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Abstract. Satisfiability Modulo Theory (SMT) solvers received a lot of
attention in the research community in the last decade, and consequently
their expressiveness and performance have significantly improved. In the
areas of program analysis and model checking, many of the newly devel-
oped tools rely on SMT solving. The SMT-LIB initiative defines a com-
mon format for communication with an SMT solver. However, tool devel-
opers often prefer to use the solver API instead, because many features
offered by SMT solvers such as interpolation, optimization, and formula
introspection are not supported by SMT-LIB directly. Additionally, using
SMT-LIB for communication incurs a performance overhead, because all
the queries to the solver have to be serialized to strings. Yet using the
API directly creates the problem of a solver lock-in, which makes evalu-
ating a tool with different solvers very difficult. We present JavaSMT, a
library that exposes a solver-independent API layer for SMT solving. Our
library aims to close the gap between API-based and SMT-LIB-based
communication, by offering a large set of features with minimal perfor-
mance overhead. JavaSMT has been used internally in CPAchecker
since inception, and has been heavily tested in different verification algo-
rithms. The library is available from its Github website https://github.
com/sosy-lab/java-smt.

1 Introduction

During the last decade, SMT solvers have demonstrated an impressive increase
in expressiveness (many supported theories) and efficiency (much larger scale
of queries that can be answered within a small time-frame). As a consequence,
many tools for software verification rely on an SMT solver as a back-end.

The SMT-LIB [3] initiative defines a common interface language for SMT
solvers, much like SQL standardizes the interface to a relational database. How-
ever, from the perspective of a tool developer, using the textual SMT-LIB
communication channel is often suboptimal. Firstly, it does not expose all the
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features that modern solvers offer: interpolation1 multiple independent solvers,
formula introspection, and optimization modulo theories are not included in
SMT-LIB 2.0. It is also not possible to conditionally store formulas for future
reuse and remove them when they are no longer needed. Secondly, such a textual
communication can be very inefficient, because all queries to the solver have to
be serialized to strings, and all of the solver output has to be parsed. For a tool
that poses a large number of simple queries (such as in PDR [2]), parsing and
serialization can become a performance bottleneck.

However, when using a solver API directly, users face the problem of “solver
lock-in”, which makes it difficult to evaluate different SMT solvers or to switch
to a different SMT solver without rewriting a large chunk of the application.

We propose JavaSMT, a library that exposes a common API layer
across several back-end solvers. It is written in Java and is available under
the Apache 2.0 License on GitHub (https://github.com/sosy-lab/java-smt).
JavaSMT communicates with solvers using their API, and imposes only a min-
imal amount of overhead. For the solvers that are implemented in Java the
exposed API is used directly, and for the solvers in other languages we inte-
grated JNI bindings.

Outlook. This paper refers to JavaSMT v1.01 2. The contributions of this paper
are structured as follows: First, we describe the features that JavaSMT exposes in
Sect. 2. Second, we present the project structure and the requirements for adding
a new solver into JavaSMT in Sect. 3. Third, Sect. 4 discusses the strategies for
managing memory of the JNI bindings, and the associated performance problem.
Finally, we present a case study based on the Houdini algorithm [4] in Sect. 5,
and conclude by comparing JavaSMT to related projects and discussing possible
future work in Sect. 6.

2 Features

JavaSMT currently provides access to five different SMT solvers: MathSAT [1],
OptiMathSAT [17], Z3 [14], SMTInterpol [12], and Princess [16]. Table 1 lists
the theories and features that are supported by these solvers.

Formula Representation. To keep the memory overhead low, JavaSMT does
not store its own internal representation of the formulas, but keeps only one
single pointer to each formula in the solver’s memory, possibly with an addi-
tional pointer to the current solver context. Consequently, the memory footprint
of JavaSMT is proportional to a small constant multiplied by the number of
formulas that the client application needs a reference to, regardless of the size of
the constructed formulas. This choice ensures high performance, but obstructs
transferring formulas between different contexts for different operations, such as
checking satisfiability with Z3 and performing interpolation with SMTInterpol.
For such inter-solver translations we use SMT-LIB serialization.
1 A proposal draft [11] exists since 2012.
2 https://github.com/sosy-lab/java-smt/releases/tag/1.0.1.
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Table 1. Theories and features supported by different solvers
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Integer + + + + +

Rational + + + + -

Array + + + + +

Bitvector + + + - -

Float + + - - -

Unsat Core + + + + -

Partial Models - - + - +

Assumptions + + + + +

Quantifiers - - + - +

Interpolation (Tree/Sequential) + + + + +

Optimization - + + - -

Incremental Solving + + + + +

SMT-LIB2 + + + + +

Type Safety. Using and enforcing types is beneficial for a software library,
because it guarantees the absence of errors that are caused by incorrect type
usage at compile time and can increase the level of trust in the software. Improv-
ing such confidence is particularly important for tools for software verification,
because the verdict of such tools is only reliable if all components operate cor-
rectly (“who verifies the software verifier”).

JavaSMT uses the Java type system to differentiate between the different
sorts of formulas (e.g., BooleanFormula and IntegerFormula) and guarantees
that all operations respect the formula type. The typed interface avoids incorrect
operations (such as adding integers to Booleans), which would not pass the
compiler. Type safety also extends to model evaluation: for example, evaluating
an IntegerFormula is guaranteed at compile time to return a BigInteger.

Formula Introspection. In many applications, formula introspection is a
required feature. For instance, an analysis might wish to re-encode expensive
non-linear operations as uninterpreted functions, or to find and rename all vari-
ables used in the formula.

In our experience with formula introspection and transformation code in
CPAchecker [6], we have discovered that writing correct and robust formula-
traversing code can be very challenging, due to:
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– cases missed by the client, e.g., an unexpected XOR,
– incorrect assumptions by the client, such as assuming that the input formula

has no quantifiers,
– not performing memoization for recursive traversals, resulting in exponential

blow-up on formulas represented as directed acyclic graphs, or
– performing recursive traversal using recursion, since it can result in stack-

overflow exceptions on large formulas.

In order to decrease the likelihood of such bugs, we use the Visitor design
pattern (cf. [9], Chap. 5) for formula traversal and transformation. Two visi-
tor interfaces are exposed: BooleanFormulaVisitor and FormulaVisitor. The
Boolean visitor requires implementations for Boolean primitives that can occur
in the formulas (equality, implication, etc.) and matches all other formulas as
atoms. It is useful for transformation of the Boolean structure of the formula,
such as a conversion to negation normal form. The FormulaVisitor does not
explicitly require matching each possible function, but provides an enumeration
consisting of most common function declarations (addition, subtraction, com-
parison, etc.) and can be used to recursively traverse the entire formula, e.g., in
order to find all used variables.

Our experience shows that such an approach leads to considerably safer code
as compared to direct formula manipulation.

3 Project Architecture

The overall structure of the library is shown in Fig. 1. An interaction with the
JavaSMT library starts with a SolverContextFactory, which is used to create
a SolverContext object, encapsulating a context for a particular solver. All fur-
ther interaction is performed through the SolverContext class, which exposes
the features outlined in Sect. 2. Instances of SolverContext are not thread-safe,
and should be accessed only from a single thread. However, separate contexts are
independent from each other and can be safely used from different threads, pro-
vided that the underlying solver supports multithreading on different contexts.

An interface to every represented solver is implemented as a separate package
with an entry class that implements the SolverContext API.

4 Memory Management

Different SMT solvers resort to different strategies for memory management. The
solvers running in managed environments (e.g., SMTInterpol and Princess run-
ning on JVM) use the available garbage collector, while solvers exposing a C API
have to expose the memory management API to a user. The underlying prob-
lem is that for a library that exposes its API through the native non-managed
language, it is impossible to know whether a previously returned object is still
referenced by the client application, or whether it can be deleted.
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MathSAT exposes a “manual” garbage-collection interface, which removes
all formulas except those that are specifically requested to be kept. This requires
an application to keep track of all created objects that can still be referenced.

Z3 uses a reference-counting approach, where an object is considered unreach-
able whenever its reference count reaches zero. While this interface can be
effectively used from C++ to offer automatic memory management using RAII
(incrementing references in constructors, and decrementing in destructors), using
it in an efficient and correct way is surprisingly difficult from Java.

The official Z3 Java API is using Java finalizers 3 to decrement the references,
explicitly performing locking on the queue of references that need to be decre-
mented. Unfortunately, finalizers are known to have a very severe memory and
performance penalty (cf. [10], Chap. 2.7). Thus we have developed our own Z3

JNI bindings with a memory strategy based on using PhantomReference and
ReferenceQueue, provided by the JDK to get a more fine-grained control over
the garbage collection.

We present the performance evaluation of three different memory managing
strategies for Z3: (1) using the official Z3 API, which relies on finalizers, (2) using
our phantom reference-based implementation, and (3) not closing resources at
all. We have chosen a benchmark setup that runs a program analysis with local
policy iteration [8] on the SV-COMP [5] data set. Obtained results are shown in
Fig. 2. Unsurprisingly, the approach using finalizers has the worst performance
by far, with performance penalty often eclipsing the analysis time, and a very
large memory consumption. The no-GC approach minimizes both memory and
time consumption. We attribute the high performance of the no-GC approach to
the hash-consing used in Z3, which results in no additional memory consumption
for ASTs that were previously already constructed.

Solver Bindings

JavaSMT Implementation

JavaSMT API

Z3 MathSAT SMTInterpol Princess

Formula Solver Context Formula Manager Model ...

Fig. 1. JavaSMT Architecture

3 Since the publication of this paper, Z3 bindings were updated by one of the authors
of this paper to use a more efficient memory management strategy.
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5 Case Study: Inductive Formula Weakening

To give a tour of the library, we present a usable implementation of the inductive-
invariant synthesis algorithm Houdini [4]. In order to provide the context, we
include a brief background that explains the algorithm and its motivation.

Background. We consider a program that manipulates a set X of variables.
The program is defined by the initial condition I(X) and the transition relation
τ(X,X ′). Both I and τ are quantifier-free first-order formulas.

A lemma F is called inductive with respect to τ if it implies itself over the
primed variables after the transition:

∀X,X ′ : F (X) ∧ τ(X,X ′) =⇒ F (X ′) (1)

Inductiveness can be checked with a single query to an SMT solver. The
lemma F is inductive with respect to τ iff the following formula (2) is
unsatisfiable:

F (X) ∧ τ(X,X ′) ∧ ¬F (X ′) (2)

The Houdini algorithm finds a maximal inductive subset of a given set L of
candidate lemmas which satisfies the initial condition I(X). Firstly, it filters out
all lemmas from L which are not implied by I. Then, it repeatedly checks

∧
L

for inductiveness using (2), and updates L to exclude the lemmas that give rise
to counterexamples-to-induction. At the end the algorithm terminates with an
inductive subset LI ⊆ L.

Counterexamples-to-induction are derived from a model returned by an SMT
solver in response to a query in (2) (such a model exists iff the conjunction of
lemmas is not inductive). Given a model M, the Houdini algorithm filters out
all lemmas l ∈ L for which M |= ¬l(X ′) holds. After such filtering is applied in
a fixed-point manner, a (possibly empty) inductive subset remains.

0 20 40 60 80 100 120 140

109

1010

Programs

M
em

o
ry

C
o
n
su

m
p
ti

o
n

(b
y
te

s)

No bookkeeping

Phantom References

Finalizers

0 20 40 60 80 100 120 140

101

102

103

Programs

W
a
ll
ti

m
e

(s
)

No bookkeeping

Phantom References

Finalizers

Fig. 2. Resource usage comparison across different memory management
strategies for Z3



JavaSMT: A Unified Interface for SMT Solvers in Java 145

Implementation.
Initialization: To initialize JavaSMT, we pass the required classes using depen-
dency injection, as shown in Listing 1. This code snippet generates a configu-
ration from passed command-line arguments (configuration can choose a solver,
and tweak any of its options), a logger instance, and initializes the solver context.

Formula Transformation: The Houdini algorithm gets a set of lemmas as an
input. However, for checking inductiveness as shown in (2) we need primed ver-
sions of these lemmas, which we obtain by renaming all free variables using a
transformation visitor as shown in Listing 2.

Instead of directly removing asserted lemmas from the solver, we use annota-
tion with auxiliary selector variables. Each lemma li is converted to li∨si, where si
is a fresh Boolean variable. After such an annotation, the lemma li can be relaxed
by asserting an assumption si. The code for input-lemma annotation is shown in
Listing 3. Finally, the main Houdini loop, which performs lemma filtering until
inductiveness, is shown in Listing 4.
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6 Related Work

jSMTLIB [7] is a solver-agnostic library for Java which uses SMT-LIB for com-
munication with the solvers, and thus has the associated restrictions outlined in
Sect. 1, including costly serialization overhead and a limitation to the features
offered by SMT-LIB. In contrast, our work presents a solver-independent library
for Java which connects directly to the solvers API.

The newly published jDart [13] tool bundles a jConstraints library that
offers a functionality similar to JavaSMT. However, JavaSMT has more features,
communicates with solvers using their API, and provides an efficient memory-
management strategy (jConstraints uses the official Z3 Java API, which relies
on finalizers). Additionally, our library provides several solvers that can be
installed automatically and one simple configuration option to switch between
them. For jConstraints, the user has to manually include and configure all the
solver’s bindings and binaries. We have learned that these steps are complicated
and error-prone, as the library might be used as part of a bigger software sys-
tem. Thus, our solvers and their bindings do not require to setup any special
environment.

The problem of creating such a library has also been tackled for Python in
PySMT [15]. In contrast to our work, PySMT keeps the formula structure itself,
while delegating the queries to the solvers. While this allows for creating formulas
without any solvers installed, and for easier transfer of formulas between different
contexts, it incurs a large memory overhead.

7 Conclusion

We have presented JavaSMT, a new library for efficient and safe communication
with SMT solvers. The advantages of using such a library over communicating
using SMT-LIB include performance, access to new features, and the ability to
control which formulas remain in scope and which should be discarded. Some
disadvantages exist as well — using JavaSMT means restricting to the supported
solvers, and relying on JavaSMT developers to update the solvers in time. Our
experience with using SMT solvers is that for applications that pose a few large,
monolithic queries and need only standard features, the communication using
SMT-LIB is optimal, while for tools that post many cheap, incremental queries,
using the API via JavaSMT is the better solution. New editions of SMT-LIB
could make missing features like interpolation available (proposed draft already
exists [11]), but giving the user control over memory management for formulas
(Sect. 4), or allowing efficient communication without string serialization and
parsing may be far outside of the scope of SMT-LIB initiative. So for users
requiring such features, an intermediate-layer library is always beneficial.

Acknowledgements. The authors thank P. Wendler for valuable discussions on
design decisions and principles behind JavaSMT, and all JavaSMT contributors for
their programming efforts.
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T., Rakamarić, Z., Raman, V.: jDart: A dynamic symbolic analysis framework.
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459.
Springer, Heidelberg (2016)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT 2015 (2015)
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