are either variable assignments or assumptions.4

All values in this language are integers of arbitrary range. We represent a program
by a control-flow automaton (CFA) [13]. A CFA A = (L, l0, G) is a directed
graph whose nodes L represent the program locations of the program, the initial
node l0 ∈ L represents the program entry, and the set G ⊆ L×Ops×L represents
all edges of the graph. An edge g ∈ G exists between two nodes if a program
statement exists that transfers control between the program locations represented
by the nodes. Each edge is labeled with the operation that transfers the control.
The set X is the set of all program variables occurring in the program. A concrete
state (l, c) consists of a program location l ∈ L and a concrete variable assignment
c : X → Z, which assigns to a program variable x ∈ X an integer value from Z

(the set of integer numbers). The set of all concrete states of a program is C.
A set r ⊆ C is called a region. The region of concrete states that violate a given
specification is called target region rt. For a partial function f : M ◦→N for two sets
M and N , we denote the definition range as def(f) = {x | ∃y : (x, y) ∈ f} and
the restriction to a new definition range M ′ as f|M ′ = f ∩ (M ′×N). An abstract
state s ∈ A is an element of an arbitrary type A that depends on the analysis.
Abstract state s represents the region JsK of concrete variable assignments. The
special value ⊥ with J⊥K = ∅ is part of every abstract-state type. An abstract
variable assignment v : X ◦→V is a partial function that assigns to a program
variable from X a value from the set V, which consists of arbitrary values. The
strongest-post operator SPop : A → A defines the semantics of an operation
op ∈ Ops, i.e., SPop(a) = a′ expresses that abstract state a′ represents the set of
concrete variable assignments that are reachable by executing op from concrete
variable assignments represented by abstract state a.

A path σ is a sequence 〈(op1, l1), . . . , (opn, ln)〉 of operations and their cor-
responding target program locations. A path σ is a program path if σ repre-
sents a syntactic walk through the CFA, that is, for every 1 ≤ i ≤ n, a CFA
edge g = (li−1, opi, li) exists and l0 is the initial program location. Every path
σ = 〈(op1, l1), . . . , (opn, ln)〉 defines a constraint sequence γσ = 〈op1, . . . , opn〉 [9].
The conjunction of two constraint sequences γ = 〈op1, . . . , opn〉 and γ′ =
〈op′1, . . . , op′n〉 is defined as their concatenation: γ∧γ′ = 〈op1, . . . , opn, op′1, . . . , op′n〉.

The semantics of a path σ = 〈(op1, l1), . . . , (opn, ln)〉 is defined as the succes-
sive application of the strongest-post operator to each operation of the correspond-
ing constraint sequence γσ, that is, SPγσ(a) = SPopn(. . . SPop1(a)). A program
path σ is feasible if SPγσ(∅) is not contradicting, that is, SPγσ(∅) 6= ⊥. Oth-
erwise, it is infeasible. An error path is a path σ = 〈(op1, l1), . . . , (opn, ln)〉 for
which SPγσ (∅) represents at least one concrete variable assignment cγσ for which
(ln, cγσ) is part of the target region rt. A program is safe if no feasible error
path exists. The precision π : L → 2Π assigns to each program location some

4 Our implementation in CPAchecker is based on the language C.



Algorithm 1 CEGAR(D, e0, π0), adapted from [7]

Input: a CPA D with dynamic precision adjustment, an initial abstract state e0 ∈ E
with precision π0 ∈ Π

Output: the verification result true or false
Variables: the sets reached and waitlist of elements of E ×Π, an error path σ
1: reached := {(e0, π0)}
2: waitlist := {(e0, π0)}
3: π := π0

4: while true do
5: (reached, waitlist) := CPA(D, reached, waitlist)
6: if waitlist = ∅ then
7: return true
8: else
9: σ := extractErrorPath(reached)

10: if isFeasible(σ) then
11: return false
12: else
13: π := π ∪ refine(σ)
14: reached := {(e0, π)}
15: waitlist := {(e0, π)}

information that defines the level of abstraction of the analysis. The information
type Π depends on the abstract domain of the analysis. For an explicit-value
domain for example, the set Π is a set X of program variables, and the precision
defines the program variables that should be tracked at the respective location.

Counterexample-guided Abstraction Refinement (CEGAR). Cegar [18]
is a technique to construct an abstract model that contains as few information as
possible while retaining enough information to prove or disprove the correctness
of a program. The technique starts the analysis with a coarse abstraction and
refines it based on infeasible error paths. An error path is a witness of a property
violation. If no error path is found by the analysis, it terminates and reports
that no property violation exists. If an error path is found, it is checked whether
the path is feasible, e.g., by repeating the analysis with full precision π(l) = Π
for all l ∈ L. If the path is feasible, the analysis terminates and reports the
found property violation. If the error path is infeasible, then it was due to a too
coarse abstract model (too low precision). To eliminate this infeasible error path
from future state-space explorations, the precision is increased (which refines
the abstract model) using information extracted from the infeasible error path.
Afterwards, the analysis starts again, using the new precision. Algorithm 1 uses
a configurable program analysis (CPA) with dynamic precision adjustment D [7]
and an initial state e0 with initial precision π0 (usually π0(l) = ∅ for all l ∈ L)
to perform the state-space exploration.

The CPA algorithm operates on a set of reached abstract states (reached)
and a subset of this set that contains all reached abstract states that have not
been handled yet (waitlist). If waitlist is empty, the CPA algorithm has



handled all reachable states without encountering any target state. If this is
the case, no property violation was found and the algorithm can return true.
Otherwise, an error path is extracted from the reached set. If the error path is
reported as feasible, a property violation exists and the algorithm returns false.
If the error path is infeasible, the current precision is too coarse. The precision is
refined based on the infeasible error path by using function refine : Σ → 2Π

with Σ being the type of all infeasible error paths. The function assigns to an
infeasible error path a precision that is sufficient to prove the infeasibility of the
error path and eliminate this infeasible path from future explorations. After this,
the reached set and waitlist are reset to their initial values and the algorithm
continues the analysis with the refined precision. It is important to note that the
return type of refine has to be equal to the precision type 2Π used in D. Because
of this, analyses are in general not exchangeable without changing the refinement
component as well. Since the problem of finding the coarsest possible refinement
for a given abstract model based on an infeasible error path is NP-hard [18],
heuristics have to be used to find suitable refinements [11].

A boolean formula Γ is a Craig interpolant [19] for two boolean formulas γ−

(called prefix) and γ+ (called suffix), if the following three conditions are fulfilled:

a) The prefix implies Γ , that is, γ− ⇒ Γ .
b) Γ contradicts the suffix, that is, Γ ∧ γ+ is contradicting.
c) Γ only contains variables occurring in both prefix γ− and suffix γ+.

It is proven that such an interpolant always exists in the domain of abstract
variable assignments [9] as well as in the theory of linear arithmetics [19]. A Craig
interpolant describes information that is sufficient for proving a remaining path,
i.e., the suffix, infeasible (contradicting). This information can be used to derive
a new precision for abstraction refinement.

Refinement Selection. Usually, several different Craig interpolants exist for
a single infeasible path. Each of them may represent a different reason for
infeasibility. When using interpolants for abstraction refinement in Cegar, the
choice of interpolant for an infeasible path, and as such the tracked reason,
may greatly influence the further course of the analysis. Traditional abstraction
refinement does not account for the differences between these interpolants and
just takes arbitrarily the interpolants that the interpolation engine returns
(based on the heuristics inside the interpolation engine). In contrast, refinement
selection [11] tries to select the interpolant that promises the best verification
progress for a given infeasible path. It looks at various possible interpolants, e.g.,
by using sliced path prefixes [12], and chooses the most promising one based on
a selected heuristic. Some heuristics proposed in other work [11] include:

– Selection of the shortest prefix (called short).
– Selection based on a score computed from the domain type [2] of program

variables, with easy/small types like boolean and integer being preferred
(called domain good).

– Selection of the interpolant with the most narrow width (called width narrow).
The width of an interpolant is defined by the number of locations on an error



path for which the interpolant is not false and not true, i.e., the number of
locations at which additional information must be tracked.

Several heuristics may be applied sequentially, in case one heuristic alone is not
able to choose a single best interpolant.

3 Symbolic Execution using CEGAR and Interpolation

Abstract Domain and Abstract Semantics. Our new approach SymEx+ is
the combination of traditional symbolic execution with Cegar. An abstract state
(v, γ) in symbolic execution consists of an abstract variable assignment v and a

sequence γ = 〈[ρ1], . . . , [ρn]〉 ∈ Ŝ of constraints [ρi] over symbolic values from S.
The abstract variable assignment v : X ◦→V used in symbolic execution assigns
to a program variable from X either a concrete integer value from Z, a symbolic
value from S, or the special value ⊥, which represents a contradicting assignment,
i.e., V = Z ∪ S ∪ {⊥}. An abstract state (v, γ) represents the set J(v, γ)K of
concrete variable assignments, which is formally defined as follows: J⊥K = ∅ and

J(v, γ)K = {c | ∀x ∈ def(v) : v(x) ∈ Z =⇒ v(x) = c(x)

∧ ∃s :
∧

[ρ]∈γ

ρ ∧ ∀x ∈ def(v) : v(x) ∈ S =⇒ v(x) = s(v(x)) = c(x) }

where s : S → Z maps symbolic to concrete values. The strongest-post opera-
tor ŜPop : X × Ŝ→ X × Ŝ is defined as follows:

1. For an assignment operation x := exp we have

ŜPx:=exp((v, γ)) =
(
v|X\{x} ∪ {(x, y)}, γ

)
with

y =

{
d if d ∈ Z ∪ S is the evaluation of arithmetic expression exp/v

e if exp/v can not be evaluated and e is a new symbolic value e ∈ S

and exp/v is the interpretation of expression exp for the abstract variable
assignment v. If exp contains a program variable of X that is not in the
definition range def(v), then exp/v can not be evaluated. If exp/v contains a
symbolic value of S, the evaluation of exp/v equals exp/v and exp/v ∈ S.

2. For an assume operation [p] we have

ŜP[p]((v, γ)) =

{
⊥ if p/(v,γ) is unsatisfiable

(v ∪ vp, γ ∧ 〈[p/(v ∪ vp)]〉) otherwise

with new abstract variable assignments

vp = {(x, e) ∈ (X \ def(v) × S) | x occurs in p and

e is a new symbolic value e ∈ S}



that assign a new symbolic value to every unknown program variable occurring
in p, the interpretation p/(v ∪ vp) of p for the abstract variable assignment
v ∪ vp and

p/(v,γ) = p ∧
∧

x∈def(v)

x = v(x) ∧
∧

[ρ]∈γ

ρ .

If p/(v,γ) is satisfiable, an assignment to a new symbolic value is added
to the abstract variable assignment for every unknown program variable
occurring in p and the assume operation [p/(v ∪ vp)] is appended to the existing
constraints sequence.

Using these operations, the conditions ρ of the assume operations [ρ] ∈ γ contain
symbolic values from S, but no program variables from X.

Precision and Interpolation. For our symbolic-execution domain, the set Π
(for defining a precision) is a composition of the set X of program variables and

the set Ŝ of constraint sequences, i.e., Π = X × Ŝ. The precision defines the
program variables and the constraints that should be tracked at each location.

We base our refinement procedure for the precision of symbolic execution on
the refinement procedure for the precision of abstract variable assignments [9],
using Craig interpolants to derive the precision. Algorithm 2 shows our computa-
tion of interpolants for a prefix γ− and a suffix γ+. Since we want to create an
interpolant Γ that contains all information necessary for proving that ŜPΓ∧γ+ is
contradicting, we have to consider not only abstract variable assignments but
also constraints. First, the algorithm computes the strongest-post condition (v, γ)
for the prefix γ− based on the initial abstract state (∅,∅). We then eliminate
all constraints from γ that are not necessary for proving that γ+ is contradicting.
Next, we remove every mapping of a program variable to a value from v that is
not required. This way we try to get the weakest interpolant possible. We then
build the interpolant from all constraints left in γ and all assignments left in v.

Refinement of Abstract Model. Algorithm 3 defines the complete refinement
procedure used in the Cegar algorithm. It starts with an initial, empty interpolant
Γ and empty precision π with π(l) = (∅,∅) for all l ∈ L. For each location (li, opi)
on the infeasible error path, the suffix γ+ for this location is set and the interpolant
is computed from the previous interpolant in conjunction with the current
operation (i.e., Γ ∧ 〈opi〉) and the suffix (line 5). The full prefix 〈op1, . . . , opi〉
must not be used for interpolation, because multiple reasons for the infeasibility
of a path may exist; if the full prefix is available for interpolation, then different
reasons for infeasibility might be used for consecutive interpolants on a path,
resulting in a precision that is not able to prove the path infeasible in further
analysis iterations. Because of this, inductive interpolants that are derived from
the same reason for the infeasibility of the given infeasible error path must be
computed by reusing the previous interpolant as part of the prefix.

In the next step, a precision for the current program location is extracted from
the interpolant using extractPrecision. The extracted precision for symbolic
execution is an object of type X× Ŝ; such a pair consists of the set of all program



Algorithm 2 interpolate(γ−, γ+)

Input: two constraint sequences γ− and γ+, with γ− ∧ γ+ contradicting
Output: a constraint sequence Γ , which is an interpolant for γ− and γ+

Variables: an abstract variable assignment v and a constraints sequence γ
1: (v, γ) := ŜPγ−((∅,∅))
2: for each [p] ∈ γ do
3: if ŜPγ+((v, γ \ [p])) is contradicting then
4: γ := γ \ [p]

5: for each x ∈ def(v) do
6: if ŜPγ+((v|def(v)\{x}, γ)) is contradicting then
7: v := v|def(v)\{x}

8: Γ := γ
9: for each x ∈ def(v) do

10: Γ := Γ ∧ 〈x := v(x)〉
11: return Γ

Algorithm 3 refine(σ)

Input: infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: precision π : L→ X × Ŝ
Variables: interpolant constraint sequence Γ
1: Γ := 〈〉
2: π(l) := (∅,∅) for all program locations l
3: for i := 1 to n− 1 do
4: γ+ := 〈opi+1, . . . , opn〉
5: Γ := interpolate(Γ ∧ 〈opi〉, γ+)
6: π(li) := extractPrecision(Γ )

7: return π

variables that occur in an assignment operation in the interpolant and all assume
operations that occur in the interpolant, formally:

extractPrecision(Γ ) = (def(v), γ) ,

where ŜPΓ (∅,∅) = (v, γ).

Refinement Selection. We apply refinement selection based on sliced path
prefixes analogously to the application for the domain of abstract variable as-
signments [11,12]. In addition to the existing heuristics, we define heuristics that
select an interpolant based on the amount of assumptions in it. We call the
heuristic selecting the interpolant with most assumptions assumptions – most.

Refinement for Compositions of Abstract Domains. In the same way as
demonstrated above, a composite precision of any composition of analyses can
be refined and used with Cegar. While Cegar has been used with a composition
of analyses before (c.f. [9]), the precision of only one analysis was refined in
each step, first refining a less expensive analysis’ precision, and only if not
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Fig. 2: An example for which the lazy analysis of SymEx+ performs worse than the
traditional eager analysis of SymEx. Highlighted nodes represent error locations.
Every dashed rectangle represents an error location that is infeasible when using
full precision.

avoidable refining a more expensive analysis’ precision. Due to the nature of the
previous method, only analyses without an interdependency can be refined and
no information exchanged between analysis is considered. In contrast, using our
new approach, any composition of analyses of arbitrary number and possibly
information exchange between them can be used to extract a composite precision.

Discussion. Using Cegar, we change the symbolic execution from being eager to
being lazy, while keeping its potential expressiveness. For an arbitrary verification
task, it is difficult to say upfront whether the lazy or the eager approach is better
suited. While a lazy approach may keep the state-space potentially smaller if
only little information is necessary (many operations can be abstracted away),
its refinement iterations can be time-consuming if the abstraction is not effective
enough. On the other hand, an eager approach suffers from the path-explosion
problem, but may stop the analysis at unreachable branches and avoid unnecessary
computation. Figure 2 shows the analysis of such a program for both lazy symbolic
execution with Cegar (SymEx+) and traditional eager symbolic execution (called
SymEx). The highlighted nodes are error locations. The program first initializes
the program variables a to z with value 2. Afterwards, it checks whether program
variables a to y are initialized with a value different from 1 and whether z is
initialized with a value different from 2. If one of these conditions is wrong, an



Table 1: Comparison of different refinement-selection heuristics in SymEx+

Verdict unsolved solved correct correct incorrect incorrect
true false true false

No preference 4341
4444
3906
4028

2336
2233
2771
2491

1737
1702
2042
1892

443
531
567
599

0
0
0
0

156
171
162
158

Domain good – width narrow
Domain good – short
Assumptions most – short

error location is reached. Since all program variables are initialized with value 2 at
the beginning of the program, only the last error location can be reached. Despite
this, the Cegar algorithm visits one error location after the other, always refining
the precision to track only one additional variable and then restarting from
the beginning of the program with the adjusted precision. This lazy approach
performs many computations that are unnecessary. The eager approach does
not visit the infeasible target locations and reaches the only feasible property
violation at the end in one single execution path.

4 Evaluation

Experimental Setup. We perform our experimental evaluation on a cluster of
machines with Intel Xeon E5-2650 v2 CPUs at 2.60 GHz and 135 GB of memory.
Each verification task can use 2 CPU cores and 15 GB of memory. We use a time
limit of 900 s of CPU time. After 1000 s, a task is terminated if it has not shut down
yet. To get a statistically significant result, we run our implementation against
the complete set of verification tasks 5 of the 5th International Competition on
Software Verification (SV-COMP’16) [5]. To guarantee a reliable and accurate
evaluation, we use BenchExec [10] to run our benchmarks. Our implementation
is available in CPAchecker under tag cpachecker-1.6-isola16. 6

Refinement Selection. We compare different heuristics for refinement selection
to find the one suited best for our approach. Table 1 shows three selected heuristics,
domain good combined with width narrow, domain good combined with short,
and assumptions most combined with short. The best heuristic for proving tasks
safe is domain good – short, raising the number of tasks that can be proven safe
by 305 (which equals an increase by almost 18 %). The best heuristic for finding
errors is assumptions most – short, which allows us to raise the number of tasks
correctly found erroneous by 156 (which equals an increase by 35 %). Using one
of the two heuristics performs significantly better for both proving tasks safe and
finding errors, compared to using no refinement selection (no preference). The
combination domain good – width narrow performs worse for proving tasks safe
and better for finding errors than the use of no refinement selection.

5 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp16
6 https://svn.sosy-lab.org/software/cpachecker/tags/

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp16
https://svn.sosy-lab.org/software/cpachecker/tags/


Table 2: Comparison of classical symbolic execution (SymEx) to SymEx+ (both
implemented in CPAchecker) and Symbiotic (an external tool)

Verdict unsolved solved correct correct incorrect incorrect
true false true false

SymEx 5756
3906
5388

921
2771
1289

171
2042

769

634
567
503

1
0
2

115
162
15

SymEx+

Symbiotic
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Fig. 3: Runtime performance of SymEx+ and SymEx in comparison

This is especially notable since for two other analyses, predicate analysis and
explicit value analysis, the combination domain good – width narrow yields the
best results compared to other heuristics [11]. This shows that the best choice of
a heuristic not only depends on the task, but also on the analysis that is used.

Comparison to Other Tools. We compare our implementation to the im-
plementation of symbolic execution in CPAchecker that does not use Cegar

(SymEx) and to the mature symbolic-execution tool Symbiotic 3 [16] in ver-
sion 3.0.1 (Symbiotic participated in SV-COMP in 2013, 2014 and 2016 [3,4,5]).
For this evaluation, we use SymEx+ with refinement selection, using the heuris-
tics domain good – short. Our benchmarks show the competitiveness of SymEx+

(Table 2). Figure 3a underlines the already mentioned contrast between eager
SymEx and lazy SymEx+. It shows the CPU time required for both approaches to
find a (possibly non-existent) error. For a significant amount of tasks in our task
set, only one of SymEx and SymEx+ is able to find an error within 900 seconds.
These cases are represented by the points at the right border (SymEx+ reaches
the time limit) and upper border (SymEx reaches the time limit) of the plot. For
proving the safety of a program, SymEx+ performs significantly better, showing
bad performance for only few programs, due to its laziness (Fig. 3b). The high
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Fig. 4: Number of refinements performed by SymEx+ for tasks that it can solve
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Table 3: Difference between tools for proving tasks safe. Each value describes the
number of tasks that the tool on the left can correctly prove safe and the tool on
the top can not.

¬ SymEx ¬ SymEx+ ¬ Symbiotic correct
true

SymEx -
1954
660

83
-

171

62
1444

-

of 171
2042
769

SymEx+ of
Symbiotic of

precision of eager symbolic execution is often unnecessary to correctly decide
whether a program is safe or unsafe. This is underlined by the number of refine-
ments that are necessary for SymEx+ to analyze a task. For most tasks for which
SymEx+ is able to compute a result for, and for which SymEx is not able to, a
small number of refinements are necessary (Fig. 4). For an unsafe program, this
implies that no or only few infeasible error paths have to be explored before a
feasible error path is found (which eager analysis could not explore in the time
limit at all). For a safe program, this implies that only few information must be
tracked to prove all error paths infeasible.

Tables 3 and 4 show the number of tasks that one tool can solve while another
can not. As already shown, the higher performance of SymEx+ for many tasks
in comparison to SymEx results in more tasks that can be successfully solved
within the time limit. But due to the existing limitations of our analysis (e.g.,
pointer arithmetic), some of these are bound to be wrong, resulting in more tasks



Table 4: Difference between tools for finding errors in tasks. Each value describes
the number of tasks that the tool on the left correctly finds unsafe and the tool
on the top does not.

¬ SymEx ¬ SymEx+ ¬ Symbiotic correct
false

SymEx -
146
187

213
-

238

318
302

-

of 634
567
503

SymEx+ of
Symbiotic of
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Fig. 5: Comparison of SymEx+ and Symbiotic

that are incorrectly declared as false. Compared to Symbiotic, the difference in
solved tasks is even higher than compared to SymEx, which can be accounted to
its different optimizations and its implementation outside of CPAchecker. It is
obvious that the strengths of both analyses are different, as they follow a lazy and
an eager approach. Figure 5a illustrates this. It displays the CPU time that each
analysis takes for every task of our task set. It can be seen that both Symbiotic

and SymEx+ have significantly different behavior for the same tasks. Because of
its laziness, SymEx+ is still able to correctly prove a significant amount of more
tasks safe and declare a few more tasks unsafe in the given environment. For
most of the safe tasks, no constraints on symbolic values have to be tracked at
all (Fig. 5b). Thanks to Cegar, SymEx+ ignores these unnecessary constraints
and keeps the state-space small.



5 Conclusion

By transferring the lazy approach of Cegar to the domain of symbolic execu-
tion, we were able to mitigate the path-explosion problem of symbolic execution
considerably. We implemented our proposed concepts in the open-source verifica-
tion framework CPAchecker and created a generic refinement procedure based
on Craig interpolants which allows compositional refinement of precisions that
is independent from the analyses’ domain. In addition, we applied refinement
selection based on sliced path prefixes and implemented new heuristics for it.
Our evaluation shows the significant improvement that can be gained by using
Cegar with refinement selection and the impact that different heuristics can
have on the analysis. By comparing our implementation with an implementation
of the classical approach within the same tool, and with the external symbolic
execution tool Symbiotic, we were able to illustrate the differences between eager
and lazy approaches. Our experimental study shows the competitiveness of our
proposed concepts on a representative task set. Given the many existing orthogo-
nal approaches to mitigate the path-explosion problem of symbolic execution,
future work could focus on combining SymEx+ with suitable other approaches
and evaluating their impact on our approach.
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precision adjustment. In Proc. ASE, pages 29–38. IEEE, 2008.

8. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.
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