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ABSTRACT

We present CPA-SymExec, a tool for symbolic execution that is im-

plemented in the open-source, configurable verification framework

CPAchecker. Our implementation automatically detects which sym-

bolic facts to track, in order to obtain a small set of constraints that

are necessary to decide reachability of a program area of interest.

CPA-SymExec is based on abstraction and counterexample-guided ab-

straction refinement (CEGAR), and uses a constraint-interpolation

approach to detect symbolic facts. We show that our implementa-

tion can better mitigate the path-explosion problem than symbolic

execution without abstraction, by comparing the performance to

the state-of-the-art Klee-based symbolic-execution engine Symbi-

otic and to Klee itself. For the experiments we use two kinds of

analysis tasks: one for finding an executable path to a specific

location of interest (e.g., if a test vector is desired to show that

a certain behavior occurs), and one for confirming that no exe-

cutable path to a specific location exists (e.g., if it is desired to show

that a certain behavior never occurs). CPA-SymExec is released un-

der the Apache 2 license and available (inclusive source code) at

https://cpachecker.sosy-lab.org. A demonstration video is available

at https://youtu.be/qoBHtvPKtnw.
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1 INTRODUCTION

Symbolic execution [18] has important applications in the area of

software verification and testing. Many techniques rely on generat-

ing (symbolic) paths through the execution tree of a program, for

example, test-case generation [9], fault localization [13], program

repair [19, 20], and equivalence checking [17]. Even for software
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verification, approaches using symbolic execution are able to show

remarkable results at the competition on software verification (SV-

COMP) [1] 1. Symbolic execution is a static program analysis that

stores explicit values for variables whenever possible, and if an ex-

plicit value is not available, a new symbolic value is assigned to the

variable and used as its value in further computations. This way, the

symbolic value is propagated to other program variables depending

on the undeterminable variable. Whenever a symbolic value occurs

in an assumption, this assumption describes a constraint on the

symbolic value for the remaining program path. Symbolic execution

tracks these constraints alongside variable assignments to reason

about the feasibility of a program path and to determine possible

concrete values for symbolic variable assignments. Additionally,

using symbolic values, relationships between program variables

can be observed in a clear manner. Because of its high precision,

symbolic execution suffers in its original form from path explosion.

Our symbolic-execution engine, CPA-SymExec, is able to mitigate

path explosion through abstraction with CEGAR [11]. CEGAR com-

putes the precision that is necessary for an analysis: it starts with

an initial, coarse precision and then iteratively refines the preci-

sion based on infeasible target paths that are found during the

analysis. The precision of CPA-SymExec, in particular, specifies for

which variables the analysis tracks (symbolic) values and which

constraints are important. CPA-SymExec computes a special instan-

tiation of Craig interpolants [12] from infeasible target paths that

allows us to derive program variables and constraints that must be

tracked [7]. Through this, we often find an abstract model for the

program that is detailed enough to reason about the executability

of program paths, but still coarse enough to avoid path explosion.

CPA-SymExec is implemented in the software-verification frame-

work CPAchecker, which offers many abstract domains and verifica-

tion algorithms, is developed and maintained by over 20 active, in-

ternational contributors from different institutions, and is released

under the open-source license Apache 2. Modular design is a main

objective of the project. The framework provides many utilities

that are useful for performing software-analysis tasks: After a run,

it provides detailed statistics about its different modules, and target

paths are made available in JSON and as XML witnesses [4, 5]. For

presentation purposes, visualizations are available for: the control-

flow automaton (CFA), the abstract reachability graph (ARG), and

the target paths [3]. For a found target, CPA-SymExec also returns

the symbolic execution path to that target in a text file for further

parsing in other tools, as well as an exemplary concrete execution

path. In addition to this, CPA-SymExec can also be used for test-case

generation based on condition coverage. In addition to CEGAR,

CPA-SymExec uses several optimizations to speed up state explo-

ration. For example, after every satisfiability check (SAT check) of

path constraints, it stores a model for the constraints and checks

1https://sv-comp.sosy-lab.org/2018/results/results-verified
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1 unsigned char a = ˚;

2 unsigned char b = ˚;

3 unsigned char c = b + 1;

4 unsigned char i = 0;

5 while (a < 100) {

6 if (˚)

7 a++;

8 else

9 i++;

10 }

11 if (c <= b)

12 error();

tu
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tu

tb “ b1, c “ b1 ` 1u
tb1 ` 1 ď b1u

tb “ b1, c “ b1 ` 1u
tb1 ` 1 ď b1u

a “ ˚; b “ ˚; c “ b + 1; i “ 0

ra ă 100s r␣pa ă 100qs

r˚s

a++

r␣p˚qs

i++

rc ď bs

error()

Figure 1: Example program with symbolic execution tree of

CPA-SymExec to illustrate the effect of abstraction

whether it still holds for successive path constraints (to avoid ex-

pensive SAT checks), and it also uses that model to check whether

any symbolic value is constrained to a single concrete value. If so, it

permanently stores the corresponding assignment and replaces the

symbolic value with the concrete value. Through this, the number

of symbolic values in SAT checks can be minimized. As a further ad-

vancement, CPA-SymExec uses a random-weighted traversal strategy

for state-space exploration that is inspired by Klee [9].

To show the maturity of our implementation, we performed

experiments on thousands of C programs from the largest avail-

able repository of C verification tasks 2. The results show that CPA-

SymExec can compete with both state-of-the-art tools for symbolic

execution of C programs, Klee and Symbiotic.

Example. Figure 1 shows the effect of using symbolic execution

with CEGAR. The special symbol ˚ in the C program (top left in

Fig. 1) represents a non-deterministic value. The ARG of the pro-

gram (bottom Fig. 1) illustrates the explored state space. Every

rectangle represents an abstract state, with the first line contain-

ing the variable assignments and the second line containing the

tracked constraints. Assume we want to check whether the call to

function error can be reached. Instead of tracking all assumptions

and assignments that occur in the program and analyzing an expo-

nentially growing (and even infinite) number of paths due to the

non-deterministic value of variable a and the if-condition in the

loop, symbolic execution with CEGAR only tracks the values of

those variables that are necessary to prove the property; namely b

and c. Using this level of abstraction, all possible program states of

the loop are represented by the abstract states that are computed

during the first iteration of the loop. The dotted rectangles represent

abstract states at which the analysis stops because they are already

covered by the computed state space. The red, bold rectangle in

2https://github.com/sosy-lab/sv-benchmarks

true

a “ a1 ^ b “ b1 ^ c “ b1 ` 1

a1 ě 100

b1 ` 1 ď b1

a “ ˚; b “ ˚;

c “ b + 1; i “ 0

r␣pa ă 100qs

rc ď bs

error()

(a) Symbolic path

true

a “ 100^ b “ 255^ c “ 0

a “ ˚; b “ ˚;

c “ b + 1; i “ 0

r␣pa ă 100qs;
rc ď bs;
error()

(b) Concrete path

Figure 2: Symbolic and concrete paths to the target

the lower right is an abstract state that represents a found target

(due to overflow, cf. Fig. 2b).

If CPA-SymExec finds a target, it creates the symbolic path (Fig. 2a)

and a concrete path (Fig. 2b) that lead to that target. These paths

can be used for further analysis tasks, e.g., validation of verification

results or program repair. In addition, CPA-SymExec can create a

compilable test to check reachability through execution.

Contributions. The tool CPA-SymExec contributes the following:

‚ Support for the combination of abstraction refinement with

symbolic execution by extending the previous implementa-

tion [7] to a mature symbolic-execution engine.

‚ Availability of all configuration options existing in the

CPAchecker framework, including combinations with other

abstract domains and analysis algorithms (e.g., pointer anal-

ysis or memory graphs).

‚ Optimizations (e.g., subset-superset caching) that are consid-

ered state-of-the-art and offered in Klee [9].

‚ Violation witnesses and executable tests [6].

‚ Automatic test-case generation [2] (also implemented in

Klee) for condition coverage.

‚ Symbolic target paths to support comprehension of program

paths and for further use.

‚ HTML-based reports to view and analyze control-flow au-

tomata, abstract reachability graphs, and target paths in-

dependent from specific tools (requires a standard web

browser).

We show that our implementation is competitive against the state-

of-the-art (Klee, Symbiotic) in a thorough experimental evaluation.

Supplementary Artifact and Webpage. All experimental data,

additional evaluation of mentioned features, and further examples

are available as supplement [8] 3.

Related Work. Klee [9] is a symbolic-execution tool that uses

search heuristics to mitigate the path-explosion problem. It is able

to symbolically and dynamically handle system calls in a program,

while our implementation always handles them symbolically. Han-

dling a system call dynamically executes it and uses the concrete

value returned by the operating system for further analysis. This

allows faster execution, but may not cover all possible program

3https://sosy-lab.org/research/cpa-symexec-tool
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states. Handling a system call symbolically uses a symbolic value

that represents all possible values the operating system could re-

turn for the system call. The advantages and disadvantages are the

opposite of dynamic handling. Klee can also provide a test case for

every explored program path during the analysis of a program.

Symbiotic [10] is a symbolic-execution-based verifier that uses

program-slicing with extended pointer analysis to mitigate path ex-

plosion. Symbiotic has been participating in SV-COMP successfully

for several years. It uses Klee as a symbolic-execution back-end.

Tracer [14] computes (a) loop invariants using counterexample-

guided loop unrolling to tackle the problem of unbounded loops and

(b) weakest-precondition interpolants derived from infeasible target

paths to weaken the precision of its symbolic execution. This is the

opposite to our use of CEGAR. While we start with a low precision

and refine it based on strongest-postcondition interpolants (preci-

sion increase), Tracer starts with a high precision and abstracts it

based on weakest-precondition interpolants (precision decrease).

To make bug reports more readable, path projection [16] (see

also [15]) takes an XML bug report and presents the corresponding

program code after performing method inlining and code folding

on it. This way, it creates one consecutive, readable stream of the

executed program code that only shows information that is nec-

essary to understand the bug without the need to jump between

lines and files. The HTML interface of the target-path report of

CPAchecker is similar to this, but displays a concrete target path.

2 ARCHITECTURE OF CPA-SYMEXEC

A run of CPA-SymExec consists of three main phases: The front-end

module (Parser and CFA Builder) first creates an internal represen-

tation of the program under analysis as CFA, then the symbolic

execution with CEGAR runs on that CFA and tries to find a target

path for a provided specification. When the analysis terminates,

statistics and other information are written for the user to better

understand the result. Figure 3 shows this main architecture of

CPA-SymExec.

Front-end. CPA-SymExec is able to build CFAs for programs written

in C, Java, and LLVM bitcode. First, the front-end parses the pro-

gram under analysis. From the resulting parse tree, it constructs

the initial CFA and performs several optimizations to simplify the

structure of the CFA. Then, the front-end derives additional infor-

mation about the program based on syntactical information. This

includes a live-variables analysis to determine which variables are

active in the current scope, a classification of variables based on

their usage, and an analysis of the loop structure of the program.

The created CFA and the additional information collected is then

passed to the symbolic execution.

Symbolic Execution. CPA-SymExec runs symbolic execution with

an adjustable precision on the CFA. Initially, this precision is empty,

i.e., symbolic execution does not track any variable assignments

or path constraints. Whenever the symbolic execution finds a path

that violates the given specification, that target path is symbolically

executed with full precision. If this shows that the path is actually

infeasible, the precision is refined by the precision-refinement pro-

cedure. The precision refinement extracts (by interpolation) from

an infeasible target path which variables and constraints should

be tracked. This information is used to increase the adjustable pre-

cision, such that the infeasible target path is not re-encountered

by any successive symbolic execution, and the symbolic execution

restarts with the new precision. If the symbolic execution finishes

without finding a target path, CPA-SymExec terminates and the spec-

ification holds. If symbolic execution with full precision shows that

a found target path is actually feasible, CPA-SymExec terminates and

returns the target path with additional data to the user.

Analysis Output. After analysis, an HTML report 4 can be created

to visualize the CFA, the explored state space and, if existing, target

paths. The CFA is displayed in graph representation, the explored

state space is displayed as an ARG, and target paths are displayed

in two variants: (1) A concrete target path shows relevant concrete

variable assignments at every step along the path, and (2) a symbolic

target path shows the full symbolic state at every step along the

path. If CPA-SymExec is used for test-case generation, a test harness

is created for each reachable condition in the program as soon as

it is reached. This test harness can be compiled together with the

program under analysis to create an executable test.

Test-Case Generation. For test-case generation, an algorithm in

CPAchecker is used that (a) defines every condition in the program

as a target, and (b) only stops after, for each target, a path to it is

found, or it is proven unreachable. For each target path, it then

creates a compilable harness based on the work of execution-based

result validation [6].

3 USING CPA-SYMEXEC

Installation. All steps for installing CPAchecker are explained on our

supplementary webpage.5 CPAchecker can be downloaded as binary

release, or as source code using Subversion or Git. 6

Execution. To run CPAchecker on the command line, execute cpa.sh,

which can be found in directory scripts/ of the installation, with

the intended parameters followed by the file to analyze. To use

CPA-SymExec, run CPAchecker with parameter -symbolicExecution-

Cegar. If a C file is not yet pre-processed, CPAchecker can do that

with option -preprocess.

Constraints of symbolic execution are resolved using an external

SMT solver. Currently, CPAchecker supports SMTInterpol
7, Math-

SAT5
8, Z39, and Princess

10. The solver can be selected by using pa-

rameter -setprop solver.solver=SOLVER with the intended solver;

the default solver is MathSAT5. By default, CPA-SymExec uses bit-

precise encoding of both bit-vectors and floating-point numbers.

A full line to execute an example program test.c looks like:

cpa.sh -symbolicExecution-Cegar -preprocess test.c

CPAchecker will create a set of files (in directory output/) for the

user to better understand all findings (cf. Sect. 2). To perform

test-case generation with CPA-SymExec, run it with configuration

-testCaseGeneration-symbolicExecution-Cegar.

4cf. https://sosy-lab.org/research/cpa-symexec-tool for an example report
5https://sosy-lab.org/research/cpa-symexec-tool
6http://cpachecker.sosy-lab.org/download.php
7http://ultimate.informatik.uni-freiburg.de/smtinterpol/
8http://mathsat.fbk.eu/
9https://github.com/Z3Prover/z3
10http://www.philipp.ruemmer.org/princess.shtml
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No Target Path Feasible Target Path

Figure 3: Architecture of CPA-SymExec

Table 1: Comparison of CPA-SymExec with the other state-of-

the-art tools Klee and Symbiotic; best value highlighted

Tool correct correct incorrect incorrect unsolved

true false true false

CPA-SymExec 2137 545 0 22 2865
Klee 446 899 6 33 4 206

Symbiotic 1 201 848 3 9 3 529

4 COMPARISON

To illustrate the competitiveness of CPA-SymExec, we performed

a thorough comparison with Klee and Symbiotic on 5 590 tasks of

the largest available benchmark set for verification tasks in C 11.

Table 1 reports for each of the approaches the number of (1) correct

answers that no path exists, (2) correct answers that a path is found,

(3) missed paths (i.e., a path exists but the tool did not find it),

(4) wrong paths (i.e., paths that cannot be executed in the program

semantics), and (5) unsolved tasks. The different approaches of the

three tools show in the results: Klee is the strongest tool for finding

paths for a user query; Symbiotic is the most accurate tool: it reports

the lowest number of wrong paths, i.e., paths that are actually not

paths for which the user was querying; and CPA-SymExec is the best

tool for exhaustively exploring the state space: the tool correctly

reports 2 137 programs that do not contain a path for which the user

was querying, and it did not miss any such path. This outperforms

both Klee and Symbiotic.

5 CONCLUSION

We explained the architecture and basic concepts of CPA-SymExec,

as well as the process of running CPA-SymExec for verification and

test-case generation. A more detailed tutorial video on YouTube

supports these explanations. CPA-SymExec in CPAchecker is a com-

petitive symbolic-execution engine that allows users to combine

symbolic execution with abstraction and CEGAR. In addition, the

matureness of CPAchecker and the multitude of different abstract

domains, algorithms, and utilities that are implemented in the frame-

work allow an efficient implementation of new ideas and a quick

adaption of existing techniques that rely on symbolic execution.

Acknowledgment.We thank the contributors of the CPAchecker

project (http://cpachecker.sosy-lab.org/acknow.php); CPA-SymExec

is based on many standard components of this framework.

11https://github.com/sosy-lab/sv-benchmarks
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