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Abstract. File systems not only have to be functionally correct, they
also have to be crash-safe: a power cut while an operation is running
must be guaranteed to lead to a consistent state after restart that loses
as little information as possible. Specification and verification of crash-
safety is particularly difficult for non-redundant write-back caches. This
paper defines a novel crash-safety criterion that facilitates specification
and verification of order-preserving caches. A power cut is basically ob-
servationally equivalent to a retraction of a few of the last executed
operations. The approach is modular: It gives simple proof obligations
for each individual component and for each refinement in the develop-
ment. The theory is supported by our interactive theorem prover KIV
and proof obligations for crash-safety have been verified for the Flashix
flash file system.
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1 Introduction

To be reliable, file systems have to be both functionally correct and crash-safe.
Functional correctness is typically expressed in terms of a high-level specification
of its operations, as given for example by the established POSIX standard [1].
Crash-safety is harder to prove, since it not only has to consider the states before
and after operations. Instead, a power cut that interrupts an operation in any
intermediate state must lead to a consistent state after reboot, where as little
information as possible has been lost.

We develop Flashix [18], a file system for flash memory that is verified with
the interactive theorem prover KIV [8] to be both functionally correct with
respect to POSIX and crash-safe. Flashix is strongly modular: it is hierarchically
composed of encapsulated components, which are formalized as data types [12,7]
extended by a specification of the effect of a power cut and subsequent recovery.

? Supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von Flash-
Dateisystemen” (grants RE828/13-1 and RE828/13-2).



Verifying crash-safety is critically affected by caching mechanisms employed
by the implementation, as data structures in main memory are lost upon a
power cut. Caches can be classified into write-through and write-back caches.
The former can be reconstructed from persistent memory and are therefore fully
redundant. Crash-safety is expressible by stating that the recovery operation
restores the state from before the power cut. Losing a write-through cache due
to a power cut is invisible to its clients (components that use the cache).

Write-back caches, on the other hand, lead to actual loss of data in the event
of a power cut. The crash-safety of their clients then depends heavily on the
exact nature of the data lost. Therefore the specification of the crash-safety of
the cache needs to be propagated upwards through the component hierarchy.

Flashix is a log-structured file system. The log component appends log entries
by using a write-back cache. It defers writes until the size of a page or sector is
reached. This cache is order-preserving, i.e. the write operations to the storage
device are in the same order as the writes to the cache. In our experience (Sec. 2
and [9]) if crash-safety is expressed as a state-based property, i.e. as a relation
between the state before and after the power cut, it needs to be expressed on
every level of abstraction, which complicates verification significantly.

The contribution of this paper is threefold. We propose a new correctness
criterion for order-preserving caches called quasi sequentially crash consistent1.
A storage system satisfies this criterion if a power cut takes the system’s state
backwards in time by retracting several system operations in order and by re-
executing the earliest retracted operation. Secondly, we embed this operations-
based property into the semantics of components (Sec. 3). This allows us to
propagate it over component hierarchies implicitly via refinement (Sec. 4). The
notion of refinement defined allows for substitution (Sec. 5). Sec. 6 shows that
in practice considering the initial and final state of an operations execution is
sufficient for the verification of crash-safety. Finally, we implemented support
for the proof obligations of the theory in our interactive theorem prover KIV [8]
and applied it to the Flashix file system. All models, proofs and the executable
code are available online.2

2 Motivation
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Fig. 1: Refinement

The formal development of a software system usually
starts with a specification of its desired behavior and
properties, e.g. POSIX in the case of a file system. The
implementation then comprises a hierarchy of compo-
nents, stacked as indicated by Fig. 1, i.e., each imple-
mentation refines (dotted lines) a specification Speci. It
is a client of ( ) an abstraction of one or more subcomponents Speci−1. Either
Speci−1 is refined further or serves as a specification for external components, e.g.

1 The classification of Bornholt et al. [3] defines sequential crash consistency.
2 http://www.isse.de/flashix
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state block : Array〈Byte〉
append(in buf : Array〈Byte〉, out err : Error)
precondition

# block + # buf ≤ BLOCK SIZE

atomic

choose n : N with n ≤ # buf in

block := block ++ buf [0 . . . n]
err := (n = # buf ) ? ESUCCESS : EIO

crash

block ′ = block ↓PAGE SIZE

with domain true
synchronized

true

Fig. 3: Explicit Specification
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Fig. 4: Alternative Re-Execution

// same state & operations

crash

block ′ = block
with domain page-aligned(block)

synchronized

page-aligned(block)

Fig. 5: Implicit Specification

the interface to flash hardware in the context of Flashix. Refinement guarantees
that the final implementation has the properties of the top-level specification.

In [10] we have integrated the verification of crash-safety into this scheme: In
addition to regular operations, each model is equipped with a specification of re-
sets, which consist of the effect of crashes and their subsequent recovery, specified
as a predicate over two states. We first illustrate this type of state-based spec-
ification with the Flashix write buffer [9] and then highlight a crucial problem
with this approach and propose a different, operations-based specification.

pages written cached partial 
page in RAM 

persistent
block 

Fig. 2: Write Buffer [9]

The write buffer is visualized in Fig. 2. It alle-
viates the limitation that flash blocks can only be
written sequentially and in page-sized chunks. The
component keeps a page-sized buffer in RAM and
writes it to flash as soon as the page-size is reached.
A transactional log or journal uses the write buffer
to record file system changes.

Explicit Reset Specification. Fig. 3 depicts a first, natural abstraction of the
write buffer that merges the cache and the contents of the flash block into one
dynamically-sized array of bytes block . The append operation extends the con-
tents of the abstract block by new data stored in buf . Since flash memory is
inherently unreliable [20], the specification accounts for short writes that fail to
persist the whole buf up to its size # buf and write just the subrange from 0 to n
(n excluded) instead.3 The specification is a program that cannot be interrupted
by a power cut in an intermediate state, signified by the keyword atomic.

The effect of losing the cache is captured by the crash predicate. It restricts
a transition from state s to s′ of the system. In the case of the write buffer
a prefix block ′ of block rounded down to the previous page boundary is taken,
where block ↓ PAGE SIZE = block [0...(# block) ↓ PAGE SIZE] for n ↓ PAGE SIZE =
n − (n mod PAGE SIZE).

3 Note that the POSIX specification [1] explicitly permits such short writes to surface
at the system interface.
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The problem with the approach is that the data lost by the reset of the
cache component Speci−1 (in Fig. 1) must be propagated explicitly to the levels of
abstraction given by its direct client Speci, and then to its client’s client, until the
top-level specification. This is particularly problematic if the hierarchy is deep
or, as is the case in Flashix, higher levels of abstraction can not naturally express
the property. Therefore, we split the specification of a reset into 1. a retraction
transition followed by a re-execution transition and 2. a crash transition.

Implicit Reset Specifications. Figure 4 shows an example with write operations
W1 to W4. The operations and how far they filled the block is denoted by the
start/end position of the arrows. Page boundaries are depicted as dotted lines.
A power failure in the explicit approach (i.e., what effectively happens) removes
the hatched part at the end of the block up to the last dotted line.

The effect can be explained alternatively by first reversing the effect of the
last two operations W3 and W4 and subsequently re-executing the W3 operation
(denoted by W3’) on the same inputs, choosing the error path that writes only
n = (# buf ) ↓ PAGE SIZE bytes. This alternative specification requires to define
synchronized states that are resilient against crashes, i.e., a retraction is not
allowed in such a state: Fig. 5 shows how these can be captured in the write
buffer by a synchronized predicate over the state, where page-aligned(block)
holds iff # block mod PAGE SIZE = 0. Clearly, the alternative trace that executes
W1, W2 and W3’ is possible by the specification of the append operation. In a
synchronized state there is no additional effect of a crash that must be modeled
explicitly, i.e., the crash predicate of the implicit specification of Fig. 5 is just
identity. In states outside of the domain of the crash predicate a crash can not
occur.

By making the crash predicate partial, we mark the states of interest in which
we want to consider crash transitions. Here, we use just the synchronized states,
while in the general theory it is also possible to use a superset. We have to ensure
that retracting operations and re-executing one operation actually targets a state
in the domain of the (now partial) crash predicate. Informally, this is guaranteed
when it can be proved that operations fall into two classes: retractable operations
like W4, where a crash has the same effect before and after the operation, and
completable operations like W3, which have an execution that leads to a state
in the domain of the crash predicate.

Spec i, implicit 

Spec i, explicit 

wbuf Spec i - 1 

Fig. 6: Introducing
Implicit Specifications

We use both the implicit as well as the explicit spec-
ification as shown by Fig. 6. First, we abstract the
write buffer implementation to the explicit specifica-
tion with a normal refinement step (Thm. 1, Sec. 4).
Then we introduce the implicit specification in a sep-
arate refinement step (Thm. 2, Sec. 4). In the seman-
tics we define next, the retraction transition is then
implicitly propagated upwards through the remaining
refinement hierarchy automatically (Thm. 3, Sec. 5).
Therefore only the (now trivial) crash predicate needs
to be expressed on each layer of abstraction.
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s0 sk sk+1 sn sn+1

s′k+1
sn+2

∈ dom(Crash) ∈ Sync

/∈ Sync
Opik

(ink, outk) Opin
(inn, )

history jump
re-execute

Opik
(ink, )

or stutter

Crash
reset

Fig. 7: Constructing a reset transition sn+1 sn+2.

3 Components with Power Cuts

Systems considered in this work are hierarchically composed of encapsulated
components, which are formally presented in terms of data types [12,7] extended
by a specification of the effect of a power cut and subsequent recovery.

Definition 1 (Component). A component C = (S, In,Out , Init ,Sync,Crash,
(Opi)i∈I) consists of a set of states S, inputs In and outputs Out, initial states
Init, synchronized states Sync with Init ⊆ Sync ⊆ S, a relation Crash ⊆ S×Sync
with Sync ⊆ dom(Crash) describing the effect of a crash including its subsequent
recovery,4 and regular operations Opi ⊆ In × S × S × (Out ] { }). The value  
signifies that the operation was interrupted by a power cut.

Operations are defined by programs that modify the state and compute an
output from an input. Implementation programs may call operations of another
(sub-)component as detailed in Sec. 5. A small-step semantics of the programs
is given in [10]. Here, we abstract program runs to a relation Opi between initial
and final states. The crash and synchronized relation are given syntactically by
the crash and synchronized predicate in Fig. 3 and Fig. 5.

A complete program run starting in state s with input in, finishing in state s′

with output out is written s
Opi(in,out)−−−−−−−−→ s′, which is equivalent to (in, s, s′, out) ∈

Opi, using the induced relation Opi(in, out) ⊆ S × S as a label. Abbreviation
(s, s′) ∈ Opi(in) holds if there is any out 6=  such that (s, s′) ∈ Opi(in, out).

An incomplete run where the computation is interrupted by a power cut in an
intermediate state s′ (and the operation does not return a result) results in tuple

(in, s, s′, ) ∈ Opi, written as s
Opi(in, )−−−−−−→ s′, again using Opi(in, ) ⊆ S×S as a

label. It is reasonable to assume that a crash can happen in initial as well as final
states, i.e., we assume IdS ⊆ Opi(in, ) for the identity relation resp. Opi(in) ⊆
Opi(in, ). Interrupted steps in a run are followed by steps s′

reset−−−→ s′′ (detailed
below), that model the effect of a power cut and its subsequent recovery.

4 In the actual models recovery is a separate operation that runs directly after a crash
and tries to restore the state. To keep the presentation brief, we combine the crash
and recovery into one transition here.
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The semantics of components is a set of runs, which are finite or infinite
sequences of labeled transitions of these three kinds, which generalizes data

types as used in Z [22] that have regular transitions s
Opi(in,out)−−−−−−−−→ s′ only.

Definition 2 (Runs). A run of the component C is given by a sequence of

labeled state transitions s0
l0−→ s1

l1−→ · · · that starts in an initial state with
s0 ∈ Init and consist of fragments for each (non-interrupted) state sn:

sn
Opin

(inn,outn)−−−−−−−−−−→ sn+1 or sn
Opin

(inn, )−−−−−−−−→ sn+1
reset−−−→ sn+2,

where sn+1
reset−−−→ sn+2 picks an earlier state sk from this run, optionally re-

executes the corresponding k-th operation partially ( output), and applies the
residual effect of crash & recovery, i.e., there is k with k ≤ n + 1 and s′k+1 s.t.:

– sk′ 6∈ Sync for all k′ with k < k′ ≤ n + 1,

– sk
Opik

(in, )
−−−−−−−→ s′k+1 and k < n + 1 or sk = s′k+1,

– (s′k+1, sn+2) ∈ Crash

Figure 7 depicts how a transition sn+1
reset−−−→ sn+2 (arrow ) is constructed by

these three constituents (arrows ).
We point out some aspects of Def. 2: Re-execution is optional and only per-

mitted when at least one operation had been retracted by the jump (k 6= n+ 1).
The state sn+2 will be synchronized as Crash ⊆ S × Sync, implying that an-
other crash does not go back further in the history. State s′k+1 must fall into
the domain of Crash. This corresponds to the intuition that a power cut can be
observed in or needs to be considered in states in dom(Crash). Expressing the
Crash-predicate on a selected subset of states is easier for the given component
and its clients as we have motivated with Fig. 5. Retracting operations implies
the existence of a different run without a jump that ends in the same state sn+2:

s0 → · · · → sk
Opik

(ink, )
−−−−−−−−→ sk′+1

Crash−−−−→ sn+2. (1)

A component where all states are synchronized (Sync = S) neither retracts
nor re-executes operations. This view is used for the lowest level of specification,
where the distinction between volatile and persistent memory is explicit, and
the effect of a power cut is expressed as just forgetting data in volatile memory.

4 Crash-Safe Refinement

The observable behavior of a run is the sequence of its labels. Refinement is
defined based on preserving observable behavior:

Definition 3 (Refinement). A component C refines a component A, written
A v C, iff they have the same input and output set and the same index set of

operations and for each run cs0
l0−→ cs1

l1−→ · · · of C there is a matching run

as0
l0−→ as1

l1−→ · · · of A with the same labels.
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With these definitions it is now possible to express the correctness and crash-
safety criterion we propose for file systems.

Definition 4 (Quasi Sequential Crash Consistency). A file system is quasi
sequentially crash consistent, iff it refines the POSIX component given in [11]
augmented with synchronized states reached by successful calls to fsync or sync.
The crash predicate discards open file handles and deletes orphaned files [10].

Since our POSIX specification is a component as by Def. 1 its reset is allowed
to retract operations, however, never across a successful call to fsync or sync.
“Quasi” signifies that one re-execution is allowed, which is not allowed in Born-
holt’s definition of sequential crash consistency [3]. The Flashix file system is
developed via incremental refinement of the POSIX component.

In general, a refinement step can change data representation as well as change
the view of a crash, since only the observable behavior must be preserved. The
generality of having both changes in abstraction is only needed for a uniform def-
inition of refinement. In practice, refinements either change data representation,
or the specification of a crash individually—several refinement steps can be com-
bined transitively if needed. The following two subsections therefore consider the
two types of refinement separately. Like in data refinement, refinement is typi-
cally proved using forward simulations. New proof obligations result from steps

sn
Opj(in, )−−−−−−→ sn+1

reset−−−→ sn+2, therefore the proofs focus on these transitions.

4.1 Data Refinement & Propagation of Jumps

The proof obligations for changing data representation are just slightly more
complex than data refinement. We denote with R1 o

9
R2 the composition of two

relations R1 and R2 and with D/R and R.D the domain resp. range restriction
of the binary relation R to the set D.

Theorem 1 (Data Refinement by Forward Simulation). A refinement
A v C is implied by a forward simulation R ⊆ AS × CS satisfying (for all
i ∈ I, in ∈ In, out ∈ Out)

1. CInit ⊆ AInit o
9
R (initialization)

2. R o
9
COpi(in, out) ⊆ AOpi(in, out) o

9
R (correctness)

3. ASync o
9
R ⊆ CSync (synchronization)

4. R o
9
COpi(in, ) o

9
CCrash ⊆ AOpi(in, ) o

9
ACrash o

9
R (crash)

The synchronization condition states that fewer states of component A are syn-
chronized and the crash condition abstracts the remaining effect of a power cut.

Proof (of Thm. 1). The proof composes commuting diagrams as usual, starting
with two related initial states given by 1. For regular transitions, proof obligation
2. gives the relevant commuting diagram. A history jump of component C is
mapped to a history jump over the same number of operations in A. Condition
3. ensures that each unsynchronized state retracted by C can be retracted by A
as well. Condition 4. commutes either the interrupted operation (when the jump
is empty) or the re-execution jointly with the subsequent crash and recovery. ut
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s0 s1 s2
Op(in, out) Crash

Crash

Fig. 8: Retractable before Crash

s0 s1 s2
Op(in, out) Crash

s′
1

∈ D
Op(in, ) Crash

Fig. 9: D-Completable before Crash

4.2 Crash Refinement & Introduction of Jumps

Incrementally introducing history jumps is the second kind of refinement. It
assumes that the data structures and operations are the same on both levels.
The basic idea is to move parts of a power cut from a Crash transition to the jump

transition by looking at the history fragment sn
Opi(in,out)−−−−−−−−→ sn+1

Crash−−−−→ sn+2 of
the component before a crash transition and construct a different explanation
of how the component ended up in sn+2. This construction yields an alternative
intermediate state s′n+1 from a set D ⊆ dom(Crash), allowing us to simplify the
crash transition to the relation D / Crash as in Fig. 5 for D = page-aligned .

Definition 5 (Retractable before Crash). A transition s0 −→ s1 is retractable
before Crash, iff every state s2 with (s1, s2)∈Crash, also satisfies (s0, s2)∈Crash.

If an execution step is retractable before Crash, it did not have any immediate
permanent effect and we can ignore that it ever took place directly before a
crash happened. Figure 8 depicts this alternative execution in bold. This does
not mean that the execution will never have a permanent effect. Any of the
subsequent operations may very well persist the data of previous operations. In
the example, the transition W4 in Fig. 4 is retractable before the crash of Fig. 3
that sets the state to block ↓PAGE SIZE.

Definition 6 (D-Completable before Crash). A transition s0
Op(in,out)−−−−−−−→ s1

with out ∈ Out ] { } of an operation Op is called D-completable before Crash
for some set D ⊆ dom(Crash), iff for every state s2 with (s1, s2) ∈ Crash there

is an execution s0
Op(in, )−−−−−−→ s′1 with s′1 ∈ D and (s′1, s2) ∈ Crash.

If a transition is D-completable before Crash it is possible to construct an al-
ternative partial execution that ended in a D-state without any difference after
a crash. Figure 9 also depicts this alternative execution in bold. Transition W3
in Fig. 4 for example is page-aligned -completable before the crash of Fig. 3 to
block ↓PAGE SIZE and the depicted re-execution W3’ is the alternative.

Definition 7 (D-Retractable before Crash). An operation Op is D-retractable
before Crash for some set D ⊆ dom(Crash), iff every transition of Op is either
retractable or D-completable before Crash, or equivalently:

Op(in) o
9
Crash ⊆ (IdS ∪ (Op(in, ) . D)) o

9
Crash for all in ∈ In

8



C s0

∈ CSync

sl sl+1 sk sk+1 sn
Opj Opi

history jump

s′k+1Opi or stutter

sn+1

CCrash

A s0

∈ ASync

sl sl+1 sk sk+1 sn
Opj Opi

history jump

s′l+1
ACrash

history jump

Opj or stutter

Fig. 10: From Implicit to the Explicit Reset Specification

This lifts Defs. 5 and 6 to the level of one operation. For example, append of the
write buffer is page-aligned -retractable before block ↓ PAGE SIZE, since one can
either retract the operation if it did not cross a page boundary or execute it in
such a way that it writes up to the last page boundary.

The following theorem can be used to abstract an explicit crash specification
as part of C to an implicit crash specification by A.

Theorem 2 (Implicit to Explicit Refinement). The refinement A v C for

C = (S, Init , In,Out , CSync, CCrash, (Opi)i∈I) and

A = (S, Init , In,Out , ASync, ACrash, (Opi)i∈I)

with atomic operations Opi for all i ∈ I follows from

1. dom(ACrash) / CCrash ⊆ ACrash

2. ASync ⊆ CSync

3. Opi is dom(ACrash)-retractable before CCrash for all i ∈ I

We usually apply Thm. 2 with crash predicates that satisfy the (stronger) con-
dition dom(ACrash) ⊂ dom(CCrash) to strengthen the crash transition, i.e., a
crash can happen in fewer states of component A than of component C and is
therefore simpler to express. This is compensated by farther jumps on the his-
tory of A in comparison to those of C as by 2. A has less synchronized states.
These jumps are then easily propagated upwards over abstractions with Thm. 1.

Proof (of Thm. 2). We choose the run of C as the run of A and focus on the
transitions of a power cut. Figure 10 depicts the situation before the power
cut (omitting input and output labels), starting in a state s0 where both C
and A are synchronized. Such a state exists because at least in the initial state
and after every power cut both components are synchronized. The three parts
of the power cut transition of C are depicted in the figure starting in state
sn and ending in sn+1. We construct a matching transition of A, depicted by
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arrows in the figure. All operations that C retracts are also retracted by A
(history jump from sn to sk). However, the history jump transition might be
farther still (history jump from sk to sl). The idea is to determine a state s′l+1 ∈
dom(ACrash) of component A with the properties shown in the figure: there is
an additional second jump backwards to sl and a re-execution that yields s′l+1.

The construction considers the run s0 99K sk
Opi or stutter−−−−−−−−−→ s′k+1

CCrash−−−−−→ sn+1

of C implied by (1) of Sec. 3 that yields s′k+1.
The existence of A’s history jump and re-execution is proven by induction

over k. If the sequence is empty (k = 0 and the transition stutters), then there

is only a transition s0
CCrash−−−−−→ sn+1 starting from state s0 with s0 ∈ ASync. By

proof obligation 1., s0
ACrash−−−−−→ sn+1 is the matching run of A: the additional his-

tory jump and re-execution transitions stutter. Otherwise, Opi is dom(ACrash)-

retractable before CCrash and therefore the transition sk
Opi−−→ s′k+1 is either:

– Retractable before CCrash and therefore s0 99K sk
CCrash−−−−−→ sn+1 is also a

valid run. The induction hypothesis gives a matching run of A and a history
jump over m operations for this sequence. The history jump for the original
sequence then is over m + 1 operations and we take the re-execution from
the induction hypothesis which ends in the state sn+1.

– dom(ACrash)-completable before CCrash and sk
Opi−−→ s′′k+1

CCrash−−−−−→ sn+1

holds for some state s′′k+1 ∈ dom(ACrash). We choose s′l+1 = s′′k+1 and by

proof obligation 1., s0 99K sk
Opi−−→ s′l+1

ACrash−−−−−→ sn+1 is a re-execution of A
with s′l+1 ∈ dom(ACrash) and the history jump stutters. ut

5 Component Hierarchies & Substitution

This section defines components M(A) that use a subcomponent A (see Fig. 1),
underlying several limitations to confine communication between M and A to the
interface. Hierarchies allow us to split off a part M of the entire implementation
and verify it based on a (possibly very abstract) component A. A can then be
refined separately, without jeopardizing the correctness and crash-safety of M .
This facilitates modular and incremental development of a large system.

Intuitively, M has volatile state only and the entire persisted state resides in
its subcomponent A. Combined states of M(A) are written ms⊕as.

Definition 8 (Hierarchies). The component M(A) = (MS × AS , In,Out ,
MInit × AInit ,MS × ASync,MCrash × ACrash, (MOpi)i∈I) combines the state
space of M and of its subcomponent A. The state of A is hidden from M (in-
formation hiding) and the interaction with A is accomplished via synchronous
calls to A’s operations in the programs MOpi of M and observation of their in-
puts and outputs. The crash on the M part of the state must be arbitrary, i.e.,
MCrash = MS ×MS, and M(A) is synchronized if and only if A is.

Refinement is compatible with hierarchical composition, i.e., correctness and
crash-safety of a component is preserved by substitution of its subcomponents.
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Theorem 3 (Substitution). If CSync = CS and A v C, then M(A) vM(C).

The condition CSync = CS states that every C state is synchronized, i.e.,
there are no backward jumps and no re-execution in C and likewise in the com-
bined M(C). The Theorem is applicable in practice, because we can substitute
implementation machines, which are always synchronized, bottom-up.

Proof (of Thm. 3). Given a fixed, arbitrary run of M(C) we derive a matching
run of M(A) with the same labels to satisfy Def. 3 in several steps: From each
M(C)-transition, we extract the fine-grained steps of C corresponding to the calls
of its operations. Concatenating these gives a run of C, which can be mapped
to one of A as a whole by the assumption A v C. Finally, the A run can be
integrated back with M . The reset transitions reduces to two helper lemmas.
Specifically, if C is an implementation component, then Lem. 1 maps the M(C)
crash to the C one.

Lemma 1. If ms⊕cs
reset−−−→ ms ′⊕cs ′, then cs

reset−−−→ cs ′ holds for all ms, ms ′

The converse (Lem. 2) lifts the matching A reset from as to as ′ back into the
context.

Lemma 2. If as
reset−−−→ as ′, then ms⊕as

reset−−−→ ms ′⊕as ′ holds for all ms, ms ′.

Lemma 1 is trivial: the M(C) reset transition has no back-jumps and is thus
equivalent to (cs, cs ′) ∈ CCrash by the restrictions of component composition
of Def. 8. Note that in general, compositions M(C) retract operations at a coarser
granularity than C can do on its own, i.e., a reset of M(C) cannot be explained
with the help of a C-reset in the presence of back-jumps.

Lemma 2 guarantees that the back-jump induced by the reset transition
of the abstract A is permitted by the semantics of M(A). The proof can be
followed alongside Fig. 11 to establish arrows from the given arrows . The
first line shows the big-step semantics of M(A) and the second line extracts the
small-step semantics of the one operation MOpi (ms0⊕as0 = msk⊕ask and
msm⊕asm = msk+1⊕ask+1). The history jump of A targets a state as l in the
middle of a previously execution operation MOpi. The reset of M(A) retracts
to the state msk⊕ ask right before this call and then reaches the combined
intermediate state ms l⊕ as l by partial re-execution of the MOpi potentially
including a partial AOpj from the A reset. In the resulting state ms ′l⊕as ′l, the A
crash is known and the M crash admits any desired successor anyway. ut

6 Crash-neutrality

The proof obligations 4. of Thm. 1 consider intermediate states. In this section we
adapt the criterion of Crash-neutrality from our previous work [10], allowing us
to consider initial and final states of operations only. This reduces the difficulty
and size of proofs by enabling standard techniques from sequential verification.

Informally, Crash-neutrality asserts that for any intermediate state a comple-
tion exists that does not modify the persistent memory any further. A component
is Crash-neutral if all its operations are.
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msk⊕ask

ms0⊕as0 ms l⊕as l ms l+1⊕as l+1 msm⊕asm

AOpj(cin, cout)

msk+1⊕ask+1 msn⊕asn
MOpi(in, out)

history
jump of A

as ′
l

ms ′
l⊕as ′

l

as ′
l+1

ms ′
l+1⊕as ′

l+1

re-execute
AOpj(cin, )
or stutter

ACrash

MS ×ACrash

history jump of M(A)

re-execute
MOpi(in, )
or stutter

Fig. 11: Mapping a reset transition of a subcomponent A to one of M(A).

Definition 9 (Crash-Neutrality). An operation Op is Crash-neutral if every

partial execution s
Op(in, )−−−−−−→ s′ with s′ ∈ dom(Crash), has a completion that

terminates in a state s′′ with the following property: for every state s0 with
(s′, s0) ∈ Crash then (s′′, s0) ∈ Crash holds, too.

A useful shorthand to proving Crash-neutrality of M(C) is given by the
following lemmata. Its basic insight is that an operation is Crash-neutral if every
small step of its program is Crash-neutral. Since all steps of M are either calls
to C or just in-memory, it remains to ensure that C is Crash-neutral:

Lemma 3 (Crash-Neutrality of M(C)). If C is Crash-neutral and all oper-
ation of M terminate, then M(C) is Crash-neutral. ut

Lemma 4 (Crash-Neutrality of atomic C). If every operation of C is atomic,
then Crash-neutrality of C can be characterized by

Crash ⊆ COpi(in) o
9
Crash for all i ∈ I and in ∈ In ut

The append operation of the write buffer (see Fig. 3) is Crash-neutral, we
simply choose n = 0 as the number of bytes written. With Crash-neutrality
Thm. 1 can be reformulated such that only reasoning about initial and final
states is necessary.

Theorem 4 (Crash-Neutral Data Refinement by Forward Simulation).
A refinement A v C for a CCrash-neutral component C is implied by a forward
simulation R ⊆ AS × CS satisfying 1.–3. of Thm. 1 and

4′. R o
9
CCrash ⊆ ACrash o

9
R (crash)

Proof. We consider the transition sequence cs
Opi(in, )−−−−−−→ cs ′

reset−−−→ cs ′′. If the
history jump transition (and therefore the re-execute) stutter, we complete the
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operation Opi(in, ) by CCrash-neutrality and are still able to crash to cs ′′ af-
terwards. If we have a history jump, we complete the re-execution transition by
CCrash-neutrality and are able to crash to cs ′′ afterwards. All relevant transi-
tions for a forward simulation are explained by complete executions and we can
use proof obligation 2. of Thm. 1 to find the matching abstract transition. ut

7 Related Work

We focus on techniques for the verification of crash behavior, comparison of
Flashix to related efforts can be found in [11,18,9] and Lali’s summary [14].

Bornholt et al. [3] define crash consistency models for file systems, based
on operations that produce (potentially many) update events. A crash is then
expressed by taking a prefix of the update events. The difference between their
definition of sequential crash consistency [3, Def. 5] and quasi sequential crash
consistency (Def. 4) is that we allow a re-execution that might produce different
events and not just (a reordering of) a prefix, and we allow an additional effect
of the crash afterwards. Update events have the same drawback as the explicit
specification provided in Sec. 2. Their notion of crash consistency also omits
orphaned files. Follow-up work [19] integrates crash-safety with simulation con-
ditions similar to the ones we have given previously in [10]. This paper clarifies
the adequacy of the simulation conditions wrt. a component semantics, which
is not discussed in [19]. In particular, hierarchical composition of components
has subtle effects of how exactly a crash and recovery must be organized that
substitution is possible (Thm. 3).

Write-back caches where a crash affects multiple operations is discussed in
[2,5,19], too. The abstract model of [2] keeps an explicit history back to the
most recent flush as a list of higher-order state transformers. It is proved that
the implementation of sync correlates to reducing the history to produce a
current state. Chen’s thesis [5] discusses a specification methodology of write-
back caches that are not order-preserving. It is based on explicitly rewriting
histories, although he lacks modular conditions as in Thm. 2.

In this paper as well as in [19] the intermediate steps of operations are
summarized at the semantic level (as Op(in, ) resp. f(s, x, sync = false)).
Ntzik et al. [16] as well as Chen et al. [6,4] have developed Hoare-style proof
rules that establish a user-provided invariant called “crash condition” over the
intermediate states of a program that serves as the precondition of recovery. The
latter work has produced the FSCQ file system that is verified with Coq. Marić
and Sprenger [15] model crashes by exceptions that are triggered nondetermin-
istically in the write operations of the hardware model to verify a redundant
storage system. We have addressed this issue by a fine-grained semantics of pro-
grams in [10] which computes the crash condition symbolically.

Re-execution of operations underlies the “recoverability” criterion of Koski-
nen and Yang [13] at the level of entire programs. Their approach can be recast
in our notation such that Op(in, ) o

9
Crash establishes the precondition of the

program, which can then be re-run to recover the intermediate state without
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runtime errors. Here, the purpose of re-execution is different: We use it as a
specification mechanism to reach certain intermediate states.

8 Conclusion

In this paper we have defined an approach that facilitates the integration of
order-preserving write-back caches into the hierarchical development of file sys-
tems. It is possible to verify functional correctness and quasi sequential crash con-
sistency modularly. This enables modular, large-scale verification, which would
otherwise be unrealistic to perform and hard to maintain.

We have reinterpreted the behavior of a crash in terms of the system’s opera-
tions, so that at each level of abstraction a backward jump (induced by a crash)
does not need to be expressed as part of the state. This allowed us to propa-
gate the reset specification implicitly upwards through a refinement hierarchy.
Obviously, it is necessary to capture the effect semantically to do this.

We implemented support for component specifications of Def. 1 and generate
the proof obligations in our interactive theorem prover KIV [8]. We mechanized
the verification of the Flashix file system, which provides quasi sequential crash
consistency. Previously, we performed a verification of write-back caching for
the two components above the write buffer, where the sequence of operations
is mostly part of the state. The second component then flushed the write-back
cache at the end of its operations, which we can avoid now. With the theory of
this paper, the verification of the write buffer itself requires just little extra effort,
due to the switch from the implicit to the explicit reset specification. However,
the specifications (not the implementations) of all components above the write
buffer greatly benefited in terms of verification effort. For the two abstractions
directly above the write buffer we report a decrease of 40% resp. 17% of user
interactions in the proofs (from 500 to 300 and from 1270 to 1050). Flashix is
now significantly faster and more space efficient, due to fewer flushes.

The theory in this paper should be applicable to other file systems and achieve
similar results, since all journaling and log-structured file systems [17,21] feature
comparable write-back caches.

In future work, we plan to extend the theory to non-order-preserving caches
by allowing commutations of operations.
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