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Abstract

In this paper we define a formal refinement theory for a variant of Abstract
State Machines (ASMs) with submachines and power cuts. The theory is moti-
vated by the development of a verified flash file system. Different components
of the system are modeled as submachines and refined individually. We define a
non-atomic semantics that is suitable for considering power cuts in the middle
of operations. We prove that refinement is compositional with respect to sub-
machines and crashes. We give a criterion “crash-neutrality” and corresponding
proof obligations that are sufficient to reduce non-atomic reasoning to standard
pre/post verification in the context of power failures in file systems.

Keywords: Abstract State Machine, Refinement, Compositionality, Flash File
Systems, Crash Safety, Power Cuts

1. Introduction

This paper contributes a variant of Abstract State Machines (ASMs, [1, 2])
termed Data Type Abstract State Machines and a formally defined instance of
refinement theory. They provide strong modularity guarantees with respect to
submachines that respect information hiding, and are able to handle crashes
during runs, which are caused by external events such as power cuts.

Motivation for this work is our current effort to construct a verified file
system for flash memory. File system verification has been proposed as a chal-
lenge by NASA [3] in response to problems with the Mars Rover “Spirit” [4].
At the time of writing, we have solved a large part of this challenge; some
background is presented in Sec. 2. For a complete overview, see [5] and our
web-presentation [6]. The project is realized with the theorem prover KIV [7].

The verification shows two desired properties of the file system. Functional
correctness with respect to an abstract POSIX specification ensures that the
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system will function as expected under normal conditions. Crash-safety ensures
that unexpected power cuts or similar events have a well-specified, limited effect
only; in practice this means that top-level operations take effect atomically. We
formally present our approach that has made the verification feasible: the given
notion of refinement is compositional, i.e., both standard functional correctness
as well as crash-safety can be decomposed into verification conditions for each
individual refinement.

Since a power failure can happen at any point in time in the final implemen-
tation, we can not just rely on an atomic view of operations. The foundation for
the refinement theory is therefore a fine-grained, non-atomic semantics (defined
in Sec. 3) that exposes sequences of intermediate states of computations. The
atomic semantics of rules can be reconstructed from the non-atomic view by
collapsing the sequence of states into the respective initial and final state. The
crashing semantics (defined in Sec. 6) executes a prefix of the non-atomic trace,
erases non-persistent data (conceptually, the part of the state that is stored in
RAM), followed by a recovery operation to restore a consistent state.

The means to achieve a modular development is by using submachines to
model different components of the system with varying degrees of abstraction.
Examples are given in Sec. 2. Taking up ideas from contract refinement as
used in Z [8], the machines in this work have operations with preconditions and
designated inputs/outputs, and an internal state that is encapsulated.

Non-crashing runs are based on the atomic semantics of rules and induce
a standard notion of refinement that can be proved by forward simulation, as
formalized in Sec. 4. Refinement of an abstract specification to a concrete
implementation guarantees that the latter can be substituted for the former in
a given context. We model the context explicitly as an outer ASM, which allows
us to prove the main theorem of Sec. 5, namely that this approach is sound in
our setting: refinement composes (recursively) with respect to submachines.
Runs with power cuts refer to the crashing semantics instead of the atomic
one, embedding crash-safety into the previously established refinement theory
(see Sec. 6). In particular, the abstract crash specifies what an implementation
has to guarantee after a crash. The novel semantic aspect here is the way we
abstract the non-atomic view of operations to an atomic one. Within the fine-
grained semantics of an operation of the outer machine, a call to an operation
of the submachine is just a single step. Provided a simple condition termed
“crash-neutrality” holds, this approach will provide the lever to switch from a
fine-grained “white-box” analysis of crashes to a much simpler atomic “black-
box” view—in a way that is generic and provably compatible with submachine
refinement in Sec. 7.

This paper extends the work in [9]. Some of the definitions have been slightly
simplified: the handling of input and output of data type ASM rules is simpler,
and we now only have one type of intervals, although we extend them twice
(with ⊥ for nontermination of a submachine call in Sec. 5 and with  for crashes
in Sec. 6). We also give more details on the proofs. The main contribution here
are Sec. 6 and 7, where we extend the theory to consider crashes. The seman-
tic definitions as well as the theorems that yield simple pre/post verification
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Figure 1: FFS upper layers. The bold
dots indicate a series of nested refine-
ments that have been omitted here.
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Figure 2: Call sequence in the final
composed file system code.

POSIX: state tree, fs, ofh

posix unlink(path)
let ino = tree[path].ino
in tree B tree − path;

if ino 6∈ files(ofh) ∧ ino 6∈ links(tree)
then fs[ino] B undef

Figure 3: POSIX specification of unlink.

VFS: state ofh

vfs unlink(path)
ino B ROOT INO;
while path.length > 1 do {

afs lookup(ino, path.head; ino′);
path B path.tail, ino B ino′

};
afs unlink(ino, path.head);
if ino 6∈ files(ofh)
then afs evict(ino)

AFS: state dirs,files

afs unlink(ino,name)
pre: dirs[ino] 6= undef
dirs[ino].entries[name] B undef

afs evict(ino)
pre: files[ino] 6= undef
if links(ino, dirs) = ∅
then files[ino] B undef

Figure 4: VFS/AFS rules (omitting per-
missions checks and error handling).

conditions for crash-safe refinement are entirely new.

2. Submachines in the Flash File System

In this section, we briefly show the topmost refinement of the refinement
hierarchy: Fig. 1 shows an excerpt of the structure of the project, where boxes
represent components, connected by refinement (dotted lines). These are for-
mally given by data type ASMs with algebraic states. The grey boxes are the
leaves of the hierarchy and constitute the final implementation.

root 

path 

file1 file2 

Figure 5: FS graph

At the toplevel, POSIX [10] specifies the requirements.
On this abstract level, the file system (FS) is represented
as an acyclic graph consisting of directories (internal nodes)
and files (leaves). An example is shown in Fig. 5. Files can
be referred to by multiple directories under different names
(“hard-links”), consequently, names are attached to edges of
the graph. The directory part is a proper tree. The POSIX
interface is based on paths, which identify files/directories
and are looked up stepwise starting from the root.

Real file system implementations consist of two parts. Generic aspects, i.e.,
traversing paths and checking access rights are realized by the Virtual Filesystem
Switch (VFS), similarly to the VFS that is part of the Linux kernel. Concepts
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specific to a file system implementation are realized by the individual file systems
(Flash FS). VFS communicates with them through a well-defined interface. Its
main data structure is called inodes in Linux. This interface is specified in terms
of the Abstract File System (AFS), which technically is a submachine of VFS,
we denoted by VFS(AFS). Interfaces are visualized by the symbol in Fig. 1.
That VFS(AFS) correctly implements the POSIX specification is established by
a refinement proof, which is denoted by dotted lines in Fig. 1.

The development continues further down the refinement chain by implement-
ing the AFS specification with flash specific constructs in the model Flash FS.
While the proof relates VFS(AFS) to POSIX, the final code will be composed
of the implementation level models, i.e., the grey models VFS(Flash FS(. . . ))
in Fig. 1. The size of implementation components is much larger than the size
of their respective specifications (POSIX: 50 lines, VFS: 500 lines, AFS: 100
lines, Flash FS: 500 lines). This pattern repeats all the way down to the hard-
ware interface HW, forming a deep hierarchy: The final system consists of 19
models and 9 refinements in total (see [6, 5]), each with its own formalization of
state and invariants. An approach that exploits the compositional structure and
works for power cuts makes the verification of the whole file system tractable.

As an example, Fig. 3 shows the specification of the POSIX operation
posix unlink, which removes one link to a file denoted by path. The state
of the machine is modeled by an algebraic directory tree tree, a map from file
identifiers (inode numbers ino) to their contents fs and a map of open file han-
dles ofh with information about access to the file and the current offset. The
operation conditionally deletes the file’s content from fs as well, given that it is
not referenced from the tree (under a different path) and all file handles to this
file have been closed.

The POSIX standard explicitly permits files that are not accessible from the
tree any more but are still open. These files are called orphans and must be
deleted upon recovery. We explain the issue in more depth in Sec. 6.1. Orphans
are practically relevant, e.g. when a binary of a running process is overwritten
with a new version during a system update, the process still has a handle to the
old version of the file and can keep on running.

The realization of the corresponding operation vfs unlink in VFS is shown
in Fig. 4 (full models can be found in [11]). Several calls of afs lookup are used
to traverse the path, checking that the individual directories exist with suitable
access rights. Then, afs unlink is called for the actual removal of the link in
the target directory. Operation afs unlink has a precondition to characterize
valid inputs, which needs to be checked at every call site, in this case that the
parent directory ino actually exists.

Knowledge of whether the file’s content has to be deleted is now split be-
tween the two machines (corresponding to the two conjuncts in Fig. 3). The
generic aspect of file handles is part of VFS, whereas determining the number of
links depends on the actual data representation of the flash file system and lies
therefore in the responsibility of AFS as part of an operation called afs evict

(which can thus be refined further). For the proof of refinement from POSIX
to VFS(AFS), however, the internal state AFS will be exposed; formally, dirs
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is correlated to tree and files to fs, respectively and ofh is mapped by identity.
The mapping and the proof is described in [12].

Fig. 2 shows the corresponding sequence of operations in the final composed
code we generate (marked grey in Fig. 1). In this code calls to abstract AFS
operations have been replaced by calling the concrete FS code.

3. Syntax and Semantics of Data Type ASM rules

Sec. 3.1 defines the syntax of data type ASM rules. We use only part of the
syntax available in [1], and avoid parallel rules which could result in clashes (cf.
Sec. 8 for a discussion of the limitations and on possible extensions). The rules
are given a non-atomic semantics in Sec. 3.2 that is similar to the one of control
state ASMs, however, we never use an explicit control state. We then abstract
to an atomic relational view in Sec. 3.3, which serves as the foundation for the
weakest-precondition calculus in Sec. 3.4 that we use in mechanized proofs.

3.1. Syntax

We assume the reader is familiar with first-order logic, where, based on a
signature SIG = (F, P ) with functions f ∈ F and predicates p ∈ P , terms
t, formulas ϕ and boolean expressions ε (= quantifier-free formulas) can be
defined. The semantics JtK(s) of terms t and the semantics s |= ϕ of formulas
ϕ is defined over a state s ∈ S consisting of an algebra and a valuation for
variables x as usual. We assume the signature is partitioned into four parts:
a static signature (no updates allowed), an input signature (that is only read
by rules), an output signature (that is only written by rules), and a controlled
signature that may be read and written by rules.

We use the general convention to underline tuples of elements, i.e., a stands
for a tuple a1, . . . , an for some n ≥ 0. We write s{x 7→ a} for the modified
state, where variable x now maps to value a, and s{f(t) 7→ a} for the state,
where function f has been updated to have value a for arguments JtK(s). A lo-
cation loc is either a variable x or f(t), so s{loc 7→ a} denotes a generic update.
We introduce the abbreviation s{loc 7→ t} = s{loc 7→ JtK(s)} for terms t, and
the generalization s{loc 7→ t} to a parallel update, when all locations are dif-
ferent. The leading symbol of a location is x and f , respectively. An input
(resp. output) location is a location f(t) where the leading symbol f is in the
input (resp. output) signature. We use the following syntax for our rules α, β:

α ::= loc B t | α;β | if ε then α else β |
while ε do α | choose x with ϕ in α ifnone β

For parallel updates we require that the leading symbols of loc are all distinct
and writable, i.e., are local variables or part of the controlled or output signature.
We write skip for an empty parallel update. Compared to the full generality of
ASM rules we have avoided parallel rules/updates that may result in clashes.
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The choose construct binds local variables x to values such that ϕ is satisfied
and executes α. If there is no possible choice (e.g. if ϕ ≡ false) then β is
executed instead. Standard local variable declarations are defined as

let x = t in α ≡ choose y with y = t in α{x 7→ y} ifnone skip

where y are new variables and α{x 7→ y} denotes the substitution of x with y
in α (the renaming avoids conflicts when x is used in t). Note that ifnone skip
is never executed here.

3.2. Non-Atomic Semantics of Rules

This section gives a non-atomic semantics to rules: each update and each
test of a condition is executed as a separate step. The semantics of rules is
based on intervals I = (I(0), I(1), . . .) of states I(k) ∈ S, which may be finite
or infinite. Formally, I |= α expresses that the interval I is a possible execution
of α. A finite interval indicates termination. The length of an interval #I
(number of transitions) is in N ∪ {∞}. If I is finite it consists of #I + 1 states.
In particular, the smallest interval with #I = 0 has one state only.

We lift modification of states to intervals: given a tuple of variables x and
a sequence of value tuples a = (a0, a1, . . .) of the same length as the interval
(where each element ak has the same length as x), then I{x 7→ a} is the modified
interval, such that I{x 7→ a}(k) := I(k){x 7→ ak}. The semantics of sequential
composition of rules α;β reduces to the sequential composition of intervals I1
and I2, written I1 o

9
I2. For finite I1 the last state I1.last of I1 must agree with

the first one of I2: I1.last = I2(0). In the result, the duplicate state is removed:
I1 o

9
I2 := (I1(0), . . . , I1.last, I2(1), I2(2), . . .). If I1 is infinite the second interval

is discarded: I1 o
9
I2 := I1.

Finite intervals are sometimes written as (s, . . . , s′) where s is the first state
and s′ is the last state. The notation (s, . . . ) refers to infinite intervals.

Definition 1.

I |= loc B t iff I = (s, s′) and s′ = s{loc 7→ t}
I |= α;β iff there are I1, I2 such that I1 |= α, I2 |= β and I = I1 o

9
I2

I |= if ε then α else β

iff either I(0) |= ε and I |= skip;α or I(0) 6|= ε and I |= skip;β

I |= choose x with ϕ in α ifnone β

iff either I(0){x 7→ a0} |= ϕ and I{x 7→ a} |= skip;α

for some a = (a0, a1, . . .)

or I |= skip;β and there are no values a with I(0){x 7→ a} |= ϕ

I |= while ε do α

iff I ∈ ν(λ I. {I0 |
either I0(0) 6|= ε and I0 |= skip

or #I0 =∞ and I0(0) |= ε, I0 |= skip;α

or I0 = I1 o
9
I2 with #I1 <∞, I1(0) |= ε, I1 |= skip;α, I2 ∈ I})
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Most of the clauses should be intuitive. The skips in the clauses for if , while
and choose indicate that evaluating the test is done in a separate step. In
the first disjunct of the semantics of choose, the sequence of states a captures
the values of local variables x in the entire interval of α, not just in the first
state. The set of runs of a while loop is defined as the greatest fixpoint ν1 of
interval sets I whose elements I0 denote different possibilities to execute the
loop. Informally, an interval I is a run of the while loop, if it can be split into a
(finite or infinite) sequence of adjacent pieces. Each piece I1 must be finite and
execute the loop body (last line I1(0) |= ε, I1 |= skip;α), the only exception
being the last interval, when the sequence is finite. This interval may either
be a nonterminating (infinite) execution of the loop body (second line of the
definition), or it may be one skip step, where the loop test evaluates to false
(first line of the definition).

3.3. Atomic Semantics of Rules

We define the atomic semantics of rules JαK as a relation over the set
S⊥ := S ] {⊥}, which augments the set of states with a ⊥ element to indi-
cate nontermination. From this we derive the semantics of operations in Sec. 4
that additionally check the respective precondition.

Definition 2. The atomic semantics JαK ⊆ S⊥ × S⊥ of a data type ASM rule
α is defined as follows:

(s, s′) ∈ JαK iff either (s, . . . , s′) |= α for some finite interval (s, . . . , s′)

or (s, . . . ) |= α for some infinite interval (s, . . . ) and s′ = ⊥
or s = s′ = ⊥

The first clause collapses finite runs (s, . . . , s′) of α to their first and last
state. Infinite runs yield ⊥ by the second clause. The last line allows to define
the semantics of calling two operations sequentially as relational composition: If
the first operation does not terminate (gives ⊥), then attempting to call another
operation is not possible and will also give ⊥.

3.4. Calculus

To formally verify properties of data type ASM rules in KIV we use a
weakest-precondition calculus. The calculus defines two program formulas 〈|α|〉ϕ
and 〈α〉ϕ as follows, where s 6= ⊥:

s |= 〈|α|〉ϕ iff all s′ with (s, s′) ∈ JαK satisfy s′ 6= ⊥ and s′ |= ϕ

s |= 〈α〉ϕ iff there is s′ 6= ⊥ with (s, s′) ∈ JαK and s′ |= ϕ

1The greatest fixpoint ν(λ I. {I | ϕ(I, I)}) is the union of all sets I whose elements satisfy
the recursive property ϕ (which must be monotonic in I). The more commonly used least
fixpoint is inadequate here, since it gives the finite executions only.
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Formula 〈|α|〉ϕ expresses the weakest precondition for rule α to be guaranteed
to terminate and to establish postcondition ϕ (which is often written wp(α,ϕ)
in the literature). Formula 〈α〉ϕ is from Dynamic Logic [13] and expresses that
α has a terminating run after which ϕ holds. Dynamic Logic writes the weakest
liberal precondition wlp(α,ϕ) as [α]ϕ, which is equivalent to ¬ 〈α〉 ¬ϕ.

Note that in contrast to standard wp-calculus formula ϕ is not restricted to
predicate logic, but may be another program formula. This will be exploited
in the proof obligation for simulations (see Theorem 1). The wp-calculus has
simple symbolic execution rules for reasoning about rules α (some of these rules
can e.g. be found in [14]).

4. Contract Refinement for Data Type ASMs

Our formal definition of a data type ASM M = (SIG ,Ax , Init , {Opj}j∈J)
consists of a signature SIG , a set Ax of predicate logic axioms for the static
part of the signature, a predicate Init to characterize initial states, and a set of
operations for indices j ∈ J . Each operation Opj = (prej , inj , αj , outj) consists
of a data type ASM rule αj that describes possible state transitions, provided
precondition prej holds. It reads input from a tuple inj of input locations,
and writes output to a tuple outj of output locations. It may modify local
variables, controlled locations and the locations of outj . Rules may not have
global variables (thus, states of M are just SIG-Algebras and the values of
variables are irrelevant). In concrete code like the ones given in Fig. 3 and
Fig. 4 each operation Opj has a name (instead of using an index j), and is given
in the form of name(inj ; outj) pre prej { αj }.

Definition 3. The atomic semantics JOpK ⊆ S⊥ × S⊥ of a data type ASM op-
eration Op = (pre, in, α, out) extends JαK in two ways: the input locations are
erased (i.e. arbitrary) in the post-state, and any result, including nontermina-
tion, is allowed if the precondition does not hold:

(s, s′) ∈ JOpK iff either s 6= ⊥, s′ 6= ⊥ and (s, s′{in 7→ a}) ∈ JαK for some a

or (s,⊥) ∈ JαK
or s 6|= pre and s′ is arbitrary in S⊥

The intuition for changing the input locations arbitrarily is to allow the en-
vironment (e.g., the user of the file system) to set the input locations in to new
values before the next operation is executed. This coincides with the defini-
tion of “firing of updates” of standard ASMs (see [1]), which similarly assigns
new values to monitored functions. Non-terminating runs of α are preserved
unchanged (in particular (⊥,⊥) ∈ JOpK). The third line of the definition is the
standard semantics of a precondition.

Based on the semantics of a single operation we can define runs of a machine
M = (SIG ,Ax , Init , {Opj}j∈J) for a finite or infinite sequence j = (j0, j1, . . .) of
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(indices or names of) operation calls. In order to distinguish between an infinite
sequence of calls and the divergence of one operation, we allow the states of
intervals to end with a sequence of ⊥.

Definition 4 (Executions & Runs of data type ASMs). An execution of the
call sequence j for a data type ASM M is an interval I, written I ∈ execM(j),
iff #I = #j, and

(I(k), I(k + 1)) ∈ JOpjkK for all 0 ≤ k < #j

A run, written I ∈ runsM(j), is an execution that starts with an initial state
I(0) |= Init.

The definition of runs mimics the definition of runs of data types, although
we consider both finite and infinite runs. Note that runs may well call an
operation with the precondition being false. According to the semantics of one
operation (Def. 3) the rest of the run is unpredictable then: either the operation
diverges, and the interval ends with a sequence of ⊥ states, or execution may
continue with an arbitrary state.

Refinement between an abstract machine A = (SIGA, InitA,AxA, {OpAj }j∈J)

and a concrete machine C = (SIGC, InitC,AxC, {OpCj }j∈J) with the same operation
set J is defined relative to a relation IO ⊆ AS ×CS (“input/output correspon-
dence”) over the state sets AS and CS of A and C. Often IO requires identity
of input and output locations, but more general cases are possible.

Definition 5. Correspondence of two intervals IC and IA of C resp. A (“IC

matches IA via IO”) is defined as

IC vIO IA iff #IC = #IA and for all k ≤ #IC :

either IA(k) = ⊥ (and IC(k) is arbitrary)

or IC(k) 6= ⊥, IA(k) 6= ⊥, and (IA(k), IC(k)) ∈ IO

Fig. 6 visualizes two IO-matching runs. In the example, the concrete run
diverges after step k, which is matched by the abstract ⊥. Refinement relative
to IO is then defined as follows.

Definition 6 (Data type ASM refinement). Machine C refines machine A rela-
tive to IO, written C vIO A, if for every call sequence j and every IC ∈ runsC(j)

an abstract run IA ∈ runsA(j) exists, such that IC vIO IA holds. In the com-
mon case where IO = Id we omit IO and just write C v A.

The definition allows to refine an abstract run, which calls a diverging oper-
ation (for example, one where the precondition is violated), with a terminating
run: the state IA(k) (compare Fig. 6) after the diverging operation (and all
subsequent states) will be ⊥, and match any concrete state. Thus our definition
follows the contract approach to data refinement [8].

Proofs of refinement are typically done with forward simulation, composing
runs (as those shown in Fig. 6) from commuting diagrams (as shown in Fig. 7).

9



as1 as2 ⊥ ⊥ . . .

cs1 cs2 csk ⊥ . . .

IO IO . . . IO IO

Figure 6: IO-refinement between abstract run
(as1, . . .) and corresponding concrete run (cs1, . . .).

as1 ∈ dom(OpAj ) ∃as2

cs1 cs2

R R

Figure 7: Forward simulation R with
commuting 1:1 diagrams

Theorem 1 (Forward Simulation). C vIO A follows from a forward simulation
R ⊆ AS × CS such that R ⊆ IO and

Initialization: InitC ⊆ ran(InitA / R)

Correctness: (dom(OpAj ) / R) o
9
JOpCj K ⊆ JOpAj K o

9
R for all j ∈ J

where dom(OpAj ) := {as ∈ S | (as,⊥) /∈ JOpAj K}

Here, o
9

denotes composition of relations (instead of intervals), / denotes
domain restriction, and ran is the range of a relation. The correctness proof
obligation is visualized in Fig. 7. A state as2 has to be found such that the
diagram commutes. The restriction as1 ∈ dom(OpAj ) defines the “interesting”

cases, where the state as2 is not ⊥. Otherwise, OpAj has a non-terminating run,
so choosing as2 = ⊥ is sufficient for refinement. Note that the correctness condi-
tion also enforces termination of OpCj in the interesting case, i.e., cs2 cannot be ⊥
(so in particular preCj (cs1) must hold), since JOpAj K o

9
R does not contain any pair

(as2,⊥). In (the contract version of) data refinement [8], this “applicability”
condition is often stated separately.

That a forward simulation is sufficient for refinement is proved as usual by
induction over the number of steps that are simulated. The semantic proof
obligations for a forward simulation can also be expressed equivalently in the
calculus:

Initialization: InitC(cs)→ ∃as. InitA(as) ∧ R(as, cs)

Correctness: preAj (as) ∧ R(as, cs) ∧ 〈|αAj |〉 true
→ preCj (cs) ∧ 〈|αCj |〉 〈αAj 〉R(as, cs) for all j ∈ J

5. Submachines

In this section we define data type ASMs M(L) that use a submachine L,
by extending the syntax and semantics of rules with calls to the operations of L.
Proper use of a submachine is subject to certain restrictions that ensure that
M(L) is independent of the inner workings of L, i.e., only the inputs and outputs
of L are relevant. As a consequence, the submachine L can be replaced by a
refined machine K in a compositional way, i.e., K v L implies M(K) vM(L).
Theorem 2 will make the correspondence precise.
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For a data type ASMM = (SIG ,Ax , Init , {Opi}i∈I) that calls operations of
a submachine L = (SIGL,AxL, InitL, {OpLj }j∈J) the following restrictions apply:

• M contains L’s signature and axioms: SIGL ⊆ SIG and AxL ⊆ Ax .
Thereby, a state s of M(L) can be split into the “local” part ls of L
and the remaining “global” part gs of M, which we write as s = ls⊕gs.
Similarly, we write IL⊕IM for the point-wise split of intervals over disjoint
signatures.

• Initialization ofM respects initialization of L: {ls | ls⊕gs ∈ Init} ⊆ InitL.

• M respects information hiding: The signature of L is never accessed di-
rectly by operations ofM, i.e.,M can only read and update the signature
of L indirectly via calls to operations of L. The latter means that the local
state of L, consisting of the locations in the input, output and controlled
signature of L, may not be used in updates, actual call parameters or tests
of M operations.

5.1. Syntax & Semantics of Submachine Calls

Rules α of the machine M may now contain calls to operations of L. We
extend the syntax of rules of Sec. 3.1 with

α ::= . . . | OpLj (t ; loc)

The call expects the actual inputs t in the input locations inLj of OpLj , executes

the rule OpLj , and finally copies outLj back to actual outputs loc, which must be

writable locations of M. Within the run of αj the call to OpLj is considered as

one atomic step, except when the submachine call does not terminate (ls ′ = ⊥)
then I continues with an arbitrary and possibly infinite number of ⊥ states, as
indicated by ⊥ω below.

In order to record (and later extract) the sequence of submachine calls, we
extend the semantics I |= α to I, j |= α with an explicit sequence of submachine
calls j ∈ (J ] {τ})ω, where J is the index set of L.

Definition 7 (Semantics of submachine calls).

I, j |= OpLj (t ; loc)

iff ls(inLj ) = JtK(gs) and (ls, ls ′) ∈ JOpLj K

and I =

{
(ls⊕gs, ls ′⊕gs{loc 7→ ls ′(outLj )}) if ls ′ 6= ⊥
(ls⊕gs,⊥ω) otherwise

and j =

{
(j) if ls ′ 6= ⊥
(j, . . .) such that #j = #I otherwise

Ordinary assignments in M appear as stutter steps τ in this call sequence
of the submachine, and sequential composition simply concatenates the call
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ls⊕gs ls⊕gs′ ls′⊕gs′′ ls′⊕gs′′′

ls ls ls′ ls′

x1 B t1 OpLj (t ; loc) x2 B t2

τ JOpLj K
τ

I |= α

IL ∈ execLτ (τ, j, τ)

M(L):

L:

Figure 8: Example execution of a rule α with calls to submachine L and corresponding
execution of L with stutter steps.

sequences. Thus, I and j have the same length. We omit the sequence of
submachine calls j if it is not needed explicitly.

The above definition2 ensures that given a run ofM it is always possible to
look at the non-atomic semantics of each rule applied and extract a (stuttering)
run of L. Fig. 8 exemplifies the extraction by looking at one atomic step from
(ls⊕gs) to (ls ′⊕gs ′′′) in a run of M. Assuming that the rule executed is α,
the fine-grained semantics of α gives an interval I |= α that starts with (ls⊕gs)
and ends with (ls ′⊕gs ′′′). In the example the interval consists of three steps.
The first and last step are simply assignments to the global M-state gs. The
second step is a submachine call that induces a transition from local state ls
to ls ′. Projecting all states to local states (lower line), we get an execution IL

of L with explicit stutter steps (indicated by τ) that executes the call sequence
(τ, j, τ). Formally, stuttering executions execLτ (j) (and runs) of L are defined
like ordinary ones, but elements of the call sequence are in Jτ := J ]{τ}, where
the semantics of τ -transitions is just identity.

Proposition 1. Given an execution I, j |= α of a rule α over the signature

of M, I = IL⊕IM can be split into the global interval IM and a stuttering
L-execution IL ∈ execLτ (j).

5.2. Submachine Refinement

In this section we show that refinement is modular in the following sense:
Given a machine M(L) and a refinement K vLIO L, then replacing calls to L
in operations of M with calls to K gives a machine M(K) that refines M(L).

2 The semantics of submachine calls differs slightly from the one we gave in [9]. In partic-
ular, copying input is no longer necessary as it is now assumed to be already there (compare
Def. 3), and ⊥-states now follow a diverging call instead of an infinite sequence of arbitrary
states (which likewise implied, that the callingM-operation diverges). Furthermore, we added
the sequence of submachine calls to the semantics. These changes simplify the extraction of
a stuttering L-run.
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M(K) is defined over the signature (SIG \ SIGL) ] SIGK, its initialization is:

InitM(K) := {ks⊕gs | ls⊕gs ∈ InitM(L) and ks ∈ InitK}.

The result needs one additional restriction compared to general refinement:
LIO is the identity relation over the input and output parameters of L and K:

LIO := {(ls, ks) | ls(inL) = ks(inK) and ls(outL) = ks(outK)} (1)

where inL, outL are all input/output locations of L, likewise for K.
For the refinementM(K) vIO M(L) we can establish identity as the strongest

possible relation IO on the two global states:

IO := {(ls⊕gs, ks⊕gs ′) | gs = gs ′}

Given these prerequisites we have

Theorem 2 (Compositionality). K vLIO L implies M(K) vIO M(L).

To prove the theorem, one has to note that it is not possible to incrementally
construct a run of M(L) from one of M(K) by induction over the number
of steps done by M(K). Given IM(K) vIO IM(L) and assuming IM(K) is
a prefix of I ′M(K), then refinement guarantees the existence of I ′M(L) with
I ′M(K) vIO I ′M(L), but not that IM(L) is a prefix of I ′M(L), so the induction
hypothesis is not applicable. Our proof therefore has to consider a full run of
M(K) as a whole.

Proof. We have to prove that every run (s0, s1, . . .) ∈ runsM(K)(i) of M(K)
refines some run (s′0, s

′
1, . . .) ofM(L). Assuming sk is ksk⊕gsk whenever sk 6= ⊥,

we construct a run of the form (ls0⊕gs0, ls1⊕gs1, . . .) ∈ runsM(L)(i) (where each
state is ⊥ if sk = ⊥) in several steps. The bottom of Fig. 9 depicts this situation.

First, for each step from sk to sk+1 an interval Ik, jk |= αik exists, which

consists of the steps executed by rule Op
M(K)
ik

and produces submachine calls
j
k

to K. The first state Ik(0) of every interval is sk (if sk = ⊥ then we set
Ik = (⊥)). The interval is either infinite or ends with ⊥ whenever sk+1 = ⊥,
otherwise it is finite with Ik.last = sk+1.

Second, all Ik can be concatenated to one interval I (depicted at the bottom),
similarly all j

k
yield the sequence of submachine calls j, and the local states of

K can be projected out to give a stuttering run IK ∈ runsKτ (j) of machine K.

Since K vLIO L, a corresponding run IL ∈ runsLτ (j) with IK vLIO IL exists
(the two runs in the middle).

Next, the global states of I can be combined with the ones of IL to give
I ′ := IL⊕IM (shown at the top). Since I and I ′ have the same length, I ′ can
be split into subintervals I ′k = ILk ⊕IMk with the same lengths as Ik. Finally, the
initial states I ′k(0) for all k are the states s′k of the run of M(L) we wanted to
construct (their global state is gsk, whenever I ′k(0) 6= ⊥).

We show I ′k, jk |= αik{K 7→ L} for each k by Lemma 1, which proves that
the resulting interval is indeed a run of M(L).
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I′ ls0⊕gs0 lsk⊕gsk lsk+1⊕gsk+1 . . .

IL ls0 ∈ InitL lsk lsk+1 . . .

IK ks0 ∈ InitK ksk ksk+1 . . .

I ks0⊕gs0 ksk⊕gsk ksk+1⊕gsk+1 . . .

I′k = ILk ⊕I
M
k , j

k
|= αik{K 7→ L}

ILk

IKk

Ik = IKk ⊕I
M
k , j

k
|= αik

Figure 9: Substitution Lemma

Lemma 1 (Substitution of Submachine Calls). For all IK⊕IM, j |= α and

IL ∈ execLτ (j) with IK vLIO IL, then IL⊕IM, j |= α{K 7→ L} holds.

Proof. By structural induction on α.

Remark: Compositional replacement can be nested. N (M(K)) v N (M(L))
for any (proper) outer contextN follows trivially, because IO implies thatM(L)
will have the same outputs as M(K), i.e., satisfies the equivalent of (1) on the
outer level.

6. Crashes & Recovery

In this section we consider data type ASMs that exhibit crashes during
execution. A crash is an event that is triggered asynchronously, aborting the
currently executing operation in some intermediate state. In the context of file
system verification, this typically means unexpected power loss. Intuitively, a
crash erases volatile state (i.e., data in main memory such as caches), but the
persistent state remains unchanged; crash safety means that operations have an
observably atomic effect with respect to power cuts.

After a crash, a designated recovery operation tries to reconstruct the pre-
vious situation. In practice, the difficulty is to determine how far the aborted
operation has progressed, i.e., whether the operation can be considered to have
taken effect or not.

However, the intuitive understanding of crash-safety as observable atomicity
is insufficient for realistic systems. In the flash file system, for example, many
intermediate layers (i.e., submachines) expose some effect of a crash that cannot
be masked by the recovery because of incomplete information (an example is
given in the next section, more complex ones are described in [15, 16]). As a
consequence, the effect cannot be masked from the specification either, which
motivates our approach to integrate crash-safety into refinement: an abstract
machine A has to specify to what extent the corresponding implementation C
must be able to recover from a crash.
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6.1. Observable Effects of Crashes in POSIX

On the POSIX level, the effect of a crash and subsequent recovery is to drop
all open file handles and to delete all orphaned files. This is formally specified
as a binary predicate over pairs of states

posix -crash-recovery(tree, fs, ofh, tree ′, fs ′, ofh ′)

↔ tree ′ = tree ∧ fs ′ = fs \ orphans(tree, fs) ∧ ofh ′ = ∅

where orphans(tree, fs) = {ino ∈ fs | links(ino, tree) = ∅}, i.e., orphaned files
are those that had already been unlinked from the tree at the time of the crash,
but were still referenced by some open file handle which now doesn’t exist any
more. Orphans are now obsolete because no more references to them exist.

Power cuts are treated compositionally in VFS. The crash predicate of VFS
is equivalent to the one of AFS, i.e.,

vfs-crash(dirs,files, ofh, dirs ′,files ′, ofh ′)

↔ afs-crash-recovery(dirs,files, dirs ′,files ′)

without specifying a value for ofh ′ after the crash. This asymmetry is because
ofh is now an implementation level variable that is stored in main memory (and
is therefore arbitrary after the crash as formalized by Def. 12 below). It is
therefore initialized explicitly within the recovery procedure of VFS in order to
establish the requirement imposed by posix -crash-recovery :

vfs recover() { ofh B ∅ }

The effect specified by POSIX is matched on the AFS level, for a suitable
definition of orphans (that commutes with the simulation relation).

afs-crash-recovery(dirs,files, dirs ′,files ′) (2)

↔ dirs ′ = dirs ∧ files ′ = files \ orphans(dirs,files)

6.2. Atomicity of Operations

The basic idea is that the non-atomic semantics of a rule I |= α defines the
states I(k) in which crashes need to be considered. An example is shown in
Fig. 10 where an operation of a machine M(L) executes several steps. Disre-
garding the submachine call for a moment, an example crash occurs in state
after two steps, followed by a recovery to another state represented by the cir-
cle at the top right. The crash semantics defined in terms of intervals I |= α
will allow us to reason about such intermediate states. In order to specify the
properties of such states, we will use refinement, just as we do for ordinary, final
states.

Extending this notion to submachines with crashes raises the question about
atomicity of calls. To what extent can they be treated atomically? In Fig. 10,
the submachine operation at the bottom has some intermediate states (gray).
Given that L is an abstract machine, i.e., one that is refined further, it makes
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I |= OpM(L)

OpL

crash  
recovery

Figure 10: Different degrees of atomicity of crash behavior of an operation of machineM(L).
The states denoted by circles are generated by the semantics from Sec. 3.2. M (L ) considers
the black states only,M (L ) adds the white states to the behavior andM (L ) additionally
considers the gray states. At the top, an example crash in an intermediate state and subsequent
recovery is shown. The corresponding states at the top are generated by the crashing semantics
as defined in Sec. 6.4.

sense to interpret L-calls as atomic, since proofs for crashed runs of M(L) will
be simpler. Consequently, only crashes within L in the white states should be
considered. In contrast, if the submachine corresponds to an implementation,
all intermediate states (white and gray) are relevant for the analysis, because
that is what will eventually run in reality. We capture these different views by
two semantics for crash-behavior:

A machine M with “white-box” crash behavior permits crashes any time
during the execution of its operations. Under certain conditions, such a machine
can be reduced to a machine M with “black-box” crash behavior: only states
in between operations are relevant in order to study crashes. Black-box crash
behavior of submachines L is what makes it possible to treat calls atomically.
In the following, letM denote a machine with either crash behaviorM orM .

A key feature is that refinement remains compositional with respect to sub-
machines. The distinction into black-box and white-box semantics gives rise to
different composition patterns with increasing degree of atomicity (cf. Fig. 10):
Machines M (L ) consider crashes at any point in time during execution, even
in the middle of submachine calls. Such machines correspond to the system that
will finally run, i.e., the system whose correctness we are ultimately interested
in. MachinesM (L ) view operations of L atomically, however, it is still possi-
ble to have a crash in the middle of anM-operation. MachinesM (L ) consider
crashes betweenM-operations only. From a verification point-of-view such ma-
chines are much simpler, since it is possible to reason about their behavior in
an entirely atomic setting. Technically, this means that weakest precondition
calculus, as presented in Sec. 3.4, is sufficient for proofs of their correctness.

Generally, we wish to switch from a white-box to a black-box view whenever
possible, because a formal proof for the latter has to consider significantly less
states. The two main theorems are:

• A submachine with crashes can be substituted in a context, e.g.,
K v L implies M (K ) vM (L ) (Theorem 4), and

• M (L ) ≡M (L ) holds under certain conditions (Theorem 5).
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6.3. Application to the File System

In general, we are interested in the correctness of the machine (omitting
several intermediate machines for clarity)

C := VFS (FS (HW )),

since this is the final code that will run (cf. Fig. 1). We assume that our atomic
specification HW of the flash driver already captures the full crash behavior
correctly [15]. The correctness of the entire system is expressed as the refinement
C v POSIX . Thus, from the perspective of the user of our POSIX-compliant
file system either an operation took effect in its entirety before a crash or the
operation had no effect.

We start with the innermost machine FS (HW ) with full crash behavior
and reduce it to FS (HW ). The reason why FS (HW ) ≡ FS (HW ) holds is
twofold: First, the entire state of FS is considered to be in RAM and is therefore
arbitrary after a crash. The state of HW on the other hand is unchanged by
a crash. Second, all operations of HW can always fail without changing the
stored data (but may signal an error code by setting some output parameter).
This models that the flash driver can always run out of memory for some memory
allocation (for e.g. buffers) or simply that the flash hardware could not handle
the request. From an execution I of an operation of FS (HW ) that crashed in
the middle, we can construct an execution of FS (HW ) by extending I just by
executing the operation to the end and choosing that every submachine call to
HW should fail without modifying the persistent data. The complete execution
then crashes to the same state as the incomplete one.

This allows us to refine the easier system FS (HW ) to AFS

FS (HW ) v FS (HW ) v AFS . (3)

Since submachines with crashes are compositional, we can substitute AFS
for FS (HW ) in the context of VFS . Thus, we have proven

VFS (FS (HW )) v VFS (FS (HW )) v VFS (AFS ).

Now we again have a machine with intermediate crashes with a submachine.
However, it now does not necessarily hold that every operation of AFS has a
run that leaves the state unchanged, because there is no longer a clear distinction
between in-RAM and persistent state in the AFS submachine. Therefore, we
generalize the property: An operation is crash-neutral, if it has an execution
that can be reverted by a crash. This property is formalized in Sec. 7 and we
prove that this is sufficient to construct a complete execution with subsequent
crash to a partial, crashing execution (as we did above). The operations of the
hardware model are trivially crash-neutral. This also holds for AFS .

Therefore, we can complete the refinement tower, by repeating the strategy
that was used to establish (3) and get:

VFS (AFS ) ≡ VFS (AFS ) v POSIX
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Note that we need to reason about machines with crashes at the end of
operations only and about the crash-neutrality of each submachine, both of
which can be expressed in the calculus.

6.4. Semantics of Crashes

Definition 8 (Data type ASM with crash behavior). A data type ASM with
crash behaviorM =(SIG ,Ax , Init , {Opj}j∈J ,Cr) has an additional static pred-
icate Cr ⊆ S × S describing possible state transitions of the dynamic part of
the signature triggered by a power cut. Immediately afterwards (and only then)
a designated operation Oprec with index rec ∈ J is called implicitly in order to
restore a consistent state.

We define the semantics of machines M and M in terms of a modified
atomic semantics of their rules, JαK and JαK respectively. In analogy to non-
termination ⊥, the state space is extended with states s ∈ S that signal a
crashed state where S := {s | s ∈ S}. The  is merely an annotation, that
indicates that the state s cannot be used by any operation except recovery.

Crashed states imply that the currently running operation is aborted and
subsequent steps are not possible. Sequential composition of intervals is adapted
so that I0 o

9
I1 := I0 whenever I0.last = s is a crashed state, i.e., the remainder

I1 is not executed.

Definition 9 (White-box crash semantics of rules).

(s, s′) ∈ JαK iff either (s, s′) ∈ JαK
or for some s0, s1, I :

(s, . . . , s0) o
9
I |= α and (s0, s1) ∈ Cr and s′ = s1 

or (s, . . . , s1 ) |= α and s′ = s1 

The first clause permits an uncrashed execution. The second clause splits
the fine-grained semantics of α into a finite prefix (s, . . . , s0) and a remainder I
(that is ignored). Assuming that s0 is a normal state the effect of the crash Cr
is applied to get to s1 and the  -marker is set. The third clause propagates
crashes that have occurred during the submachine calls (see Def. 11).

Definition 10 (Black-box crash semantics of rules).

(s, s′) ∈ JαK iff either (s, s′) ∈ JαK
or for some s0, s1 :

(s, s0) ∈ JαK and (s0, s1) ∈ Cr and s′ = s1 

or (s, s1) ∈ Cr and s′ = s1 

The second clause introduces crashes after terminating executions of α. The
third clause permits immediate crashes before α has even started. In contrast
to Def. 9 it is sufficient to refer to the atomic semantics of α. Note that s0 ∈ S
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is neither ⊥ nor crashed since Cr ⊆ S×S. The black-box semantics is a subset
of the white-box one, i.e., JαK ⊆ JαK .

The atomic semantics of operations with crashes JOpjK for j ∈ J \ {rec}
(except recovery) simply refers to the corresponding semantics of its rule JαK
(analogously to Def. 3). Since JαK does not contain any transitions starting in
a crashed state, the same holds for JOpjK , i.e., JOpjK ⊆ S⊥ × (S⊥ ] S ). This
captures the notion that normal operations are prohibited in crashed states.
In contrast, the recovery operation Oprec = (true, 〈〉, αrec, out) is only run in a
crashed state. Its atomic semantics JOprecK ⊆ (S ] {⊥})× S⊥ is defined by

(s, s′) ∈ JOprecK iff s = ⊥
or there is a state s̃ ∈ S with s̃ = s and (s̃, s′) ∈ JαrecK,

i.e., if s is some crashed state s̃ , then the crash marker is removed and the
recovery rule is called.

To simplify the discussion, we have excluded crashes during recovery by
referring to the normal non-crashing atomic semantics of α here. However, the
assumptions of Theorem 5 are sufficient to guarantee crash-safety even then.
We also assume that the recovery operation has no input parameters and its
precondition is just true.

The executions and runs of machines M are defined in terms of JOpjK
just like in Def. 4. As a consequence crashed states are exposed in the runs,
reflecting the fact that crashes should be observable. A single transition in a
run can be a normal execution of a callable operation, or a crashing execution
of such an operation resulting in some state s̃ , in which the subsequent step
must be recovery.

6.5. Crash-Safe, Compositional Submachine Refinement

Refinement C vIO A between two machines with crash behavior needs to
be adapted slightly in comparison to the conditions given in Sec. 4. The relation
IO is extended to crashed states as follows: (as, cs) ∈ IO iff (as, cs) ∈ IO are
normal states, or both as and cs are crashed (without further constraints).

The proof for forward simulation proceeds by discerning whether the con-
crete operation OpC exhibits a crash or not. If there is a crash, we do not
construct a 1:1 diagram as shown in Fig. 7, but instead a 2:2 diagram that
includes recovery as the next step. A crash is therefore never considered in
isolation, and it is not necessary to extend the simulation relation R to crashed
states. The extra proof obligations that support this reasoning can be factored
out as follows:

Theorem 3 (Forward Simulation with Crashes). C v A follows from a for-
ward simulation that satisfies the conditions of Theorem 1 (for the index set
J \ {rec}) and additionally for all j ∈ J \ {rec}:

Crash: (dom(OpAj ) / R) o
9
JOpCj K o

9
JOpCrecK ⊆ JOpAj K o

9
JOpArecK o

9
R
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The proof that the extended forward simulation establishes refinement for
the modified setting is again by induction over the number of steps executed.
Note that we have defined IO to hold for any pair of crashed states in the
middle of the 2:2 diagram, so there is nothing to prove for these.

A direct proof for the new conditions of Theorem 3 for the refinements of our
case study is however difficult in the white-box setting, because it is necessary
to reason about all intermediate states of the execution of JOpCj K . The abstract

operation JOpAj K is less critical, because we can choose to treat it atomically by
witnessing whole executions only.

For a black-box refinement C v A the theorem yields the following simple
proof obligations, in addition to “Initialization” and “Correctness” from Sec. 4.

Recovery: R(as, cs) ∧ (cs, cs ′) ∈ CrC

→ 〈|OpCrec(; cs ′)|〉 (∃as ′. (as, as ′) ∈ CrA ∧ 〈OpArec(; as ′)〉R(as ′, cs ′) )

Next, we describe how the desired behavior of the different composition pat-
ternsM (L ),M (L ) andM (L ), which we have outlined in the introduction
to this section, is established.

Proper use M (L ) has an extra condition: the crash predicate Cr of M
can be split into the effects CrL on the local state of L and a predicate CrM

on the global state of M:

Cr := {(ls⊕gs, ls ′⊕gs ′) | (ls, ls ′) ∈ CrL and (gs, gs ′) ∈ CrM}

In a white-box context M , a crash can occur either in M-steps or in L-calls.
For the former we simply apply Cr (compare second case in Def. 9). For the
latter, by the semantics of L -operations, the resulting state ls ′ has already

been modified by CrL and only CrM must be applied (lifting the marker  ).
The semantics of submachine calls is therefore (extending Def. 7):

Definition 11 (Semantics of submachine calls with crashes (j 6= rec)).

I |= OpLj (t ; loc)

iff ls(inLj ) = JtK(gs) and (ls, ls ′) ∈ JOpLj K

and I =


(ls⊕gs, ls ′⊕gs{loc 7→ ls ′(outLj )}) if ls ′ 6= ⊥ and ls ′ /∈ S 
(ls⊕gs, (l̃s⊕gs ′) ) if ls ′ = l̃s for some l̃s

and (gs, gs ′) ∈ CrM

(ls⊕gs,⊥ω) if ls ′ = ⊥

This semantics also works within a black-box contextM : Def. 10 filters out
crashes in calls to submachines by the condition that only executions of the rule
α leading to normal states are accepted. The additional case for submachine
calls given above is irrelevant for black-box runs.

Analogously to Theorem 2, the following compositionality result holds:

Theorem 4. Let C ∈ {K ,K } and A ∈ {L ,L } be data type ASMs with crash
behavior, then C v A implies M (C) vM (A) and M (C) vM (A).
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7. Crash Reductions

In this section we formulate two assumptions, which in practice allow us to
only consider crashes at the end of operations, i.e., we can prove M (L ) ≡
M (L ) under these assumptions. The basic idea is that for every execution of
an operation that crashes in the middle resulting in state s, we can construct
a complete execution with a crash at the end, that still yields s. Thus, we can
move or postpone a crash to the end of an operation without any visible effect.

The first assumption restricts the crash predicate of M : It must be such
that the entire state of M without the submachine is arbitrary. This allows us
to move a crash over one step (other than a submachine call) of an M-rule α
while still resulting in the same state after the crash:

Definition 12 (UnrestrictedM Crash). The crash ofM , which properly uses
the submachine L, is unrestricted iff CrM satisfies

(gs, gs ′) ∈ CrM for all gs, gs ′.

This assumption corresponds to the intuition that the state of M is in RAM
and therefore lost during a crash. For the VFS model of the case study this
is satisfied as shown in Sec. 6.1, only the open file handles ofh are part of the
state of VFS, the directory structure dirs and the file content files are part of
the submachine AFS.

Complementarily, the second assumption about each operation of the sub-
machine L allows us to move a crash over a submachine call:

Definition 13 (Crash-Neutral). An operation OpLi is crash-neutral iff

preLi / JCrLK ⊆ JOpLi K o
9
JCrLK.

Crash-neutrality is trivially implied by JOpLi K ⊆ Id . This simpler condition
is satisfied is satisfied by all operations of the hardware, which are typically
modeled as rules of the form

flash op(in; err)

{ flash B f(in,flash); err B ESUCCESS } or { err := EFAIL }

where the failure case witnesses the crash neutral run.
There are exceptions, though, which do require the generality of this def-

inition. On the AFS level, for example, the error handling that is added to
the operations shown in Fig. 4 follow the scheme above for afs unlink (which
therefore satisfies Jafs unlinkK ⊆ Id).

However, afs evict is an exception since never fails (roughly speaking, the
corresponding unlink operation dropping the last link has already succeeded pre-
viously, and evict operates on RAM data exclusively). To prove that afs evict

is crash-neutral for the case where links(ino, dirs) = ∅, after substituting Fig. 4
and (2) into Def. 13 it remains to be shown that

files \ orphans(dirs,files) ⊆ files \ {ino} \ orphans(dirs,files)
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Figure 11: Crash-Neutrality
guarantees the existence of ls2
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Figure 12: Reduction to Complete Runs

This holds since links(ino, dirs) = ∅ implies ino ∈ orphans(dirs,files).
Fig. 11 shows an arbitrary transition of a crash from ls0 to ls1. If OpLi is

crash-neutral then there is a state ls2 that is reachable through a submachine
call to OpLi and also yields ls1 if we postpone the crash until after the call. This
allows us to complete a crashed run of M (L ) until the operation terminates,
by extending the crashed run with these transitions of crash-neutral operations.

Lemma 2. If all operations of L are crash-neutral, the M (L ) crash is unre-
stricted, and all runs of OpMj = (prej , inj , α, outj) terminate within prej, then

JOpMj K = JOpMj K holds.

Proof. Given (s0, s
′
 ) ∈ JαK , we have by definition of JαK the case of a crashing

run (s0, . . . , s1) o
9
I |= α with (s1, s

′) ∈ Cr and I finite. The case of a crashing
submachine call is not possible here, and the case without crash is trivial. Fig. 12
depicts this situation. We incrementally extend (s0, . . . , s1) to a complete run
of α ending in a state sn with (sn, s

′) ∈ Cr , in which case we are done.
If the first transition in I is a submachine call to OpLi , we know that the

precondition holds, since otherwise OpMj has an infinite run. Since OpLi is

crash-neutral, there is a state ls2 with (ls1, ls2) ∈ JOpLi K and (ls2, ls
′) ∈ CrL

(cf. Fig. 11). We extend the partial run with the state s2 := ls2⊕gs1. Note that
(s2, s

′) ∈ Cr holds. Furthermore, we know that a finite completion I ′ of the
new run exists, because rules can not get stuck and all runs of OpMj terminate.

Otherwise, the first transition of I leaves the state of L unchanged. We
extend the partial run with s2 :=I(1) and the completion I ′ is (I(1), . . . , I.last).

In both cases we have extended the partial run of α one step while still
being able to crash to the same state s′. We repeat this process until we have
a complete run of α that crashes to s′. If this process does not terminate, we
have constructed an infinite run of α, contradicting the assumptions.

We lift this property to the entire machine (via Theorem 3):

Theorem 5. If all operations of L are crash-neutral, theM (L ) crash is unre-
stricted, and all runs of all operations ofM terminate within their precondition,
then M (L ) ≡M (L ) holds.
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The conditions of this theorem yield the following additional proof obliga-
tions in the calculus (where J is the index set of M and K the one of L):

Termination: preMj → 〈|αMj |〉 true for all j ∈ J
M (L )-Crash: Cr(ls⊕gs, ls ′⊕gs ′)↔ CrL(ls, ls ′)

Crash-Neutral: preLk (ls) ∧ CrL(ls, ls ′)

→ 〈αLk 〉 ( CrL(ls, ls ′) ) for all k ∈ K

Note that ls in the precondition of “Crash-Neutral” refers to the state before
executing αLk , whereas ls after 〈αLk 〉 refers to the post-state.

8. Related Work

The first part of this section summarizes related work to refinement and
submachines. A more detailed description has been given in [9]. The second
part discusses related work with regard to crash-safety and file systems.

8.1. ASMs & Submachines

In general our approach is based on iterated refinement, following the idea of
ASM refinement [2]. The specific instance of refinement defined here is based on
data refinement [17], in particular the contract-based approach of Z [8]. It can
be viewed as an adaption of this approach to the setting of ASMs. We prefer
the operational style of ASM rules over the relational style of Z operations,
since ASMs can be executed and directly translated to code. Nevertheless, our
atomic semantics (Def. 3) of ASM operations parallels the contract embedding
of Z relations into states with bottom, except that we do not add {⊥} × S⊥,
but just {⊥} × {⊥} to preserve the meaning of ⊥ as “nontermination” (not
“unspecified”). [18] argues that for both embeddings the same refinements are
correct, in particular our simulation proof obligations are those of Z refinement.

It is a folklore theorem of data refinement that proof obligations for indi-
vidual operations are sufficient to allow substitution of abstract with concrete
operations in any reasonable context, i.e., one that does not access the local
state of operations. Our formal proof of Theorem 2 shows that ASM rules are
one suitable context. We are not aware of formal proofs that propagate refine-
ment expressed in terms of submachine runs to the context. In [19] analogous
results are shown that simulations propagate (Theorems 4.10 and 9.5). This is
simpler since an incremental construction over the number of steps is possible
while we need to consider the run as a whole (cf. Theorem 2).

The refinement concept discussed here differs from our earlier formalisation
[20, 21], and from Event-B [22] in that it uses preconditions, not guards (the
earlier B formalism [23] had both preconditions and guards). Whether one
needs one or the other concept is application dependent: when rules are called
by the environment, the precondition approach is appropriate; if the machine
itself chooses a rule, then the guard interpretation is appropriate.
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The definition given here is on the one hand more liberal than the one in [21],
as it allows one to implement a diverging operation on the abstract level with
any run on the concrete level. On the other hand it is more strict, as it forbids
general m :n diagrams where m > 1 abstract operations are implemented with n
concrete ones, since the environment cannot be forced to call a specific sequence
of m operations.

With respect to ASMs, our syntax only uses a fragment of the syntax avail-
able in [1]. In particular we use parallel updates only in the atomic updates,
while control state ASMs allow arbitrary ASM rules. It would be possible to
generalize the atomic steps to general ASM rules, however, this would com-
plicate code generation. Also, symbolic execution rules would get significantly
more complex (cf. Chapter 8 of [1]), since parallel rules may have clashes.

For the atomic semantics given in Def. 3 it is not difficult to show that it
agrees with standard rule semantics of ASM rules, when α;β is interpreted as
α seq β in the following sense: (s, s′) ∈ JOpK corresponds to a successful com-
putation of a consistent set of updates of a Turbo ASM rule in [1], Chapter 4
(and s′ is the new state from applying this set). (s,⊥) ∈ JOpK corresponds to
either a diverging computation of updates, or to the computation of an incon-
sistent set. Our definition of submachines is different from the one in [1], where
a submachine is a subrule that may be called within a rule, similar to a call of
a submachine operation here.

For sequential ASMs with regular upate-set semantics as contexts, it should
be possible to prove a modularity result comparable to the one Sec. 5 when
submachine operations are represented by named procedures. Synchronously
parallel submachine calls (OpL par OpL) are problematic, because it would not
be possible to extract a submachine run according to Prop. 1 and Def. 4. In
practice, such parallel calls are also likely to produce clashes.

The crash theory of Sec. 6 could in principle be represented by control state
ASMs, however, this introduces undesired overhead (see e.g. [24]).

Event-B has two decomposition concepts for machines that roughly corre-
spond to interleaved [25] and synchronous parallel execution of rules [26]. It is
not immediately clear how our submachine concept could be encoded by such a
decomposition, since events in Event-B have no internal control structure.

8.2. File Systems & Crash-safety

The interrupt operator of CSP is similar to our semantic definition of a crash
regarding the possibility to abort a running operation: Process P4iQ denotes
that P executes until an (external) event i occurs, after which P is discarded
and Q is started. The operator originates from [27] and is further explored in
[28]. In [29], a trace-based semantics is given that is equivalent to our white-box
semantics of rules JαK .

In [30] a high-level modeling language specifically designed for file systems
is described. Examples cover sophisticated optimizations such as reordering of
writes and versioning. However, the modeling language is not intended for an
actual implementation of a file system. Bornholt et al. [31] similarly consider
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different crash consistency models and check the guarantees made by existing
file systems in practice using the Ferrite tool.

In the context of operating system kernels, interrupts are similar to crashes
in that they can occur at any time. The approaches we are aware of ([32, 33])
allow interrupts at specific locations in the code only.

In the context of the flash verification challenge, we know of several ap-
proaches that handle crashes. Kang et al. [34] uses the bounded model-checker
Alloy [35] to analyze crashes during a write operation. However, the approach
intertwines the effect of power loss with the specification of the write operation.
The adequacy of the model is therefore hard to judge. The approach [36] uses
bounded model-checking with SPIN to examine every intermediate state. Both
approaches currently scale only to models that are specifically tuned for a small
state space. Damchoom et al. [26] decompose the write operation at the granu-
larity of pages using Event-B refinement. Crash safety is specified with respect
to a shadow copy of the complete state (which is not realistic for Flash). The
authors of [37] have performed an extensive analysis of existing file systems,
including recovery, and have found multiple bugs.

Ridge et al. [38] provide a tool called SibylFS that serves as a test oracle and
reference specification for existing file systems. Our implementation successfully
passes the relevant tests.

Marić and Sprenger [39] consider a storage system which has similar proper-
ties as a file system, but with a strong focus on redundancy. They model crashes
with exceptions that are thrown by hardware operations, which resembles our
black-box machine HW .

Chen et al. [40] discuss different formalisms to express crash and recovery
on a high level. The follow up work [41] introduces Crash Hoare Logic in more
detail and presents the verification of a small but complete file system called
FSCQ targeting conventional magnetic drives. In comparison, their approach
requires one to reason about all intermediate states using a special logic, whereas
we are able to reduce the proof effort on a semantic level.

The approach in [42] annotates possibly nested regions of a program with
a corresponding recovery operation. It is assumed that the runtime resp. the
operating system knows which recoveries to start after a crash if this flexibility
is used (in comparison of one top-level recovery in our approach). Modular
abstraction of crashes and recovery is not supported by the formalism.

In both [41] and [42] each step of the program causes an additional proof
obligation connecting a crash in the current state to the precondition of recovery.

Recent work by Koskinen and Yang [43] explores a strategy similar to our
notion of crash neutrality: Recovered programs should not introduce behaviors
that were not present in the original (uncrashed) program (Section 3.1). This
amounts to the assumption that the original program is already functionally
correct in the absence of crashes and that crashes are in fact completely unob-
servable (i.e., the abstract crash + recovery of our setting is just identity, which
is insufficient for us). Supported by an automatic tool Eleven82, the authors
have uncovered erroneous behavior in production quality data base systems.

We are aware of another ongoing efforts to construct a verified file system:
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the authors in [44] have focused on a promising approach to simplify the tran-
sition to C-code using domain specific languages [45]. A model similar to our
AFS is presented in [46] including a high-level functional specification the op-
eration fsync to flush caches. Specification and verification methodology for
crash safety is not described.

For an overview of existing efforts in the context of file system verification,
see for example [47]. An extensive comparison of these efforts on a technical
level to our approach can be found in [16, 12, 15].

9. Conclusion

We have defined a refinement theory for data type ASMs with submachines,
which respect information hiding, and recovery from power failures. The theory
has been a key to enable modular and incremental development of the flash file
system case study.

In particular the reduction from crashes in intermediate to final states is an
important contribution to the question of how to handle crashes with reason-
able effort, that we found indispensable in practice: Usually, the most difficult
proof on each level in the refinement hierarchy is showing a refinement between
the concrete and abstract recovery operation. Considering the recovery explic-
itly at each step of a normal operation (and of the recovery itself) is virtually
impossible.

Even with the theory we have presented here, developing a realistic flash file
system, which has to bridge a large gap between abstract directory trees and
low-level arrays to model flash pages is still a large undertaking, and we were
only able to scratch the surface of the problems inherent in such a development
in this paper. The specifications size is approximately 15k lines. Approximately
half of the specifications are the rules of 19 ASMs, the other half are algebraic
definitions. We generate 13k lines of C code as the final implementation.

The fact that we were neither limited to verifying low-level C code, nor to
purely algebraic specifications of transition systems, has helped enormously to
specify and verify on the right level of abstraction.

One key difficulty was integrating the solutions for the various aspects that
have to be solved. Integrating the solutions properly was significantly more com-
plex, than solving individual aspects in isolation like caching, orphans, dividing
writes into pages etc. Often the integration of one additional aspect has lead to
various modifications that propagated through several layers of refinements.

In particular integrating power cut safety is still one of the most difficult
aspects. We estimate that at least half of the overall project of approximately
three to four person years can be attributed to errors and power cut safety.

There are two important aspects, which we will consider in future work. Both
will not cause tremendous changes to the final code, but amount to extensions
and modifications that will affect the whole refinement tower in a non-local way.

First, the actual implementation uses concurrency to do work, such as garbage
collection of erase blocks, in the background. On the syntactic level our approach
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is currently limited to consider sequential constructs only. We have been careful
to define the syntax and semantics of our rules such that it is compatible with
an extension to concurrency. In particular, our theorem prover KIV already
supports a logic called RGITL (rely-guarantee interval temporal logic) for such
an extension to interleaved programs [48]. Second, our models currently flush
internal caches at the end of POSIX operations and therefore the effects of the
operation can not be lost in a crash after the operation completed. The imple-
mentations in Linux, however, only flush when fflush or sync is called and it
is therefore possible that a crash reverses several of the last operations.
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List of Symbols

Symbol Description Page
f A function symbol 5
p A predicate symbol 5
SIG A signature 5
x A variable 5
x A tuple (of variables) 5
t A term 5
ϕ A formula 5
ε A quantifier-free formula 5
a An element of an algebra 5
s ∈ S A state (= algebra and valuation of variables) 5
s{x 7→ a} A state with modified variable 5
s{f(t) 7→ a} A state with updated function 5
loc A location (either f(t) or x) 5
JtK(s) The semantics of a term 5
α, β A program 5
I An interval (poss. inf. sequence of states) 6
#I The number of steps of an interval 6
I{x 7→ a} Interval with modified variables 6
I1seqI2 Sequential composition of intervals 6
(s, . . . , s′) Interval with finite length 6
(s, . . . ) Interval with infinite length 6
I |= α Nonatomic semantics of a program 6
S⊥ States with ⊥ 7
JαK ⊆ S⊥ × S⊥ Atomic semantics of a program 7
〈|α|〉ϕ α always terminates and ϕ holds at the end 7
〈α〉ϕ α has a terminating run with ϕ 7
M Data type ASM 8
pre A precondition 8
in A tuple of input locations 8
out A tuple of output locations 8
Op = (pre, in, α, out) An operation 8
j ∈ J Indexes of operations of a data type ASM 8
Opj An operation of a data type ASM 8
JOpK ⊆ S⊥ × S⊥ Atomic semantics of an operation 8
j = (j0, j1, . . .) finite or infinite call sequence 9
execM(j) executions of call sequence j (a set of intervals) 9
runsM(j) runs of call sequence j (a set of intervals) 9
A, C Abstract and concrete machine 9
as ∈ AS , cs ∈ CS Abstract and concrete states 9
OpAj , Op

C
j Abstract and concrete operation 9

IO ⊆ AS × CS Input/Output correspondence 9
IC vIO IA Interval IC refines interval IA with IO 9
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Symbol Description Page
C vIO A C refines A 9
R ⊆ AS × CS A forward simulation 9
R1seqR2 Relational composition of two relations 9

InitA / R Domain restriction of relation R to set InitA 9
ran(R) Range of relation R (⊆ CS) 9
L,K) Submachines (Data type ASMs) 10
ls,ks States of machine L and K 10
M(K) MachineM (a data type ASM) which uses ma-

chine K
10

ls⊕gs A states of machine M(L) 10
ks⊕gs A states of machine M(K) 10
I, c |= α Nonatomic semantics of a program with explicit

submachine call sequence
11

execLτ (k) Stuttering execution with τ steps 12
M Machine M with crashes at any time (“white-

box”)
16

M M with crashes only between operations
(“black-box”)

16

M Extended machine which can have crashes 16, 18
M (L ) Crashes only between M-operations 16
M (L ) Crashes within M ops., but with atomic L ops 16
M (L ) Crashes even within L-operations 16
Oprec Distinguished operation called for recovery from

a crash
18

Cr ⊆ S × S Relation describing the behavior of a crash 18
s ∈ S state with crash marker 18
JαK White-Box semantics of a rule with crashes 18
JαK Black-Box semantics of a rule with crashes 19
JOpjK ⊆ S⊥ × (S⊥ ] S ) Black- and white-box semantics of an operation 19
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