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Verifying multi-threaded programs is becoming more and more important, because of the strong trend
to increase the number of processing units per CPU socket. We introduce a new configurable pro-
gram analysis for verifying multi-threaded programs with a bounded number of threads. We present
a simple and yet efficient implementation as component of the existing program-verification frame-
work CPAcHECKER. While CPACHECKER is already competitive on a large benchmark set of sequential
verification tasks, our extension enhances the overall applicability of the framework. Our implemen-
tation of handling multiple threads is orthogonal to the abstract domain of the data-flow analysis,
and thus, can be combined with several existing analyses in CPACHECKER, like value analysis, interval
analysis, and BDD analysis. The new analysis is modular and can be used, for example, to verify
reachability properties as well as to detect deadlocks in the program. This paper includes an evalu-
ation of the benefit of some optimization steps (e.g., changing the iteration order of the reachability
algorithm or applying partial-order reduction) as well as the comparison with other state-of-the-art
tools for verifying multi-threaded programs.

1 Introduction

Program verification has successfully been applied to programs to find errors in applications. There exist
many approaches to verify single-threaded programs (cf. SV-COMP for an overview [1]), and several of
them are already implemented in the open-source program-verification framework CPAcHECKER [4, [10]].
For multi-threaded programs a new dimension of complexity has to be taken into account: the verification
tool has to efficiently analyze all possible thread interleavings. CPAcHECKER did not support the analysis
of multi-threaded programs for a long time. Our work focuses on a new, simple configurable program
analysis that reuses several existing components of the framework. The approach is sound and can be
combined with several steps of optimization to achieve an efficient analysis for multi-threaded programs.

Our analysis is based on a standard state-space exploration using a given control-flow automaton
that represents the program. For a program state with several active threads, we compute the succeeding
program state for each of those threads, i.e. basically we compute every possible interleaving of the
threads. The approach is orthogonal to other data-flow based analyses in CPACHECKER, thus it can be
combined with algorithms like CEGAR [7] and analyze an potentially infinite state space.

1.0.1 Related Work

A prototypical version of our analysis was already applied for the category of concurrent programs
during the SV-COMP’16 [[1]. Due to some unsupported features and missing parts of the optimization
that where implemented later, the score in this category was low at that time. The experimental results
that we report show that the current version of the implementation performs much better.

Just like several other tools [[15} 8, 9], we explore possible interleavings of different thread executions
and our optimization methods include partial order reduction [12]. In contrast to verification techniques
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for multi-threaded programs like constraint-based representation [[13]] that limits the domain to Horn
clauses and predicate abstraction or sequentialization [11} [16] that transforms the program on source-
code level before starting the analysis, our approach computes the interleaving of threads on-the-fly and
is independent from the applied analysis. This makes it possible to integrate our approach easily with
data-flow analyses of different abstract domains, such as value analysis [S] and BDD analysis [6].

2 Analysis of Multi-Threaded Programs in CPACHECKER

The following section provides an overview of some basic concepts and definitions used for our approach.
We describe the program representation and the details of our configurable program analysis.

2.1 Program Representation

A program is represented by a control-flow automaton (CFA) A = (L, 1y, G), which consists of a set L of
program locations (modeling the program counter), a set G C L X Ops x L (modeling the control flow
with assignment and assumption operations from Ops), and an initial program location [y (entry point of
the main function).

Let V be the set of variables in the program. The concrete data state for a program location assigns a
value to each variable from the set V; the set C contains all concrete data states. For every edge g € G, the
transition relation is defined by Sccex {g} x C. The union of all edges defines the complete transfer
relation ==, 2, If there exists a chain of concrete data states (co,c1,...,cn) With Vc; : there exists a

program location /; for which ¢; is a concrete datastateand Vi: 1 <i<n=Vi:1 <i<n=-3g:c; LN
ciN(li—1,8,1;) € G, then the state ¢, is reachable from ¢ for l.

Our analysis is a reachability analysis and unrolls the program lazily [14] into an abstract reachability
graph (ARG) [2]]. The ARG is a directed acyclic graph that consists of abstract states (representing the
abstract program state, e.g., including program location and variable assignments) and edges modeling
the transfer relation that leads from one abstract state to the next one.

2.2 ThreadingCPA

CPACHECKER is based on the concept of configurable program analysis (CPA) [3]. Thus, different as-
pects of a program are analyzed by different components (denoted as CPAs). A default analysis in
CPAcHECKER [4] uses the LocationCPA to track the program location (program counter) and the Call-
stackCPA to track call stacks (function calls and their corresponding return location in the CFA). Thus,
for the analysis of sequential programs, each abstract state that is reached during an analysis consists of
exactly one program location and one call stack.

For the analysis of multi-threaded programs we have developed a new ThreadingCPA that replaces
both the LocationCPA and the CallstackCPA and explores the state space of a multi-threaded program
on-the-fly. The benefit of the ThreadingCPA is that it is able to track several program locations (one per
thread) together with their call stacks (also one per thread). For simplicity of the definition we ignore the
handling of call stacks in the next section. The reader can simply assume that for each program location
there is also a call stack. The ThreadingCPA has to handle multiple call stacks (one per thread), whereas
the CallstackCPA only handles a single call stack.

The definition of the ThreadingCPA T = (Dr, ~>1,merger, stopy) follows the structure of a config-
urable program analysis:
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Domain: The abstract domain D = (C,.7,[[-]]) is a triple of the set C of concrete states, the flat
semi-lattice 7 = (T,C,U,T), and the concretization function [[-]] : 7 — 2€. Let I be the set of all
possible thread identifiers, e.g., a set of names used to identify threads in the program. The type of
abstract states T : I —e £ consists of all assignments of thread identifiers ¢ € I to program locations
le £ =LU{T.}. The special program location T represents an unknown program location. The
top element T € T, with T(¢r) = T for all 7 € I, is the abstract state that holds no specific program
location for any thread identifier. Each abstract threading state s € T is represented by the assignments
{t; — 1"t — 1" ...} of thread identifiers to their current program location. The partial order C induces
a semi-lattice for the abstract states. The join operator L yields the least upper bound of given abstract
states. The top element T of the semi-lattice is defined as T = UT.
Merge: The ThreadingCPA uses the merge operator merge,,,, which does not combine different ele-
ments.
Stop: The ThreadingCPA uses the termination operator sfop,,, which defines coverage only in case of
equal abstract states.
Transfer: The transfer relation ~» determines the syntactic successor for the current state and is based
on the transfer relation of the LocationCPA. The implementation is simple: The transfer relation returns
all possible successors for all threads that are active in an abstract state, i.e., it applies the transfer relation
of the LocationCPA for each active thread. Additionally, thread-management-related operations are
included, such that creating or joining threads (when calling pthread_create or pthread_join) is defined.
It is in theory sufficient to only handle these two function calls, because other thread-related function calls
do not change the number of threads or the progress of the state-space exploration. The transfer relation
~~7 has the transfer s < s for two abstract states s = =" —12 . ty— 1"} and s = {t; —
"ty = 1" .ty — 1"} and g = (I, 0p, ") if

1. the operation op matches the pthread_create statement for f; that is in program location [/ and

creates a new thread f,,,, starting from a CFA node lé"“w eL:

s' = s\ {t: = 1"} U {tnew — g YU {t; > 1"}
i.e., an existing thread #; matches the program location /" and moves along the edge g towards

program location [/, and the initial program location 16"”" of the new thread t,,,, is added to the
current abstract state.

2. the operation op matches the prhread_join statement for f; that is in program location [’ and waits
for a thread f,,;; to exit, z,;; exits at program location lg”", and 7, — lg"” € s:

s = s\ {ti = I} {toxie — L& U{t;— 1"}
i.e., an existing thread #; matches the program location /" and moves along the edge g towards

program location /", and the program location lgx"’ of the thread ¢,,;; is removed from the current
abstract state, if the thread ¢.,;; has already been at this program location.

3. otherwise, if the operation op is not related to thread management:

s = S\ {l,' — lti} @] {ti — l/ti}
i.e., thread #; matches the program location /i and moves along the edge towards .

For a basic analysis for multi-threaded programs the handling of the operations pthread_create and
pthread_join is sufficient. Additional thread management like mutex locks (details in Section [4.3)) can
be applied on top of this transfer relation. We assume C statements as atomic statements, i.e., interleaving
of threads is considered to happen on statement level (matching the encoding of the program as CFA).
This might be insufficient for real-world programs, but is good enough for several examples and in theory
the CFA could be inflated with read and write operations for memory registers.
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pthread_t id1l,
int i=1, j=1;

id2;

1
2

3

4 wvoid main () {

5 pthread_create (&idl, 0, t1,
6

7

8

9

0, t2,

0);

pthread_create (&id2, 0);

pthread_join(idl, 0);
pthread_join(id2, 0);

11 assert (j <= 8);
12}

14 wvoid tl () {
15 i+=3;

16 i+=7;
17}

19 wvoid t2 () {
20 J+=1i;

21 Jj+=1i;
2}

Figure 1: Program with concurrent threads

2.3 Example

The following example applies our new Thread-
ingCPA to a given program. In contrast to the
simplified illustration below, a real-world analysis
would combine the ThreadingCPA with another
analysis, e.g., to track assignments, such as value
analysis or BDD analysis.

The example program (cf. Fig. [I] for the
source code) creates two additional threads that
change the value of global variables. After-
wards, the main method checks the assignment of
a global variable. In this example, the property
holds. The program’s functions are represented as
CFAs in Figure [2| The ThreadingCPA produces
the ARG in Fig. [3] where each abstract state is la-
beled with the indices of the program locations of
all active threads.

The analysis starts at entry location [y of
the main function and analyzes all possible
interleavings.  After reaching the statement
pthread_create, an additional program location is
tracked for the newly created thread, e.g., when
reaching program location /3 in the main function,
the abstract state is enriched with the initial pro-
gram location /4 of the newly created thread.
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pthread_t id1, id2;
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pthread_create(&idl, 0, t1, 0);
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pthread_create(&id2, 0, t2, 0);

®

pthread_join(&id1, 0);

@

pthread_join(&id2, 0);

©

assert(j<=8);

tl 2

%+=i;

j+=i;

)

i+=j;

li+=j;

Figure 2: CFA for the functions of the program
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Figure 3: ARG of the interleaved threads of the
program
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As the ThreadingCPA merges its abstract states when reaching the same program locations via differ-
ent execution paths, the diamond-like structure in the ARG is the result of interleaved thread-execution
of two (or more) threads. When exploring the statement pthread_join, the program-exit location of the
exiting thread is removed from the abstract state. This is visible in Fig. 3] for each abstract state with an
outgoing edge leading from program location /4 towards program location /5, because the program-exit
location /¢ of the joining thread #; (identified by id 1) is removed from the abstract state.

3 Optimization

The simple definition of the ThreadingCPA allows (and needs) a wide range of optimization to gain
competitive efficiency. In the following, we define some approaches and show how fluently they match
existing concepts in CPACHECKER.

3.1 Partitioning of Reached Abstract States

The reachability algorithm [3]] has two important operators merge and stop that are defined as operations
on sets of reached abstract states. These operations can merge abstract states and combine their informa-
tion into a new abstract state or detect coverage, i.e., an abstract state is implied by another one and thus
the exploration can stop at that point. In each iteration of the reachability algorithm, these operators are
by default applied to all combinations of new explored abstract states and previously reached abstract
states. However, applying such an operator to all previously reached abstract states is inefficient, because
most of the abstract states are irrelevant for a concrete application of these operators. For example, com-
paring abstract states from different program locations is useless, because there will not be any important
relation between them.

Partitioning the set of abstract states makes it possible to perform both operations much more ef-
ficiently, as only a (small) subset of the previously reached abstract states has to be considered in the
computation. This basic optimization is also applied for verifying single-threaded programs. Each par-
tition is identified by a constant key that is based on the program location of the abstract state, as only
states from equal program locations are considered for merging or coverage. We extended the existing
partitioning of abstract states, such that it uses the tuple of program locations for all threads in an abstract
state. This new partitioning can also be combined with partitionings provided by other CPAs.

3.2 Waitlist Order

For finding property violations it is often sufficient to only analyze interleavings with a low number of
thread interleavings. As the exploration algorithm in CPACHECKER analyzes the reachable state space state
by state, there exists the possibility to prioritize abstract states during the exploration: The abstract states
waiting to be analyzed are simply sorted by some criteria. This optimization is a heuristic depending on
the internal structure of the analyzed program and the executed analysis. For a bug-free program this
heuristic does not bring any benefit. however an existing error path in a faulty program might be found
sooner.

The most-often used orderings of abstract states cause the state-space exploration to perform either
depth-first search (DFS) or breadth-first search (BFS), i.e., the list of waiting abstract states is ordered in
the same manner as abstract states are explored (BFS) or reverse (DFS). For multi-threaded programs, we
added a new ordering of this list based on the number of active threads, such that states with fewer active
threads are considered first. The new ordering can also be combined with existing orderings, i.e., the
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first criteria for ordering is based on the number of active threads, the second criteria uses the exploration
order.

3.3 Partial-Order Reduction

With multi-threaded programs, the most common form of optimization is partial-order reduc-
tion (POR) [12| 19} [18]. POR aims to avoid unnecessary interleavings of threads and improves the
performance of the analysis by reducing the explored state space. However, its application depends on
the property to be verified, because all necessary program paths must remain reachable.

In our case (reachability analysis), we started with a simple separation of program operations (mod-
eled as CFA edges) into thread-local and global operations. We conservatively apply a static analysis
for all program variables and memory accesses, on whether they are declared and used in global scope
or only locally in the context of a thread. Because CPACHECKER uses several dummy operations (e.g., for
temporary variables or function returns), a majority of CFA edges is marked as thread-local.

If a statement is thread-local for a thread, we do not simulate any interleaving after analyzing this
operation, but the analysis executes the current thread further, until a global operation (in the same
thread) is reached. This behavior is sound, because no interaction between threads is possible, due to the
definition of thread-local operations. Thus, we only need to synchronize all available threads after the
next global transition.

Our approach can analyze program with loops as well, because we execute both paths, i.e., the loop
and the concurrent thread, and none of them disables the other path. Thus, any possible interaction
between CFA edges of the loop and other threads is considered. Our approach handles loops implicitly,
thus we do not have to actively check for loops, but simply apply the reachability algorithm combined
with the described POR technique.

4 Extensions

During our work on the analysis of multi-threaded programs, we explored some assumptions in
CPACHECKER that need to be considered when integrating such a basic analysis as the ThreadingCPA.
We also noticed several features that can also be specified or implemented for the analysis of multi-
threaded programs. In the following, we describe the extensions that we have developed in order to use
the full potential of the framework.

4.1 Cloning for CFAs

CPACHECKER has a modular structure, such that many components can be combined without knowing
(and depending on) details about each other. As the analysis of multi-threaded programs should fit into
this design, we decided not to modify each analysis that should be combined with our new approach, but
use an approach that allows us to re-use as much existing code as possible.

The basic problem with the existing components of CPACHECKER is that many of them rely on knowing
only their current function scope, and solely identify a variable by its name combined with the name of
the function scope it was declared in. For example, many analyses (including value analysis and BDD
analysis) use the identifier f::x for a variable x declared in function f. This identifier is used in the
internal data structures whenever the variable is used during the program analysis. In a multi-threaded
program, the same function f might be called in different threads, such that f::x is not unique for one
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variable any more at a certain point in the program’s execution. The existing analyses do not know about
two variables with the same identifier and would, e.g., assign a wrong value to one of them.

Our solution is simple: We use different function names for each thread by cloning the function and
inserting the corresponding indexed function name. For a function f we create a clone f’ by copying the
corresponding CFA nodes from L and edges from G, while renaming all appearances of the function’s
identifier in the clone. Cloning functions causes all function-local variables to be unique for different
threads in the later applied analysis, e.g., the identifier f::x is distinct from f”::x. An analysis using the
identifier does not even have to know whether the function is cloned and can simply assume uniqueness
of identifiers for all variables.

4.2 Deadlock Detection

A deadlock [17] is defined as an abstract state where two (or more) competing actions wait for each other
to finish, and thus neither ever does. CPAcHECKER allows the user to define the goal of an analysis by
giving a specification in form of an automaton. Detecting deadlocks in the program can be done by giving
an observer automaton that monitors the abstract states of the ThreadingCPA and reports deadlocks. This
approach is independent of any further analysis and can be combined with, e.g., value analysis or BDD
analysis.

4.3 Mutex Locks

Mutex locks are commonly used to synchronize threads, e.g., to manage access to shared memory. In
our implementation, mutex locks are stored as part of the abstract state of the ThreadingCPA. If a mutex
lock is requested along a CFA edge, but not available in the preceding abstract state, the transfer relation
does not yield a successive abstract state for the CFA edge.

Additionally, we use mutex locks for more use cases: We simulate atomic sequences of statements
and some aspects of partial order reduction as mutex locks in the ThreadingCPA. Entering an atomic
sequence requires an atomic mutex lock, which is released after leaving the atomic sequence. Consecutive
CFA edges containing only thread-local operations (see Section [3.3) are modeled and analyzed as atomic
sequence.

5 Evaluation

In this section we evaluate different configurations of the ThreadingCPA and compare it with other state-
of-the-art tools. The evaluation is performed on machines with a 2.6 GHz Intel Xeon E5-2650 v2 CPU
running Ubuntu 16.04 (Linux 4.4.0). Each single verification run is limited to 15min of run time and
15GB of memory. The 1016 benchmark tasks are taken from the category of multi-threaded programs
at SV-COMP’ 16 ﬂ The tasks are C programs, where reaching a specific function call is considered as
property violation. We use CPACHECKER 1.6.1 in revision 23011.

Ihttps://github.com/sosy-1lab/sv-benchmarks/releases/tag/svcompl6
Zhttps://cpachecker.sosy-lab.org/
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5.1 Optimization Steps

First, we show the effect of applying each optimization step from Section [3| successively, i.e., on top
of the previous optimization. Starting with a plain (non-optimized) configuration of the ThreadingCPA
combined with the value analysis, we step-wise apply optimization in form of

e reached-set partitioning (see Section [3.1]) based on the abstract states,
e waitlist ordering (see Section [3.2)) based on the number of threads, and

e POR (see Section[3.3)) based on local-scope and global statements.

The optimization steps are independent of the value analysis and can also be applied to any other
analysis like BDD analysis and interval analysis, where the same benefit will be visible. Figure f] shows
a quantile plot containing the run time of correctly solved verification tasks. The evaluation shows that
the verification process benefits from each of the optimization steps. For small tasks that can be verified
within a few second, e.g., because of only a few thread interleavings in the program, the benefit of
optimization is small. For tasks that need more run time the benefit becomes visible.

We noticed that the heuristic of ordering the waiting abstract states is beneficial in two ways: first,
some property violations are found earlier (some property violations need only a small number of in-
terleavings); second, some unsupported operations (like assigning several thread instances to the same
thread identifier) are reached earlier and the analysis can abort immediately without wasting time.

Compared to the plain value analysis, partitioning the reached set improves the performance and
reduces the run time of the analysis by more than an order of magnitude. Additionally changing the
waitlist order improves run time in several cases, mostly for tasks with a property violation. However, in
our benchmark this optimization step does not lead to more correctly solved tasks. POR causes a lower
number of explored abstract states, and thus the performance increases.
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5.2 Abstract Domains

Second, we combine the ThreadingCPA with different analyses, such as value analysis, interval analysis,
and BDD analysis, which are already implemented in the CPAcHECKER framework and are normally
used for the analysis of single-threaded programs. We only evaluate the optimized version of each
combination. The analyses could also be combined with CEGAR [7]], however the current benchmark
does not benefit from it, and thus we just execute a reachability algorithm to verify the specification. We
show that we can verify the majority of benchmark programs and discuss strengths and weaknesses of
the analyses. As all compared analyses use the same framework (parser, algorithm, ...), we expect our
evaluation to be fair for all implemented approaches and allow a precise comparison. Figure[5|shows the
quantile plot of correct results for the combinations of the ThreadingCPA with other analyses.

The BDD analysis is optimized for BFS in the reachability algorithm, whereas value analysis and
interval analysis use DFS as basic order for the list of waiting abstract states during the exploration
algorithm (see Section [3.2). Thus, the state-space exploration traverses program locations and thread
interleavings in another order and finds the corresponding abstract states in a different order, too. De-
pending on the verification task, this can result in an in- or decreased performance compared to the value
analysis.

5.3 Other Tools

Third, we compare the (optimized) value anal-

ysis with two other state-of-the-art verification

tools, namely CBMC EI and VVT ﬂ Both tools 10°
are executed as in the SV-COMP’16 and are
chosen, because they do not apply special ap-
proaches like sequentialisation, but rely on a sim-
ilar state-space exploration technique as our ap-
proach in CPAcHeckERr. Figure [6]shows the quan-
tile plot of correct results for CBMC, VVT, and
CPACHECKER (using the optimized value analysis).
The ThreadingCPA (combined with value analy- 10! |,
sis) is competitive with the other tools. The plot <

—
()
8]
T T T T
Lol

CPU time (s)

for CPAcHECKER matches the trend of the other —— CBMC
tools with only some differences. At the left side ——VVT |
of the plot the initial start-up time of a few seconds 109 ‘ ‘ e opt. VA‘
for CPACHECKER is visible, whereas other tools al- 0 200 400 600 800 1000
ready solve some of the given instance within this n-th fastest result

time. Due to the missing support for pointer alias-

ing and array computations in the value analy- Figure 6: Quantile plot for comparison of other
sis as well as due to our simple kind of POR, verifiers with support for multi-threaded programs
CPACHECKER can not solve as many verification

tasks as other tools within the time limit.

3http://www.cprover.org/cbmc/
Yhttps://vvt.forsyte.at/
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6 Conclusion

This paper presents a basic approach to support the analysis of multi-threaded programs in CPACHECKER.
We formally defined a new ThreadingCPA in the framework and demonstrated that several core com-
ponents can be reused. Re-using existing analyses is possible without any further overhead. Due to our
simple approach, there are a few limitations that have to be considered when verifying multi-threaded
programs with CPAcHECKER. Our approach for partial order reduction is simple and can be extended with
more advanced techniques to further reduce the number of explored abstract states. The maximum num-
ber of threads is bounded, because of possible conflicts in function names. To avoid naming conflicts,
we clone each function’s CFA several times before starting the analysis. The number of clones cannot be
changed afterwards. If we run out of clones during the analysis and would need more due to a naming
conflict, we abort the analysis and report an insufficient number of threads.

As the ThreadingCPA identifies each thread only by the variable it is assigned to, we currently can
not analyze more complex thread management such as pointer aliasing for the thread identifier or more
complex locking mechanisms. Our framework already contains a mechanism for exchanging information
between abstract states on a state-level during the analysis. The analysis of multi-threaded programs
could be extended to exchange information about thread management with another analysis capable of
such data, such that we could analyze more difficult thread management with the ThreadingCPA.

Possible ideas for optimization have been implemented and evaluated. The evaluation shows that
the results of different analyses based on the ThreadingCPA are competitive with other state-of-the-art
tools.
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